
Abstract. It is shown that in laser experiments performed by
using an `imperfect' setup when instrumental distortions are
considerable, suféciently accurate results can be obtained by
the modern methods of computational physics. It is found for
the érst time that a new instrumental function ë the `cap'
function ë a `sister' of a Gaussian curve proved to be
demanded namely in laser experiments. A new mathematical
model of a measurement path and carefully performed
computational experiment show that a light beam transmitted
through a mesoporous élm has actually a narrower intensity
distribution than the detected beam, and the amplitude of the
real intensity distribution is twice as large as that for
measured intensity distributions.

Keywords: computational physics, interpretation, laser, mathema-
tical model, nanoélm, experiment.

There exists the concept of the reduction to an ideal
instrument in the scientiéc literature [1]. The ultimate
possibilities of experimental setups are caused by physical
phenomena forming the measurement process. A mathe-
matical model of phenomena controlling the measurement
process can be used to attempt to compensate their
distorting action on the measurement data. The result of
such mathematical transformation is treated as data
obtained by using a virtual setup with possibilities exceed-
ing considerably those of a real setup. One of the aims of
laser experimental studies is to obtain the real intensity
distribution which is not distorted by the measurement
process. This goal can be achieved by various methods, for
example, by using perfect instruments with the half-width
of the instrumental function much narrower than the details
of the intensity distribution under study. Another approach
is the use of mathematical methods. In many cases, when
instrumental distortions are considerable, the mathematical
problem is reduced to the determination of the function
v(x) from the known instrumental function K(x; y) and
detected function u(x), i.e., in particular, to the solution of
the linear integral Fredholm equation of the érst kind. The
required function v(x), determined mathematically, can be

interpreted as the result of measurements on a model
(virtual) setup with parameters exceeding the ultimate
parameters of the equipment used.

The aim of this paper is to show by the example of
speciéc laser experiments that the methods of computational
physics allow an experimenter to obtain in some cases
suféciently accurate results by using an `imperfect' setup.

We solve the problem of mathematical interpretation of
the results of experimental studies of the optical properties
of thin layers of porous materials (in particular, silicon
dioxide SiO2 and titanium dioxide TiO2). Recently, interest
was aroused in the study of thin nanocrystal élms because
they can be potentially used in photovoltaic systems, sensor
devices, photocatalysis, microelectronics, operative memory
devices in computers, etc. These materials have a high
refractive index, high strength and long-term stable optical
properties, and are transparent in the visible region. The
methods developed at present provide the manufacturing of
low-cost and high-quality élms with the speciéed parame-
ters.

The linear optical parameters of élms include the
dispersion dependences of the refractive index and absorp-
tion coefécient as well as the spatial distribution of the
scattering intensity. The linear parameters are used as the
initial data to analyse nonlinearity; however, they are
themselves also of interest.

Scattering is studied érst of all to measure correctly
absorption in a élm, i.e. to take into account the con-
tribution of the integrated scattering intensity to the total
decrease in the laser-beam power transmitted through the
élm. In addition, the details of the spatial intensity
distribution of scattering contain information on the élm
structure, including the roughness of its surface, the size of
clusters of nanoparticles forming the élm, etc.

In experiments, the scattering indicatrix of mesoporous
élms was measured. One of the aims of measurements was
to obtain the real scattering intensity distribution, i.e. the
distribution not distorted by the instrument. The quintes-
sence of the problem of mathematical interpretation of
experimental results is that in most of the physical studies
the required element v characterising a physical object or
phenomenon under study cannot be directly observed, and
for this reason some of its manifestations is investigated,
which can be represented in the form [2]

u � Av; A : V! U; v 2 V; u 2 U;

where A is a linear and compact operator acting from the
Hilbert space V to the Hilbert space U, i.e. an experimenter
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éxes an image u of the real element v of the state of the
object, phenomenon or process.

The solution of the problem of reconstructing the
element v involves two main stages:

(i) The construction of the operator A acting on the
element v (v 2 V; u 2 U, A : V! U );

(ii) the determination of the characteristics of the model
of element v from the known element u and operator A, i.e.
the solution of the operator equation u � Av (v 2 V; u 2 U ).

