
Abstract. A new type of complex periodic solutions of the
nonlinear Schr�odinger equation is described which can be
obtained in the collinear interaction of three plane mono-
chromatic waves (modes) in a quadratic nonlinear medium.
On passing to real variables (quadrature components), the
solutions of this new type describe nondegenerate two-
component cnoidal waves consisting of two `incoherent'
(noninterfering) components. The amplitudes of these com-
ponents perform additional (with respect to the modulus
oscillations) intricate nonlinear oscillations phase-shifted by
p=2, which are consistent with oscillations of the solution
modulus described by an elliptic function.

Keywords: nonlinear Schr�odinger equation, nondegenerate multi-
component cnoidal wave, cascade cubic nonlinearity, parametric
frequency conversion.

1. Introduction

It was shown in [1] that in the interaction of three
(i � 1ÿ 3) plane monochromatic waves (modes) propagat-
ing along the z axis in a medium with the quadratic
nonlinearity w �2�, the problem of frequency conversion,
including second-harmonic generation (SHG) and para-
metric ampliécation involves the solution of three
independent nonlinear Schr�odinger equations (NSEs).
Each of the equations determines the evolution of the
complex amplitude Yi (z) of one (i � 1ÿ 3) of the interac-
ting modes and is related to two other ( j � 1ÿ 3 6� i ) NSEs
only through boundary conditions (z � 0). The passage to
real variables (Yi � Y 0i � iY 00i ) transforms each of the
equations to a system of two coupled NSEs describing
cnoidal waves consisting of two `incoherent' (noninterfer-
ing) components Y 0i (z) and Y 00i (z). This approach is
identical to the description of the result of competition
between two processes (o1 � o2 ! o3 and o3 ! o1� o2)
simultaneously proceeding in a quadratic nonlinear medium
with w �2� through the effective cascade cubic nonlinearity
w �3�eff [2]. In this case, the schemes developed for solving such
systems of equations allows one to obtain analytic solutions

of the problem in the form of cnoidal waves by using
standard algorithms.

An efécient algorithm of this type based on the
fundamental solutions of the érst- and second-order
Lame equation [3] was proposed earlier in our paper [4].
However, because in the situation considered in [1] both
equations of each of the systems (i � 1ÿ 3) describing
two-component cnoidal waves Yi (z) are identical, the
algorithm can be used only to obtain solutions of the so-
called Manakov type, for which Y 0i and Y 00i are propor-
tional to the same function and the phase ji �
arctan�Y 0i (z)=Y 00i (z)� � const is independent of z [4]. This
means a new (compared to that described in [4]) class of
complex periodic solutions Yi (z) of the NSE should exist,
which, on passing to real variables (Yi � Y 0i� iY 00i ) will
describe nondegenerate two-component cnoidal waves in
parametric frequency conversion. It is the solutions of this
type that we will consider in our paper.

2. Nonlinear Schr�odinger equation
for complex amplitudes

Let us write the NSE in a standard normalised form

q 2Y

qz 2
� 2�YY � ÿ b�Y � 0, (1)

where the signs `�' correspond to nonlinearities of the so-
called focusing and defocusing types, respectively, and b �
const. Let us assume that, unlike most often considered
situations, Y in (1) is a complex function, which we
represent in the form

Y�z� � X�z� exp�ij�z��. (2)

By substituting (2) into (1) and separating the real and
imaginary parts, we obtain the system of equations

q 2X

qz 2
ÿ X

�
qj
qz

�2
� 2�X 2 ÿ b�X � 0, (3a)

X
q 2j
qz 2
� 2

qX
qz

qj
qz
� 0. (3b)

Because solutions for which X (z) � 0 are of no interest to
us, we obtain from (3b) the integral

X 2 qj
qz
�
�
X 2 qj

qz

�����
z�0
� const, (4)
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which allows us to énd cnoidal waves of new type for NSE
(1). Note that, as far as we know, the integral of type (4) for
the NSE was not considered earlier.

By introducing the notation qj=qzjz�0 � j 00 and deéning
the intensity as I (z) � X 2(z), which gives I (0) � I0 �
X 2(0) � X 2

0 , we obtain

qj
qz
� j 00I0

X 2
. (5)

By substituting now (5) into (3a), we énd the ordinary
differential equation

q 2X

qz 2
ÿ �j

0
0�2I 2

0

X 3
� 2�X 2 ÿ b�X � 0, (6)

whose solution is the required function X (z). By solving
Eqn (6), thereby determining X (z), we can also at once énd
j(z) by integrating (5):

j�z� � j0 � j 00I0

� z

0

dz 0

X 2�z 0� . (7)

Here, j0 � j(0) is the initial (z � 0) phase of Y (z). Note
that, in the formulation of the problem described above, the
known solutions of (1) in the form of cnoidal waves
correspond to the limiting case for which

qj
qz
� 0, j�z� � j0 � const. (8)

