
Abstract. The conditions, under which the nonreciprocity of
the frequency modulation rate and pulse duration as well as
the spectral nonreciprocity in ébres with different types of
inhomogeneity of nonlinearity and group-velocity dispersion
appear, are studied for the Gaussian and hyperbolic secant
frequency-modulated pulses. Strong compression nonreciproc-
ity is found in ébres with an alternating group-velocity
dispersion periodically changing over its length.

Keywords: nonreciprocal effects, inhomogeneous ébres, compres-
sion and spectral nonreciprocities.

1. Introduction

Some speciéc nonreciprocal effects are caused by the
nonlinear character of interaction of counterpropagating
waves with the active medium and determine the radiation
dynamics in the resonator of ring lasers. Many precision
measurements of fundamental quantities are based on the
nonreciprocal effects [1 ë 6]. Nonreciprocal effects can be
realised both in integral schemes and in ébre lasers and
waveguides. One of the reasons leading to the propagation
asymmetry of forward and backward waves can be
longitudinal inhomogeneity of the active nonlinear medium,
which is frequently used to control laser radiation in optical
ébres [7 ë 10]. Moreover, it is optical ébres with the group-
velocity dispersion (GVD) alternating along the ébre length
that have been considered recently as the most promising
systems for creating efécient ébreoptic communication
lines, in particular, soliton ones [11 ë 14].

The possibility of appearance of spectral nonreciprocity
upon propagation of a Gaussian pulse without the initial
frequency modulation (FM) was shown in [15] for a
spatially inhomogeneous medium with a cubic nonlinearity
and dissipation neglecting the GVD. In paper [16], the
nonreciprocal dynamics of formation of a shock wave was
studied by the example of a Gaussian pulse in an inhomoge-
neously amplifying medium with the nonlinearity dispersion
and a negligible average GVD over the ébre length. The

presence of the GVD and initial FM not only signiécantly
changes the character of the nonreciprocal dynamics but
also substantially complicates the solution of corresponding
dynamic equations. In this paper, we analyse the FM
dynamics of forward and backward pulses in ébres with
both zero and non-zero GVD. We also study the conditions
under which compression and spectral nonreciprocities of
Gaussian and hyperbolic secant pulses appear for different
types of the inhomogeneity of dispersion and nonlinearity
over the ébre length. In the case of a negligible GVD, by
using exact solutions of the nonlinear Schr�odinger equation
(NSE) for a ébre with the inhomogeneous ampliécation and
nonlinearity, the nonreciprocity of the FM rate is studied,
which determines the spectral width of the pulse. We solved
the NSE taking into account the GVD by using the
variation approach and obtained equations determining
the dynamics of individual pulse parameters. The obtained
solutions are used to study the nonreciprocal dynamics of
pulses (the FM rate and duration).

2. General equations

Consider the dynamics of an optical pulse in an inhomoge-
neous nonlinear amplifying ébre. In this case, the éeld of a
wave packet propagating in the ébre can be written in the
form

E�t; r; z� � 1

2
eU�r; z�

�
B�t; z� exp

�
i

�
o0tÿ

� z

0

b 0�x�dx
��

� c:c:

�
, (1)

where e is the unit vector of the light éeld polarisation; the
function U(r; z) describes the radial distribution of the éeld
in the ébre; o0 is the carrier frequency of the wave packet;
and b 0(z) is the real component of the complex propagation
constant. For the complex pulse envelope B(t; z), the NSE
with coefécients variable over the ébre length is valid,
which are assumed to change slowly:

qB
qz
ÿ i

D�z�
2

q 2B

qt 2
� iR�z�jBj2B � g�z�B. (2)

Here, the following parameters are introduced:

t � tÿ
� z

0

dx
u�x�

is the time in the running coordinate system;
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is the group velocity of the wave packet and the ébre GVD;
R(z) is the Kerr nonlinearity coefécient; and g(z) is the gain
increment of the ébre. The slow change in the parameters
(for example, for R) over the ébre length means that the
condition l0jqR=qzj5 R is fulélled for each of them, i.e. at
the distances of the order of the carrier wavelength l0, the
change in the value of R is negligible. By performing
substitution in (2)

B�t; z� � A�t; z� exp
� � z

0

g�x�dx
�
, (3)

we obtain the expression for the envelope amplitude A(t; z):

qA
qz
ÿ i

D�z�
2

q 2A

qt 2
� iReff�z�jAj2A � 0, (4)

where the effective nonlinearity parameter

Reff�z� � R�z� exp
�
2

� z

0

g�x�dx
�

is introduced.
For D(z) < 0 and Reff(z) > 0, one of the possible

solutions of (4) describes hyperbolic secant solitons [17].