The construction of the operator A is called the stage of
modelling the measurement path of the experimental setup
because it distorts the element v. This operator can be often
represented in the form

Av �
� d

c

K�x; s�v�s�ds; (1)

where v(s) is the required function; c4 s4 d; and K(x; s) is
the instrumental function satisfying the relations� d

c

K�x; s�v�s� ds � u�x�; a4 x4 b; (2)

K�x; s� 2 C��a; b� � �c; d��; u 2 L2�a; b�:
In physical studies, the instrumental function is a character-
istic of a linear measurement device which relates the
measured quantity at the device output to the real value of
this quantity at the device input. The problem upon this
approach involves the determination of the function v(s)
from the known instrumental [K(x; s)] and detected [u(x)]
functions, i.e. the solution of the linear Fredholm equation
of the érst kind, which has in the general case the form

u�x� �
� d

c

K�x; s� v�s�ds: (3)

The scheme of the experiment is presented in Fig. 1 [3].
The diameter of the polarised Gaussian 632.8-nm, 1-mW
beam from a He ëNe laser was � 0:95 mm in the sample
plane. The sample mounted on the goniometer axis (per-
pendicular to the laser beam) was a thin (� 1 mm) élm of a

porous material deposited on a glass substrate. Scattered
light was collected with a lens mounted on the movable arm
of the goniometer. Behind the lens, a CCD camera was
mounted at a distance of 8.6 cm from a sample. In the lens
plane, an opaque screen was placed which has a hole of
diameter equal to that of the lens (1 cm). We measured the
meridional angular dependence (the rotation axis of a
photodetector lies in the sample plane) of the scattered
light intensity with respect to the propagation direction of
the laser beam perpendicular to the porous élm. The
scattering intensity was measured for each position of
the lens with the photodetector by summing intensities
on all elements of the CCD array.

The mathematic interpretation of the experimental
results assumes érst of all the acquisition of information
on a virtual setup with parameters exceeding the ultimate
parameters of the experimental equipment. Therefore, the
solution of the problem of increasing the informational
reliability of experimental data being detected begins with
the construction of a mathematical model of the exper-
imental setup.

When the results of experiments are analysed, the
question appears about the relation between the intensity
of light scattered in front of a lens and the intensity recorded
with a CCD camera. This problem can be solved in the
following way.

The inénitesimal value of the detected intensity is
approximately determined by the expression

Du � vGDS,

where v is the real scattering intensity; G is the radiation
transmission function of the lens at the point of laser beam
incidence; DS is the element of the circle area occupied by
the lens (Fig. 2). The expression for the radiation intensity
measured by the CCD camera can be written in this case in
the form

u�x� �
�
S

�
vG ds dt; x 2 �ÿa0; a0�; (4)

where x is the coordinate of the lens centre.
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Figure 1. Scheme of the experimental setup for measuring the spatial distribution of the light intensity: ( 1 ) G-5 goniometer; ( 2 ) He ëNe laser; ( 3 )
photodiode array; ( 4 ) set of deêecting prisms; ( 5 ) sample; ( 6 ) computer; ( 7 ) screen with a lens.
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Let us make several remarks concerning the functions v
and G. In the general case, v is a function of the two
variables s and t. However, because it is the prototype of the
function of one variable u(x) in mapping (4), we can treat it
also as the function of one variable v(s). It is also reasonable
to assume that the function G is axially symmetric and
depends only on the radius r 2 �0;R0�, , where R0 is the lens
radius. Taking these remarks into account, expression (4)
can be written in the form

u�x� �
� x�R0

xÿR0

� �R 2
0ÿ�xÿs�2 �1=2

ÿ�R 2
0
ÿ�xÿs�2�1=2

v�s�G�r�ds dt: (5)

By using the radius r as the integration variable, we obtain

u�x� �
� x�R0

xÿR0

v�s�ds
� R0

0

G�r�

� 2r

�r 2 ÿ �xÿ s�2�1=2
dr; jxÿ sj4 r; (6)

or

u�x� �
� R0

ÿR0

K�s�v�xÿ s�ds; x 2 �ÿa0; a0�; (7)

where

K�s� �
�R 0

jsj
G�r� 2r

�r 2 ÿ s 2�1=2
dr. (8)

Relations (7) and (8) should be supplemented with an a
priori physical condition

v�s�5 0; 8 s 2 �ÿ1;1�: (9)

It should be emphasised that the solution of problem (7),
(9) involves serious diféculties related to measurements
errors. It was assumed so far that the instrumental function
K(s) and detected function u(s) required for determining the
required function v(s) are known exactly. However, both
these function can be actually determined only by measuring
experimentally u(x) and G(r) with a CCD camera. These
measurements always have errors related to the properties
and errors of the measurement path (defects of the optics of
the instrument, its focusing, etc.).

It follows from (8) that the function K(s) can be in fact
determined from the known experimental values of the
transmission function G(r).