3. Complex periodic solutions of the NSE

We will seek the solution of (6) in the form

X�z� � �B� CF 2�z��1=2, (9)

which is convenient for writing integrals (conservation of
the total energy êux and the Manley ëRow relation) of the
initial system of equations [1, 5] describing parametric
frequency conversion in terms of the intensities I (z) �
B� CF 2(z) of three interacting modes. Here, B and C are
constants and F � F (z) is a new periodic function of z. By
substituting (9) into (6), we obtain

BC

�
qF
qz

�2
� CF�B� CF 2� q

2F

qz 2
ÿ �j 00�2I 2

0

� 2�Bÿ b� CF 2��B� CF 2�2 � 0. (10)

Let us assume now that

F � sn�gz�, (11)

which retains the functional form of the kernel of the
auxiliary linear problem [4]. Note that the general solution
corresponding to expressions (9) and (11) can be found by
directly integrating (6) by using elliptic integrals [6].
Moreover, the substitutions sn(gz)! cn(gz) and sn(gz)!
dn(gz) in (11), taking into account relations cn2(gz) �
1ÿ sn2(gz) and dn2(gz) � 1ÿ k 2sn2(gz), lead only to the
renormalisation of constants B and C, not changing (8).
Here, 04 k4 1 is the modulus of an elliptic function and g
is a constant. By differentiating (11) and substituting the

obtained result into (10), expressing cn2(gz) and dn2(gz) in
terms of sn2(gz) (see above) and equating coefécients at the
different (from 0 to 3) powers of sn2(gz) to zero, taking into
account that B � I0, we obtain that either C � 0 and

��j 00�2 � 2�I0 ÿ b��I 2
0 � 0, (12)

or C 6� 0 and�
Cg 2 ÿ �j 00�2I0 � 2�I0 ÿ b�I0

�
I0 � 0, (13a)

�g 2�1� k 2� � �3I0 ÿ 2b��I0 � 0, (13b)

�3I0 ÿ C�g 2k 2 ÿ Cg 2 � 2�3I0 ÿ b�C � 0, (13c)

k 2 � �C=g 2. (13d)

It follows from (13d) that the passage from the case of the
focusing nonlinearity [sign `�' in (1)] to the defocusing one
[sign `ÿ' in (1)] changes the sign of C.

For C 6� 0, by substituting (13d) into (13b) and (13c), we
énd that either I0 � 0 and

g 2 � �C� 2b, (14a)

k 2 � C

2bÿ C
, (14b)

or I0 6� 0 and

Cg 2 ÿ �j 00�2I0 � 2�I0 ÿ b�I0 � 0, (15a)

g 2 � �3I0 � C� 2b, (15b)

k 2 � C

2bÿ 3I0 ÿ C
, (15c)

which determines the values of three of the four free
parameters ë k, g, B � I0, and C.

Let us assume that the initial intensity I0 of the wave is a
free parameter. Then, for I0 6� 0, by excluding g 2 from (15a),
we obtain the equation

C 2 ÿ 2

�
bÿ 3

2
I0

�
C� I0

�
2�I0 ÿ b� � �j 00�2

� � 0, (16)

which gives for the required solution of NSE (1)

C1 � bÿ 3

2
I0 �

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2
, (17a)

g 21 � �
3

2
I0 � b�

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2
, (17b)

k 2
1 �

�
bÿ 3

2
I0 �

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2�

�
�
bÿ 3

2
I0 ÿ

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2�ÿ1
(17c)

or
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C2 � bÿ 3

2
I0 ÿ

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2
, (18a)

g 22 � �
3

2
I0 � b�

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2
, (18b)

k 2
2 �

�
bÿ 3

2
I0 ÿ

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2�

�
�
bÿ 3

2
I0 �

��
bÿ 1

2
I0

�2
� �j 00�2I0

�1=2�ÿ1
. (18c)

As a result, a new complex periodic solution of (1)

Y1;2�z� �
�
I0 � C1;2sn

2�gz��1=2
� exp

�
ij0 � ij 00I0

� z

0

dz 0

I0 � C1;2 sn
2�g1;2z 0�

�
(19)

taking (17) and (18) into account, proves to be completely
speciéed by the boundary conditions (I0, j0, j 00), and
domains of its existence are determined by the requirements
g 2 5 0 and 15 k 2 5 0.

Note that a new class of solutions of NSE (1) considered
here also includes two trivial situations in which

Y�z� �
����
I0

p
exp�i�j0 � j 00z�� (20)

under the condition that

�j 00�2 � �2�I0 ÿ b� (21)

(C � 0, parametric bleaching in terms of [1]) and

Y�z� �
����
C
p

sn�gz� exp�ij0� (22)

under the condition that

g 2 � �C� 2b, (23a)

k 2 � C

2bÿ C
(23b)

(I0 � 0, the Manakov type solution in terms of [1, 4]
constructed by using the fundamental solution sn(gz) of the
érst-order Lame equation). Moreover, it is easy to verify
that the solutions of the class described above can be also
aperiodic (i.e. solitary waves, k � 1), however, only in the
case of defocusing nonlinearity. It follows from (17) ë (19)
in this case that the corresponding solitons differ from the
known so-called dark solitons [7] by the unusual behaviour
of the phase:

Y1;2�z� �
�
I0 � C1;2 tanh

2�g1;2z�
�1=2

� exp

�
ij0 � ij 00I0

� z

0

dz 0

I0 � C1;2 tanh
2�g1;2z 0�

�
, (24)

where

C1;2 � b1;2 ÿ
3

2
I0 ; (25a)

g 21;2 � ÿ
3

2
I0 � b1;2; (25b)

b1;2 �
1

2
I0 �

����
I0

p
jj 00j. (25c)

4. Speciéc features of a new class
of periodic solutions of the NSE

A qualitatively new nature of the class of complex periodic
solutions of the NSE described above becomes obvious if,
by using from the very beginning the substitution

Y�z� � Y 0�z� � iY 00�z� (26)

we separate the real and imaginary parts (quadrature
components) in the required solution Y(z). Then, by
substituting (26) into (1) and separating the real and
imaginary parts of the obtained expression, we obtain the
classical system of two coupled NSEs for real variables
Y 0(z) and Y 00(z) in the form

q 2Y 0

qz 2
� 2
��Y 0 �2 � �Y 00 �2 ÿ b

�
Y 0 � 0, (27a)

q 2Y 00

qz 2
� 2
��Y 0 �2 � �Y 00 �2 ÿ b

�
Y 00 � 0. (27b)

By using now the scheme for constructing two-component
cnoidal waves described in [4], taking into account that the
values of b in (27a) and (27b) are the same, we énd that the
amplitudes of components Y 0 and Y 00 are proportional to
the same elliptic function y(z) (i.e. to the same fundamental
solution of the érst- or second-order Lame equation):

Y 0�z� � y�z� sinj, (28a)

Y 00�z� � y�z� cosj. (28b)

In this case, we can consider formally that both compo-
nents Y 0 and Y 00 of this solution can be constructed simply
by projecting the one-component solution Y (z) � y(z) on
the axes of a coordinate system turned through a éxed
(independent of z) angle a � j � arctan (Y 0=Y 00 ) with
respect to the initial system [4].

For the same substitution (26), the solution described in
our paper will have the form

Y 0�z� � �I0 � C sn2�gz��1=2
� sin

�
j0 � j 00I0

� z

0

dz 0

I0 � C sn2�gz 0�
�
, (29a)

Y 00�z� � �I0 � C sn2�gz��1=2
� cos

�
j0 � j 00I0

� z

0

dz 0

I0 � C sn2�gz 0�
�
. (29b)

It is easy to verify that, although the new solution is similar
to the Manakov cnoidal wave with the modulus

jY�z�j � �I0 � C sn2�gz��1=2,
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which also corresponds to the kernel of the Lame equation,
the angle of rotation

a�z� � j0 � j 00I0

� z

0

dz 0

I0 � C sn2�gz 0�

of the one-component solution upon a similar projection,
providing the construction of the two quadrature compo-
nents Y 0 and Y 00 of this nondegenerate solution, performs
now intricate nonlinear oscillations matched with the
oscillations of jY (z)j. Taking into account the trans-
formation� z

0

dz 0

I0 � C sn2�gz 0�

� 1

I0

� sn�gz�

0

dx

�1� lx 2���1ÿ x 2��1ÿ k 2x 2��1=2 , (30)

where l � C=I0, these oscillations are described by the
elliptic integral of the third kind [6]. Because some exact
solutions of the problem of parametric frequency con-
version (formulated, however, in the form of coupled
nonlinear equations rather than in the NSE form) of type
(19) were already presented earlier, the character of
consistent nonlinear oscillations of the modulus and
phase of solutions of this type is similar to that described
in [8].

5. Conclusions

We have shown that the NSE has a new class of periodic
solutions compared to that considered in [4]. These
solutions are complex and, upon passing to real variables
(quadrature components), describe nondegenerate cnoidal
waves consisting of two `incoherent' (noninterfering)
components. The solutions of this new class are similar
in form to degenerate cnoidal waves (so-called Manakov
periodic solutions), however, the angle of projection [4],
which provides the formation of the two components of the
solution, performs intricate nonlinear oscillations consistent
with the oscillations of their modulus.

Note that the solutions of this new class can be written in
different forms. Thus, to change the boundary conditions,
solution (19) presented above can be shifted along the z axis.
For example, the shift of the argument x! x� K of the
elliptic function by a quarter of a period is described by the
well-known transformation sn x! cn x=dn x [6]. Here K is
the total elliptic integral of the érst kind. There exist many
other identical transformations and changes, which simulta-
neously change the argument x and modulus k of elliptic
functions [6].

Because the NSE taking into account the lowest (cubic)
order of inertialless nonlinearity has a rather universal
character, one can expect that the new class of periodic
solutions described above might be also useful for other
éelds of physics.

These solutions can be used in problems of the prop-
agation of pulse trains in optical ébres [7, 9], the
propagation of light beams with a special periodic transverse
structure through photorefractive crystals [4, 10], and also
in nonlinear hydrodynamics [11], plasma physics [12], the
analytic description of coupled wave packets consisting of
electron wave functions [13, 14], etc.
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