3. `Dispersionless' approximation

In the general case, NSE (4) can be solved only numerically.
However, its exact analytic solution can be obtained for the
zero or negligible GVD, when the `dispersionless' approx-
imation is valid [the dispersion term of the érst order is
taken into account in (2) by introducing the running time
t]. This situation is possible for the ébre lengths that are
much shorter that the dispersion length, i.e. for L5LD �
t 20 =jDj. In this case, the pulse duration tp(z) can be assumed
constant over the entire length of the ébre and equal to the
duration t0 of the coupled pulse. In this case, the solution
of Eqn (4) can be presented in the form

A�t; z� � A�t; 0� exp�ij�t; z��. (5)

Here, A(t; 0) is the pulse envelope at the input to the ébre
(for z � 0) and the phase of the propagating pulse depends
on the longitudinal coordinate:

j�t; z� � a0t
2

2
ÿ jA�t; 0�j2

� z

0
R�z 0� exp

�
2

� z 0

0
g�x�dx

�
dz 0. (6)

The following analysis will be performed for frequency-
modulated pulses, whose input proéles can be described by
functions

A�t; 0� � A0G�t� exp
�
ÿ ia0t

2

2

�
, (7)

where A0 is the peak value of the pulse amplitude; a0 is the
FM rate at the input of the ébre; G(t) � exp�ÿt 2=(2t 20 �� for
the Gaussian pulse and G(t) � sech(t=t0) for the hyperbolic
secant pulse. The FM rate characterises the spectral width

of the wave packet and, in the general case, is determined
by the expression

a�t; z� � q 2j
qt 2
� a0 ÿ

� z

0

R�z 0� exp
�
2

� z 0

0

g�x�dx
�
dz 0

� q 2jA�t; 0�j2
qt 2

. (8)

By taking (7) and (8) into account, the expressions for the
FM rate of the forward and backward pulses after their
propagation through the ébre of length L can be written in
the form

a��t� � a0 � 2I0G
2
�Y�t

ÿ2
0

� L

0
R��z� exp

�
2

� z

0
g��x�dx

�
dz,(9)

where G� � G(t�) and functions

Y� � 1ÿ 2�t�=t0�2;
1ÿ tanh 2�t�=t0�

(
(10)

and parameters

I0 � jA0j2, t� � tÿ
� L

0

dz

u��z�

are introduced for the Gaussian and hyperbolic secant
pulses. All the functions responsible for the forward and
backward pulse propagation are introduced according to
the general rule: f�(z) � f (z), fÿ(z) � f (Lÿ z). It follows
from the above relations that the nonreciprocity of the FM
rate of a propagating pulse will be absent, if the functions
R(z) and g(z) are even with respect to the point z � L=2.

As an example, consider by using expression (9) the
character of nonreciprocity of the FM rate for one of
possible types of the distribution of the nonlinearity
parameter over the ébre length in the `dispersionless'
approximation. Let the gain increment be constant
g(z) � g0 over the ébre length and the nonlinearity inho-
mogeneity be described by the exponential dependence
R(z) � R0 exp (gz), where g is the nonlinearity coefécient.
In this case, the FM rate for counterpropagating pulses at
the ébre output is determined by the expressions

a��t� � a0 �
2R0I0G

2
�Y�F�
t 20

exp
��2g0 � g�L�ÿ 1

2g0 � g
, (11)

where F� � 1 and Fÿ � exp (gL). One can see from (11)
that for g � 0, the FM rate is the reciprocal quantity, i.e.
a� � aÿ. For the central part of the pulse (t� � 0, Y� � 1,
G��1), we can obtain an analytic expression for the
nonreciprocity of the FM rate at the ébre output, which
will be characterised by the parameter Za � (a� ÿ aÿ)t

2
0 :

