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Coherent propagation of an optical pulse

in a Bragg plasmon grating

A.I. Maimistov, I.R. Gabitov, A.O. Korotkevich

Abstract. The propagation of ultrashort pulses in a dielectric
medium with periodically arranged metal nanoparticles is
considered theoretically. Plasmon oscillations in these par-
ticles are described by the model of an anharmonic oscillator
with the driving force proportional to the electric-field
strength of an electromagnetic pulse. A system of equations
determining the behaviour of electromagnetic waves is
obtained in the approximation of slowly varying envelopes
of ultrashort pulses and medium polarisation. Under the
assumption that the frequencies of the carrier wave and
oscillators coincide and the Bragg resonance condition is
fulfilled, the solution of the obtained equations is found, which
corresponds to the solitary wave of the ultrashort-pulse field
and the medium polarisation (Bragg soliton). The numerical
simulation shows the formation of a Bragg soliton (from the
initial Gaussian pulse of the sufficient energy) and a
nonstationary solitary wave with the vanishing group velocity.

Keywords: Bragg solitons, resonance Bragg grating, coherent
propagation of ultrashort pulses, solitary wave.

1. Introduction

Optical phenomena in the media with the linear refractive
index, which periodically changes along the propagation
direction of an electromagnetic wave, have attracted atten-
tion of researchers for the last fifty years. One-dimensional
periodic structures, in which the wave vectors of counter-
propagating waves are related by the Bragg condition, are
called Bragg gratings [1—3]. In nonlinear media with a
periodically changing linear part of the refractive index,
localised waves can be formed, which are called Bragg
solitons. These phenomena are considered in detail in [3].

Not only the linear refractive index can change periodi-
cally. Thus, a homogeneous linear dielectric medium was
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considered in papers [4—7], in which thin films containing
resonance impurities were arranged parallel to each other
with a step a. This medium was called the resonance Bragg
grating (RBG). The results of numerous studies of optical
phenomena in RBGs are presented in review [8]. It has been
shown recently with the help of numerical simulation [9] that
a nonstationary pulse exists in RBGs, which looks like a
soliton with a periodically changing propagation velocity —
the so-called optical zumeron for which an approximate
analytic expression has been also obtained.

An important achievement in modern optics is the
fabrication of holey fibres based on a photonic crystal
and hollow waveguides [10—13]. Such waveguides can be
used to produce new quasi-one-dimensional nonlinear
media by embedding various nonlinear impurities in their
hollow core, for example molecules or molecular aggregates,
semiconductor microcrystals or metal nanoparticles. The
dynamics of acoustic waves generated by the electromag-
netic field in a RBG containing resonance impurities in the
form of molecular aggregates and the effect of exciton—
phonon and exciton—phonon—photon interaction on the
parameters of the photonic band structure have been
investigated recently [14].

The development of nanotechnologies lead to the
creation of composite materials doped with nanoparticles,
nanowires, carbon nanotubes, nanomagnets and photonic
crystals with metal structure elements. To emphasise their
artificial nature, they are called metamaterials [15, 16]. In
many cases, metamaterials are produced in the form of films
and their electrodynamic properties are determined by
plasmon oscillations in nanoparticles. Thus, a Bragg grating
can be formed by a periodic sequence of metamaterial films
embedded into a wusual dielectric (linear or nonlinear)
medium.

In this paper we consider a simple model of such a RBG,
whose nonlinear properties are determined by the plasmons
of the structural elements of a film.

2. Reduced two-wave Maxwell’s equations

Let an infinite sequence of thin films of a polarising
material be located with a step @ normally to the x axis,
along which electromagnetic waves with the frequency w,
propagate in the forward and backward directions. It is
assumed that the film thickness /; is smaller than the
radiation wavelength propagating through this medium.
The passage from complete Maxwell’s equations to the
equations for slowly varying pulse envelopes propagating in
the forward and backward directions in the RBG is
described in many papers and reviews devoted to the
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electrodynamics of periodic media [1—3]. By assuming that
the total electric-field strength is determined by the
expression

E(x,t) = [ (x, 1) exp(igox) + A(x, 1) exp(—igox)]

X exp(—iwyt), @))]

and following papers [4 —8, 14, 17], we can write the system
of equations, which in the long-wavelength approximations
gives the envelope evolution of the forward [.<7(x, )] and
backward [%4(x, t)] waves:
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where Aqy = gy — 21/ a; qo = wgy/¢/c is the wave number in
the medium with the dielectric constant ¢. The parameter ¢,
takes into account the group-velocity dispersion v, of the
second order. To determine polarisation £ in (2), it is
necessary to choose a model describing the response of thin
films to the external electromagnetic field.