The dependence G(r) was measured on the setup des-
cribed above in the absence of a sample, i.e. a laser beam
scanned the lens along its diameter. The experimental values
of G(r) are presented in Fig. 3 [3]. The experimental depen-
dence ~K(s) can be found from these values by integrating (8).
The experimental values of the instrumental function ~K(s)
are approximated by the `cap' function [2, 4]

K̂�s� � y�R 2 ÿ s 2�C exp

�
ÿ R 2

R 2 ÿ s 2

�
; ÿR4 s4R; (10)

where y(R 2 ÿ s 2) is the Heaviside function; C � 4:13 cmÿ1;
and R � 0:545 cm. Figure 4 presents the best ét of the
values of K̂(s) by the function ~K(s) in the metric L2(ÿR;R).

The instrumental `cap' function is of great interest for
practical applications because it has important properties.
First, the error of approximation of the instrumental
function by the `cap' function is small: k ~K(s)ÿ K̂(s)k2 �
0:0157876 (Fig. 4). Second this function is énite by deéni-
tion, i.e. K̂�s� � 0 for jsj5R. Third, it is inénitely
differentiable with respect to s.

Due to its éniteness and inénite differentiability, the
instrumental `cap' function K̂(s) fundamentally differs from

t

ds

dt

r

R0 sÿ x0

Figure 2. To the calculation of the scattered radiation intensity recorded
with a CCD camera.
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Figure 3. Experimental values of the function G(r).
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Figure 4. Experimental [ ~K(s), squares] and theoretical [K̂(s), solid curve]
instrumental functions.
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the instrumental functions well-known in physics [2]. The set
of instrumental functions including the diffraction function

K�x� � 1

g

�
sin�px=g�
px=g

�2
(11)

(the half-width of the instrumental contour is determined
by the relation a � 0:886g), the slit function

K�x� � 1=a pri jxj/a 4 1/2,
0 pri jxj/a >1/2

�
(12)

(a is the slit image width), the Gaussian function

K�x� � 2

a

�
ln 2

p

�1=2
exp

�
ÿ 4

x 2

a 2
ln 2

�
; (13)

the dispersion function

K�x� � a=�2p�
x 2 � �a=2�2 ; (14)

the Dirichlet function

K�x� � sin�x=a�
px

; (15)

the exponential function

K�x� � ln 2

a
exp

�
ÿ2 jxj

a
ln 2

�
; (16)

and the triangular function

K�x� � aÿ1�1ÿ jxj=a� for jxj/a 4 1,
0 for jxj/a >1,

�
(17)

forms the subset of delta-like sequences (pulsed functions).
Note, for example, that unlike the `cap' function, the slit
(12) and triangular (17) instrumental functions are énite,
but have no continuous érst derivatives. On the other hand,
the Gaussian (11) and diffraction (11) instrumental
functions are inénitely differentiable, but not énite.

For comparison, Figure 5 presents the best ét of the
instrumental function ~K(s) by the Gaussian function KG(s).
It is obvious that the `cap' function K̂(s� much better
approximates the experimental instrumental function
because

jj ~K�s� ÿ KG�s�jj2 � 0:135952;

KG�s� � 1:639 exp�ÿ7:56066s 2�:
By returning to the reduction problem, we consider the

methods used for solving integral equation (7) (the con-
volution equation) when the recorded function u(x) and the
instrumental function K(s) are known.

It should be emphasised that the speciéc feature of
inverse problems (3) and (7) is that the observed function
u(x) is an integral and, therefore, it is weakly sensitive to
large variations in the function v(s) when these variations
compensate each other. This means that two substantially
different functions v(s) may correspond to close experimen-

tal functions. Because experimental functions are always
measured with some error, the problem of determining the
approximate solution of the inverse problem (7) close to the
real solution appears. It is this problem that is basic from
the mathematical point of view for the interpretation of
experimental results.

It is known that the solution of Eqn (7) exists and is
unique if the Fourier transform of the instrumental function
does not vanish in any énite interval.

The classical method for solving convolution equations
with the help of the direct and inverse Fourier transforms is
as follows. Let u(x) 2 L2(ÿ1;1); K(s) 2 L1(ÿ1;1); and
v(s) 2 L1(ÿ1;1), then the solution of Eqn (7) is determined
by the expression

v�s� � 1

2p

�1
ÿ1

U�o�
K�o� exp�ÿiso�do; s 2 �ÿ1;1�; (18)

where U(o) and K(o) are the Fourier transforms of the
observed function u(x) and the instrumental function K(s),
i.e.

U�o� �
�1
ÿ1

u�x� exp�iox�dx;

K�o� �
�1
ÿ1

K�s� exp�ios�ds:

If for o!1 the Fourier transforms U(o) and K(o)
tend consistently to zero, so that

lim
o!1�U�o�=K�o�� � 0;

and integral (11) converges, then the solution v(s) exists, is
unique and described by expression (18), i.e. for exact u(x)
and K(s), the érst two points of the Hadamard deénition of
the problem correctness can be fulélled.