Za�L� � 2I0R0 exp

��
g0 �

g
2

�
L

��
sinh

��g0 � g=2�L�
g0 � g=2

ÿ sinh
��g0 ÿ g=2�L�
g0 ÿ g=2

�
. (12)

Figure 1 shows the dependence of the nonreciprocity of
the FM rate Za(L ) on the ébre length, which was plotted by
using (12) for different g and the following parameters of the
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ébre and the coupled pulse: R0 � 1 Wÿ1 kmÿ1, g0 � 0:5
kmÿ1, I0 � 1 kW, t0 � 1 ps. One can see that for the
nonlinearity inhomogeneity realised in the ébre, the non-
reciprocity of the FM rate substantially depends on the
degree and character of this inhomogeneity, i.e. on the value
and sign of g as well as on the ébre length.

Considerable nonreciprocity can also appear during the
pulse propagation in a structure consisting of alternating
nonlinear passive and active elements with weak non-
linearity. Thus, for the simplest two-element cascade, the
linear ampliéer ë nonlinear passive ébre, the pulse after
propagation through the ampliéer at the input to the second
part of the cascade has the power I0 exp (2g1L1), therefore,
at the output from the cascade (at the length L � L1 � L2)
for t� � 0, its FM rate is

a��L� � a0 � 2I0R2L2t
ÿ2
0 exp�2g1L1�, (13)

where Li, Ri, gi are the parameters of the corresponding
elements of the cascade (i � 1, 2). In this case, R1 � 0 and
g2 � 0. If the pulse is érst coupled into the nonlinear ébre
and only after it into the ampliéer, its FM rate at the
output from the cascade for tÿ � 0 is

aÿ�L� � a0 � 2I0R2L2t
ÿ2
0 . (14)

It follows from the above relations that the nonreciprocity
of the FM rate for the ébre cascade under study is
determined by the expression

Za � 2I0R2L2

�
exp�2g1L1� ÿ 1

�
(15)

and for g1L1 > 1 can be substantial.
The nonreciprocity of the FM rate of the pulse should

lead to the nonreciprocity of its spectral width considered in
[15] for a Gaussian pulse without the initial FM (a0 � 0). In
the case under study, a0 6� 0 and the root-mean-square
width of the Gaussian pulse propagating in the forward
and backward directions is described by the expression

Do� �
�
1� 4

3
���
3
p ÿ

j�max

�2�1=2
Do0, (16)

where the maximum phase shift j�max � �a�(L)ÿ a0�t 20 =2 is
determined by the FM rate of the central part of the pulse
(for t� � 0) at the ébre output; Do0 � (tÿ20 � a 2

0 t
2
0 )

1=2 is
the initial width of the pulse with the nonzero initial FM
rate, which is coupled into the ébre. Taking (16) into acco-
unt, the spectral nonreciprocity ZDo � (Do� ÿ Doÿ)=Do0 is
determined as:

ZDo '
h
1� 0:19�a� ÿ a0�2t 40

i1=2

ÿ
h
1� 0:19�aÿ ÿ a0�2t0 4

i1=2
. (17)

In the case ja� ÿ a0jt 20 5 1, the expression for the spectral
nonreciprocity takes the from ZDo ' 0:1t 20 (a� � aÿÿ 2a0)Za.
If the forward and backward pulses have substantially
different FM velocities and, hence, different spectral widths,
then after their coupling into a dispersion medium (or
propagation through a dispersion element, for example,
diffraction grating), we can obtain a strong compression
nonreciprocity. For the pulses under study, this non-
reciprocity can be deéned by the parameter

Zt �
t�p ÿ tÿp

t0
� w

t0

�
1

Do�
ÿ 1

Doÿ

�
, (18)

where we take into account that the root-mean-square
duration of the forward and backward pulses is
t�p � w=Do� and w depending on the shape of the wave
packet, is constant (w � 1=2 and p=6 for the Gaussian and
hyperbolic secant pulses, respectively).