Dielectric properties of the metamaterial are often
considered based on Lorenz oscillators for plasmon oscil-
lations, and the magnetic properties are described by a
system of oscillating circuits [18 —22]. The simplest general-
isation of this model is achieved by taking into account
anharmonicity of plasmon oscillations [23, 24] or the
inclusion of the nonlinear capacity in the oscillating circuit
[25]. We consider here thin films of nonmagnetic materials,
whose microscopic polarisation P is determined by the
expression [23]
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where ), is the plasma frequency; my is the frequency of the
dimensional nanoparticle quantisation; and k is the

anharmonicity constant. The parameter I', takes into
account losses caused by the decay of plasmon oscillations.
It is assumed that the duration of electromagnetic pulses
can be chosen so small that the losses can be neglected. If
the constant x is zero, expression (3) corresponds to the
Lorenz model used in [15, 18—-21, 26—29] for studying the
propagation and refraction of electromagnetic waves in
metamaterials.

Because electromagnetic pulses are described in quasi-
harmonic approximation (1), expression (3) can be reduced
in a standard way in the approximation of slowly varying
pulse envelopes:
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Here, ®, is the frequency of the carrier wave;
&y = A (x, 1) + AB(x, 1) is the slowly varying pulse envelope
of an electromagnetic field inside a thin film equal to the
sum of amplitudes of the forward and backward waves.

Let us pass to dimensionless variables by introducing the
following notation:

R B 4wy t oy,
,ep=— p=—"" P 1=—,({=-L1x. (5
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The quantity of 7, = 2\/e/w, is the time interval determin-
ing the characteristic scale in the problem under study. For
0 = 2(c/wy)Aq and by neglecting the second-order group-
velocity dispersion, systems (2) and (4) take the form:
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where 4 =2\/e(wq — wy)/w, and the parameter u=
(3K\/5/w0wp)(\/§wp/4nw0)2/102 depends on the normalisa-
tion amplitude A,.

System of equations (6) can be rewritten in another from
by introducing functions

fs = —(ey + ;) exp(—idr), f,

q = pexp(—ior).

Then equations of system (6) take the same form as
equations used in [5, 9]:
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where the parameter p determining the nonlinear response
of the metamaterial is chosen equal to unity. By excluding
fa, equations (8) can be rewritten in the form:
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The obtained system of equations describes the propagation
of ultrashort pulses in a Bragg grating from nanoparticles,
in which plasmon oscillations are induced by the electric
field of ultrashort pulses propagating in forward and
backward directions.

3. Steady-state solutions describing
a solitary wave

Steady-state solutions of system (9) correspond to travelling
waves, whose envelopes depend only on the variable y =
t—az (o is an arbitrary parameter). The boundary
conditions for system (9), which have the form

ofs(t of.(t
e = B0 D

(for 7,{ — £00),

= Q(L (:) =0
(10)

single out solitary waves from this set of solutions. We will
not consider the solutions with nonzero asymptotics and
periodic waves because they do not satisfy boundary
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conditions (10). The condition for the strict resonance
(wg — wg) =0 and the condition for the Bragg resonance
qo = 2n/a are also assumed fulfilled [4-9].

By integrating the first equation in (9), under the
resonance conditions we obtain from system (9) two
ordinary differential equations:

s
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where f# = 2/(ax* — 1). The passage to the real variables u, r,

¢ and y [ f; = uexp (i¢), ¢ = rexp ()] yields the system of
equations
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where @ = ¢ — . The relation (the first integral of motion)
u® — pr* = const = 0 follows from the equations for real
amplitudes taking boundary conditions (10) into account.
The equations for the phase difference @
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and amplitude u« [from(12)], taking the first integral of
motion into account, yield the system of equations
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Equations (15) lead to the second integral of motion, which,
taking boundary conditions (10) into account, can be
written in the form

cos® = (4p+/B) " u’. (16)
The substitution of (16) into (12) gives
ou\2 o 22 \2
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By replacing u by @~ /<, expression (17) yields
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whose solution is
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The integration constant #, determines the position of the
pulse maximum. Thus, the solution of amplitude equations
(12) has the form:
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In addition, it follows from (14) and (18) that

sin@(n) = — tanh [2y/B(n — ny)].- (19)
By using (18), the phases
¢(n) = ¢y £ arctan tanh[\/ﬁ(n — 110)],
(20)

W(n) = Wy £ 3arctan tanh[\/ﬁ(n — )]

are determined from (13). The initial values of phases are
chosen so that the phase difference for n — —oco was
determined by the condition @, = ¢, — ¥, = /2. It follows
from (15) that when the field strength of the electro-
magnetic pulse is small, this relation between the initial
phases provides an increase in the amplitude of plasmon
oscillations with increasing the amplitude of the driving
force, i.e. the field amplitude.

By using (7) we can obtain the normalised envelopes of
the waves, which form a coupled state — split soliton:

e1(n) = —=0.5(1 + «) fs(n) exp(idr),
@n

ex(17) = —0.5(1 — &) f5(1n) exp(i07)

in the medium. In the linear approximation, these waves are
counterpropagating.