However, the use of expression (18) involved diféculties
already at this stage because the operation with inénite
limits is possible only in the case when the functions U(o)
and K(o) are represented analytically. The analytic expres-
sion for the Fourier transform of the instrumental function
in the form of a `cap' is absent.

As mentioned above, serious problems appear due to the
errors in measurements of intensity distributions, which are
related to the properties and errors of the measurement
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Figure 5. Experimental [ ~K(s), squares] and theoretical [KG(s), solid
curve] instrumental functions.
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path. In the presence of measurement errors, the resulting
contour can be represented in the form

~u�x� � u�x� � d�x�;

where d(x) is the `noise' containing, in particular, the white
noise component. As a result, the function ~U(o) tends not
to zero when o!1 but to a constant depending on the
white noise level. Then,

lim
o!1� ~U�o�=K�o�� � 1

and, as follows from (18), Eqn (4) has no solution. Thus,
the high harmonics in the solution v(s) are sensitive even to
small errors in the determination of u(x). This means that
the neglect of the instability of the problem of reduction to
the ideal instrument can lead to the erroneous interpreta-
tion of experimental measurements.

As mentioned above, the Fourier transform of the `cap'
function K̂(s) has no the analytic representation. Figure 6
presents the spectrum K̂(o) calculated numerically. It
follows from this calculation that the instrumental `cap'
function K̂(s) has a property which strongly complicates the
solution of the initial problem: namely, the Fourier trans-
form of the `cap' has the denumerable set of zeroes.

Taking into account the reasons listed above, the
solution of the integral convolution equation (7) is a
substantially ill-posed problem. One of the most efécient
methods for approximating solving ill-posed problems is the
iterative Landweber method [5]. The integral equation (7)
can be solved, taking condition (9) into account, by using
the spline-iterative modiécation of the Landweber method
developed in [6]:

v0�s� � 0; s 2 �ÿa; a�; vm�s� � vGmÿ1�s�

� Z�F�s� ÿ
� a

ÿa
<�s; t� vGmÿ1�t�dt�; m � 1; 2; ... ,

vGm�s� � gm exp�ÿs 2=h 2
m�

� arg min
g5 0; h>0

jjvm�s� ÿ g exp�ÿs 2=h 2�jj;

0 < Z < 2=jjA�Ajj; F�s� �
� a0

ÿa0
K̂�x; s�~u�x�dx;

a � a0 � R; <�t; s� � <�s; t� �
� a0

ÿa0
K̂�x; t�K̂�x; s�dx;

jjA�Ajj2 � jj<�t; s�jj2 4
� a

ÿa

� a

ÿa
< 2�t; s�dt ds:

The condition for the going out of the iterative cycle is
that the norm of the difference of the adjacent solutions
should not exceed 10ÿ8 after the stabilisation of the values of
gm and hm up to six signiécant digits inclusive. The number
of iterations m satisfying these requirements in the numer-
ical experiment considered above was 375. As the observed
function ~u(x), the interpolation cubic spline of detected
experimental data was used (Fig. 7) [6, 7].

Fig. 8 presents the results of the numerical experiment:
the real scattering intensity vG

375(s) � 1:62725 exp (ÿ17:2906
� s 2), its Fourier transform AvG

375(s), and experimental data.
In this case, the residual was

jjAvG
375 ÿ ~ujj22 � 0:0110802:

In conclusion, we present the main results of the paper:
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Figure 6. Fourier transform of the `cap' function K̂(o).
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Figure 7. Experimental function ~u(x) (circles) and its interpolation cubic
spline (solid curve).
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Figure 8. Distributions of the real scattering intensity vG
375 �

1:62725 exp (ÿ17:2906 s 2) ( 1 ) and its Fourier transform AvG
375 ( 2 ).

Circles are experimental data.
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(i) The mathematical model has been constructed in the
form of the integral Fredholm equation of the érst kind for
the érst measurement path of the experimental laser setup
for studying the optical properties of porous nanoélms;

(ii) the use of the `cap' function

K̂�s� � y�R 2 ÿ s 2�C exp�ÿR 2=�R 2 ÿ s 2��;

[where y(R 2 ÿ s 2) is the Heaviside function] has been
substantiated in the addition to the known instrumental
functions;

(iii) the theory of spline-iterative methods of computa-
tional physics has been developed and the spline-iterative
modiécation of the Landweber method for solving the
integral Fredholm equation of the érst kind has been
elaborated;

(iv) it has been found in numerical experiments that the
mathematical interpretation corrects the results of laser
measurements, and the amplitude of the real intensity
distribution is twice as large as that of measured distribu-
tions;

(v) the mathematical interpretation of experimental
results has shown that a light beam transmitted through
a mesoporous élm has a narrower intensity distribution
than the recorded beam.
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