4. General case of the nonzero GVD

The considered particular cases of the nonreciprocity of
parameters have been studied in the approximation of the
`dispersionless' medium, i.e. for D � 0. For the non-zero
GVD, the nonreciprocal effects should be even more
pronounced; however, the analytic study of this problem
is complicated by the fact that the equation describing the
propagation dynamics of a pulse is not integrable and,
hence, requires a numerical solution. Another way is the
application of the variation procedure to solve the NSE
describing the transformation of a frequency-modulated
pulse in the nonlinear single-mode ébre with ampliécation.
It is known [18] that in systems with inhomogeneous
dispersion parameters the solution of this equation and the
dynamics of the wave packet can be described by using the
variation approach. According to this approach, we can
pass to Eqn (4) from the Euler ëLagrange equation

ql
qA �
ÿ q
qz

ql
qA �z
ÿ q
qt

ql
qA �t

� 0, (19)

if the Lagrangian of the system is introduced as:

l � 1

2

�
i
ÿ
AA �z ÿ A �Az

��DjAtj2 � RjAj4�, (20)

where the subscript of the amplitude means a derivative
with respect to the corresponding variable. The approx-
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Figure 1. Dependences of the nonreciprocity of the FM rate of Gaussian
pulses on the ébre length for D�z� � 0, R�z� � R0 exp�gz� and g � 2 ( 1 ),
1.5 ( 2 ), 0.5 ( 3 ), ÿ0:2 ( 4 ), ÿ1 ( 5 ) and ÿ2 kmÿ1 ( 6 ).
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imate solutions of (4) can be found from the condition of
the extremum of the action functional

S �
�1
0

hlidz,

which is equivalent to the system of equations

qhli
qYi

ÿ q
qz

qhli
qYiz

� 0. (21)

Here, Yi are parameters in trial solutions of Eqn (4)
depending only on z and Yiz � qYi=qz. To construct the
averaged Lagrangian

hli � 1

t0

�1
ÿ1
hlidt

we will use the trial functions, which describe the envelopes
of pulses under study:

A�t; z� � CG�t; tp� exp
�
i

�
at 2

2
� j

��
, (22)

where the amplitude C(z), phase j(z), FM rate a(z) and
duration tp(t) of the forward or the backward pulses play
the role of the variable parameters Yi. After the sub-
stitution of trial solutions (22) into (20) and time
integration, we énd the averaged Lagrangians:

hli � C 2

t0

�

�
tp

dj
dz
� 1

4
t 3p

da
dz
� 1

4
t 3pDa 2 � D

4tp
�

���
2
p

4
RC 2tp

� ���
p
p

;

2tp
dj
dz
� p 2

12
t 3p

da
dz
� p 2

12
t 3pDa 2 � D

3tp
� 2

3
RC 2tp:

8>>><>>>: (23)

By using the obtained expressions for hli and (21), we
arrive at a system of equations, which determine the pulse
parameters under study:

C 2tp � I0t0,

dtp
dz
� Datp, (24)

da
dz
� k1Dtÿ4p ÿDa 2 � k2ReffI0t0t

ÿ3
p

(the equation for the parameter j is omitted here as
inessential for the following analysis). For Gaussian pulses,
k1 � 1, k2 � 1=

���
2
p

and for the hyperbolic secant pulses,
k1;2 � 4=p 2. Note that z in (24) is a distance propagated in
the ébre by the forward or backward pulse; for the
backward pulse, it is necessary to replace in (24) all the
parameters, which are functions of z, by functions of Lÿ z,
i.e. Dÿ(z) � D(Lÿ z),

Rÿeff�z� � R�Lÿ z� exp
�
2

� z

0

g�Lÿ x�dx
�
.

System of equations (24) allows one to analyse the
dynamics of the pulse parameters (duration, amplitude,

FM rate and phase) for the speciéed parameters of the
ébre, while these parameters are not contained explicitly in
(4). Note, however, that the initial NSE and the variation
procedure have their application limits. First, the decrease in
the pulse duration till the values shorter than femtosecond
ones requires the consideration of the third-order dispersion
terms in initial equation (2). Second, strong compression of
the pulse leads to the distortion of its shape, while the
variation method assumes that the pulse shape upon its
propagation does not change (which is possible if it is
slightly compressed). The equations used above also neglect
the dispersion of the gain increment of the ébre, which
considerably affects the pulse shape. Therefore, the per-
formed analysis is valid for optical ébres for which the gain
increment g(o) is approximately the same in a rather broad
frequency range and its dispersion can be neglected [19, 20].