4. Nonstationary waves

To study the nonstationary behaviour of nonlinear solitary
waves, we solved numerically system of equations (8) in the
range (—10 < { < 10) with the initial conditions

e1(—10,7) = ejg exp{—0.5[(t — 3)/1.5)

+iarctan tanh[1.5(t — 3)]}, €,(10,7) =0, (22)

and ¢g(—10,7) = ¢(10,7) =0 for © — —oo0. The results of
calculations showed that a stationary pulse corresponding
to (18)—(20) propagates, as was expected, without any
distortions. Initial pulses (22) for e¢;o > 3 exhibit a complex
evolution. Because two counterpropagating electromagnetic
waves are coupled with plasmon oscillations in the Bragg
grating, it is convenient to present the results of calculations
as the dependence |¢({,7)| on the normalised spatiotempo-
ral variables of the plasmon-wave envelope. One can see in
Fig. 1 that the input pulse close to the Bragg soliton in
amplitude acquires amplitude modulation and emits linear
waves in the forward and backward directions. An increase
in the amplitude of the input pulse leads to the formation of
a Bragg soliton (Fig. 2). We can distinguish here three
evolution stages. At the first stage (—10 < { < —7), the
initial pulse is split into the fast and slow waves. The slow
wave is coupled with plasmon oscillations in the grating,
which are excited by the electromagnetic pulse. At the next
stage (—7 < { < 0), the fast solitary wave transforms into a
Bragg soliton and the amplitude and the propagation
velocity of slow waves decrease. In essence, they transform
into localised oscillations in the Bragg grating. At the third
stage (0 <{<9), a quasi-stationary pulse with a small
emission of the linear wave remains. A further increase in
the initial-pulse amplitude is accompanied by the formation
of a Bragg soliton and a nonstationary pulse whose
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Figure 1. Nonstationary pulse of plasmon oscillations close in amplitude
to the Bragg soliton (¢;q = 2).
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Figure 2. Nonstationary pulse of plasmon oscillations close in amplitude
to the Bragg soliton (e;y = 3.5).
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Figure 3. Propagation of a nonstationary pulse of plasmon oscillations
(e1p = 4) exhibiting a slowing down of an electromagnetic wave.

propagation velocity almost vanishes. One can see in Fig. 3
that the slow solitary wave stops near the point { =~ 0.

5. Conclusions

We have considered the propagation of ultrashort pulses in
the Bragg grating which is formed by thin films from metal
nanoparticles embedded into a dielectric matrix. Plasmon
oscillations in these particles are described by the model of
an anharmonic oscillator with the driving force propor-
tional to the electric-field strength of an electromagnetic
pulse [23]. It was assumed that the matrix was made of a
linear nondispersive material. In the long-wavelength
approximation equations have been obtained for slowly
varying envelopes of counterpropagating ultrashort pulses
and for nonlinear polarisation of thin films. If the fields are
weak, so that nonlinear properties of the medium are

insignificant, one can find the spectrum of electromagnetic
waves in this system and make sure that it contains
forbidden bands, as a one-dimensional photonic crystal
should.

The nonlinear effects are most pronounced upon the
resonance interaction of radiation with the medium. Due to
a scatter in the nanoparticle sizes (in the general case, for
any other structural units of the metamaterial), the oscillator
eigenfrequencies differ. If it is necessary to take into account
the effect of the inhomogeneous resonance line broadening,
equations (9) should be modified:

0
orr ok o’

(23)
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where angle brackets show the averaging of the normalised
polarisation amplitude over all frequency detunings within
the inhomogeneously broadened resonance line. The
deviation from the Bragg resonance can occur due to
fluctuations of the grating step. Therefore, averaging in (23)
assumes averaging of Bragg detunings. The role of
inhomogeneous broadening is significant for such effects
as photon echo and free induction decay [30]. By restricting
ourselves to the consideration of nonlinear solitary waves,
we can assume for simplicity that the inhomogeneous
broadening is absent. In this case under the assumption that
the conditions for the Bragg resonance are fulfilled and the
frequencies of the carrier wave and oscillators coincide, we
have obtained an expression for the envelopes of solitary
waves of the ultrashort pulse field and polarisation. This
solution describes the propagation of a coupled pair of the
forward and backward waves of the electromagnetic
radiation. The polarisation repeats the envelope of the
stationary ultrashort pulse. Instantaneous values of the
phase of each of the pulses change inside the ultrashort
pulse, which means a slow change in the carrier-wave
frequency.

Stationary ultrashort pulses from a continuous family of
pulses, which is numbered by the positive parameter § =
2/(a? — 1) determining both the pulse width and its group
velocity. If we express the independent variable n by
physical variables [ = (w,/2v/&)(t —axy/e/c)], one can
see from the obtained expression that all terms of the
family of stationary ultrashort pulses propagate slower
that the linear wave in the matrix. Therefore, during the
decay of the initial nonstationary pulse we can expect the
formation of slow Bragg solitons. Either the collision of two
stationary pulses or interaction of the stationary ultrashort
pulses with a weak linear wave can lead to this effect. The
numerical solution of the corresponding system of equations
has shown that during the decay of the initial pulse, apart
from a soliton a slow nonstationary wave is formed, which
finally stops. This phenomenon is related to the excitation of
localised modes of plasmon oscillation in thin films, which
form the grating. If we take into account the interaction
between the films, we can expect that the slow plasmon wave
evolves into the nonlinear wave, whose propagation velocity
will be determined by the interaction between the films.
Equation for polarisation envelope (4) takes the form of a
nonlinear Schrodinger equation with a driving force. In the
future we will study this process in more detail.
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