5. Numerical analysis

System of equations (24) is signiécantly simpler than initial
equation (4) because it allows solutions for practically
important cases of the pulse dynamics in an inhomogeneous
medium [21]. In the case of D 6� 0, the homogeneous gain
increment and nonlinearity of the medium, nonreciprocal
effects can be caused only by the inêuence of the
nonreciprocity of the material dispersion of the ébre. For
the numerical analysis, we will use the characteristic
parameters of the ébre and coupled Gaussian pulse: the
gain increment g0 � 0:5 kmÿ1, the input duration and pulse
power t0 � 1 ps, I0 � 1 kW. For the simplicity of the
analysis, the initial FM rate is set equal to zero, which, in
fact, does not limit the generality of obtained results. The
material dispersion and nonlinearity can be deéned as
D(z) � D0 f (z), R(z) � R0r(z), where D0 � 10 ps2 kmÿ1,
R0 � 1 Wÿ1 kmÿ1 and f (z) and r(z) are functions specify-
ing the longitudinal proéle of their change.

Figures 2 ë 4 present the dependences of the nonreci-
procity of the FM rate and pulse duration on the ébre
length calculated by using (24) for some most characteristic
inhomogeneities of the parameters D and R, i.e. functions
f (z) and r(z). Figure 2 shows the dependences obtained for
the proéle of the material dispersion homogeneous over the
length with f (z) � ÿ1 and the nonlinearity inhomogeneity
of the type r(z) � exp (gz), g � ÿ1 kmÿ1. At the initial stage
of pulse propagation in the ébre, its dynamics according to
(24) substantially depends on the ratio of the parameters D
and Reff. For a0 � 0 and D < 0, the pulse compression takes
place for da=dz > 0, namely for Reff(0) > k1jDj=(k2t 20 I0),
which is fulélled for the selected values entering this
inequality of parameters. One can see that at the initial
stage a(z) increases while t(z) decreases. When the FM rate
achieves the value for which the condition

a 2 � k2Refft0I0
jDjt 2p

� k1
t 4p

(25)

is fulélled, the sign of the derivative da=dz changes, after
which the FM rate drastically decreases and changes its
sign. Then, the pulse begins to broaden till the next change
in the sign of the parameter a. Thus, the pulse dynamics in
the case under study has a cyclic character, which slightly
differs from the forward and backward propagation. The
ébre lengths, for which the input durations of counter-
propagating pulses will be equal, correspond to the
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intersection points of curves t�(L) and tÿ(L). Therefore,
the nonreciprocity Zt oscillates with increasing the ébre
length. A similar situation takes place for the nonreci-
procity of the FM rate. It follows from the above
dependences that the presence of the GVD, which is
homogeneous over the ébre length, signiécantly changes the
character of the forward and backward propagation of a
pulse, thus leading to a more pronounced nonreciprocity of
its main parameters. Thus, in the `dispersionless' case, for
the ébre length of L � 80 m the nonreciprocity Za of the
FM rate is �0:2, while in the case under study it is �10:5.

The dependences in Fig. 3 describe the solutions of
equations (24) for the exponential dispersion proéle
f (z) � exp (gz), g � ÿ1 kmÿ1 (decreasing for the forward
and increasing for the backward pulse) and homogeneous
nonlinearity r(z) � 1. Unlike the above dependences where
the nonreciprocal dynamics was determined by the non-
linearity inhomogeneity, in this case, the nonreciprocity of
the parameters t and a is caused by the inhomogeneity of
the dispersion parameters of the ébre. Because D(z) > 0, the
pulse, according to (24), is compressed at a(z) < 0. The pulse
is broadened for the selected parameters because the value
a(L) is positive everywhere. The nonreciprocity of the
parameters a(L) and t(L) is caused by the fact that the
input parameters of the ébre for the counterpropagating
pulses are different: for the forward pulse D(0) � D0, while
for the backward pulse Dÿ(0) � D�(L) � D0 f (L). There-
fore, the values of da=dz and dt=dz are different for these
pulses after they are coupled into the ébre, which determines
the nonreciprocity of the dynamics of these parameters.

Figure 4 shows the dependences of a(L) and t(L) for
r(z) � 1 and alternating dispersion proéle: f (z) �

b
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Figure 2. Dependences of the FM rate (a) and pulse duration (b) on the
ébre length for D�z� � ÿD0 � ÿ10ÿ26 s2 mÿ1, R�z� � R0 exp�gz� and
g � ÿ1 kmÿ1. Solid curves correspond to the forward pulse and dashed
curves ë to the backward pulse.
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Figure 3. Dependences of the FM rate (a) and pulse duration (b) on the
ébre length for R�z� � R0, D�z� � D0 exp�gz� and g � ÿ1 kmÿ1. Solid
curves correspond to the forward pulse and dashed curves ë to the
backward pulse.
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sin (2pz=L), where the inhomogeneity period is L � 10 m.
The case under study is interesting by the fact that for any
lengths of the ébre the backward pulse is broadened at the
output (despite the presence of weakly-pronounced regions
with dtÿ=dz < 0), while the forward pulse, depending on the
ébre length, can be either broadened or compressed.
Because for all L, the FM rate is a(z) > 0, the pulse is
broadened only at those regions where D(z) > 0 and is
compressed at negative GVDs. Thus, the oscillation period
t(L) is equal to the inhomogeneity period of the GVD in the
ébre. In the case under study, the average value of the
effective nonlinearity is equal both for the forward and
backward pulse, i.e. hR�effi � hRÿeffi. As a rule, the non-
reciprocal dynamics of the pulse is caused by the difference
in the above-mentioned values. Here, the nonreciprocity can
be explained by different initial conditions for the forward
and backward pulses, i.e. by different GVDs at the ébre
ends. The nonreciprocity will be pronounced to the highest
degree when the ébre length is related to the GVD period by
the expression L � nL, where n is an integer. The backward
pulse can propagate the érst L=2 meters in a medium with
the negative GVD, which provides its maximal compression.
In this case, the forward pulse propagates the érst L=2
meters in a medium with the positive GVD, and, hence, its
compression is impossible. If L � (1=2� n)L, an optical
ébre symmetric with respect to both ends is realised, in
which nonreciprocal effects do not appear.

According to (17), the nonreciprocity of the FM rate
also leads to a difference in the spectral widths of counter-
propagating pulses. In the case a0 � 0 and a�t

2
0 4 1, the

expression for the spectral nonreciprocity takes the form
ZDo � 0:44Za. For the parameters used at the output of the
ébre of length L � 80 m, the forward pulse is compressed,
while the backward pulse is broadened by 2.7 times; in this
case, Za � 164 and ZDo � 72.

The example of the alternating inhomogeneity of the
ébre represents a dynamic situation, which is exceptionally
interesting and important for practical applications. In this
case, the changes in the duration, amplitude and FM rate of
a pulse propagating in one direction are very small (the
pulse parameters can be considered almost constant), while
the dynamics of these parameters for a counterpropagating
pulse has a strongly pronounced oscillating character (with
a periodic strong temporal compression of the pulse,
increase in the FM rate and peak intensity).

6. Conclusions

By using the NSE solution in the `dispersionless' approx-
imation, we have obtained the general integral expression
for the FM rate of the forward and backward Gaussian and
hyperbolic secant pulses propagating in the ébre with the
arbitrary distribution of the gain inhomogeneity and
nonlinearity over its length. The nonreciprocity of the
FM rate leads to the spectral nonreciprocity. The presence
of the GVD substantially changes the character of the
nonreciprocal FM dynamics of pulses. Based on the
variation procedure of the NSE solution, equations have
been derived, which determine the change in the main
parameters of the pulse (duration, phase and FM rate)
propagating in a ébre with a speciéed set of functional
dependences of the gain, nonlinearity and GVD on the
coordinate. The numerical analysis of these equations has
shown that when the longitudinal proéle of the GVD (for

example, linear or exponential) changes monotonically, the
nonreciprocity of the pulse parameters increases with
increasing the ébre length. For the alternating periodic
proéle of the GVD, the nonreciprocity substantially
depends on the ébre length and both total reciprocity
(when the proéle function is symmetric with respect to the
ébre middle) and the strong difference in the output
parameters of the forward and backward pulses.

Therefore, by changing the longitudinal proéles of the
material parameters of the ébre, we can eféciently control
the transformation of counterpropagating pulses. The
plotted dependences of the nonreciprocity on the ébre
length reêect only a small part of the variety of possible
dynamic regimes in ébres inhomogeneous over their length.
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