
Abstract. The frequency and amplitude diffraction non-
reciprocity of counterpropagating waves in a ring gas laser is
studied. The self-consistent eigenmode problem is solved
within the framework of the model of Gaussian beams for a
ring optical resonator containing a nonlinear gaseous medium
and a model aperture. The expressions for frequency-
dependent losses, frequencies and intensities of counter-
propagating waves are obtained and analysed. Experimental
data on the inêuence of diffraction phenomena on the
frequencies and intensities of counterpropagating waves
reported in the literature are analysed. Nonreciprocal effects
related to diffraction are classiéed by comparing the
experimental data with theoretical results. The mechanisms
of the asymmetry of the lasing region with respect to the
central frequency of the transition and asymmetry of the laser
line are explained.

Keywords: ring laser, cavity eigenmodes, frequency-dependent
losses, nonreciprocity.

1. Introduction

Stable oscillation in both directions in a ring laser was érst
demonstrated in 1963 [1]. With the advent of a ring laser
the unique possibilities opened up for precision investiga-
tions in various éelds of fundamental physics. These are the
studies of relativistic and gravitational effects in the theory
of relativity [2, 3], the development of gravitational-wave
detectors [4], the veriécation of quantum electrodynamics
effects [5], and studies of other subtle phenomena [6, 7].
Even this short list shows that the investigation of physical
processes determining the basic properties of a ring laser
becomes increasingly urgent. It should be expected that new
theoretical and experimental studies will not only increase
the possibilities of existing devices but also expand the
scope of applications of ring lasers.

One of the important applications of ring lasers is their
use as sensors in laser gyros. Laser gyros available at present
provide the accuracy allowing the measurement of the
irregularity of the Earth's rotation [3]. Diffraction effects

occupy a signiécant place among physical processes deter-
mining the limiting accuracy of laser gyros. These effects
have been studied in many papers. Even an incomplete list
of these works is quite impressive (see, for example, [8 ë 31]).
It was found that in a laser with an inhomogeneous
resonator, the frequency difference of counterpropagating
waves appears for different reasons even in the absence of
rotation, i.e. the zero of the frequency characteristic is
shifted. Effects resulting in the difference of frequencies
and intensities of counterpropagating waves are called
nonreciprocal effects, and the phenomenon itself is referred
to as the frequency and amplitude nonreciprocity. A
complete review of nonreciprocal effects in ring lasers is
presented in [31].

Nonreciprocal effects give rise to a narrow frequency
region (the so-called strong-coupling region) near the centre
of the Doppler gain line within which one of the counter-
propagating waves is completely or almost completely
quenched. Under certain conditions, the frequency depend-
ence of the wave intensity in this region has the form of a
resonance peak. The presence of such intensity resonances
stimulated studies on their applications to stabilise the
frequency of a ring laser with an absorbing cell [32] and
in ultrahigh-resolution spectroscopy [33].

In this paper, the dependence of the frequency and
intensity difference of counterpropagating waves in a laser
with nonreciprocal elements on the resonator frequency
detuning from the line centre is theoretically analysed. It is
shown that these dependences are qualitatively different
when nonreciprocal elements produce the difference of
losses or frequency difference of counterpropagating waves.
Diffraction-related nonreciprocal effects are classiéed for
the érst time by comparing the experimental data accumu-
lated for many years with our theoretical results. It is
established that the predominance of one or another non-
reciprocity mechanism determines the behaviour of the
frequency and intensity difference of counterpropagating
waves appearing in this case.

Having answered the question which physical reasons
give rise to the amplitude or phase nonreciprocity of
counterpropagating waves in a laser without nonreciprocal
elements, one can explain the appearance of the frequency-
dependent shift of the zero of the frequency characteristic of
the ring laser used as a sensor in a laser gyro. Theoretical
papers published earlier could not answer this question. In
this paper, the answer is obtained by solving the self-
consistent eigenmode problem for a ring optical resonator
containing a nonlinear gaseous medium and a model aper-
ture. It is shown that diffraction from apertures of such a
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resonator gives rise both to the nonreciprocity of frequency-
independent losses and frequency-dependent phase shifts of
counterpropagating waves. In a ring laser with an aligned
resonator, the combined action of diffraction and the éeld-
induced radial inhomogeneity of a nonlinear medium makes
the role of the loss difference dominant. The misalignment
of the resonator caused by the misalignment of mirrors, the
application of apertures asymmetric with respect to the
optical axis (or the aperture displacement perpendicular to
the resonator plane) leads to the dominant role of the
frequency difference.

In addition, we studied the behaviour of the lasing
intensity and frequency near and within the strong-coupling
region in the case of the amplitude and phase nonreciproc-
ities. This is of current interest in problems of nonlinear
spectroscopy and frequency stabilisation, where the high
accuracy of measuring the quantum-transition frequency
oab by the power peak and nonlinear dispersion resonance is
very important.

2. Study of generation in a ring laser
in the plane-wave model

We analyse below the behaviour of frequencies and
intensities of stationary counterpropagating waves of a
ring laser in the plane-wave model developed by Lamb [34]
for a linear laser. The generalisation of this theory for a
ring laser was presented in many papers. However, the
author is not aware of papers where a laser with different
phase or amplitude conditions for counterpropagating
waves in the resonator are systematically analysed,
although such attempts have been made in some papers
[35 ë 37]. The results obtained in our paper differ from those
reported in the above papers mainly because we calculated
for the érst time the polarisability of a medium in the éelds
of counterpropagating waves in the third order of the
perturbation theory in the general form, not restricting
ourselves to the second-order terms in the ratio of the
natural linewidth to the Doppler width.

The modes of ring resonators are travelling waves.
Consider a laser in which propagation in each direction
occurs only on one of the eigenmodes or and ol. And
although the éeld in the resonator is a superposition of the
éelds of two travelling counterpropagating waves:

E�z� � Er�z� exp�ÿiort� � El�z� exp�ÿiolt� � c:c, (1)

such a laser is called a single-mode laser because both waves
have the same longitudinal index. The éeld of each of the
waves satisées the stationay wave equation�

q 2

qz 2
� k 2

j

�
Ej�z� � ÿ 4pk 2

j Pj�z�; kj � oj=c; j � r; l: (2)

Field (1) induces in the nonlinear medium a macroscopic
polarisation of the active medium

P�z� � Pr�z� exp�ÿiort� � Pl�z� exp�ÿiolt� � c:c:, (3)

where

2pPr�z� � �ÿ�1=kr�K�Zr ÿ brIr ÿ ylIl��Er�z� � 2pKrEr�z�: (4)

Hereafter, the equations for a counterpropagating wave are
obtained by the subscript replacement r$ l. The dimen-
sionless wave intensities Ir and Il and the gain K of the
medium are determined in Appendix 1, where the depend-
ences of Zj, bj, and yj on the detuning and transition
parameters [the half-widths ga and gb of the levels, and the
homogeneous (gab) and inhomogeneous (ku) half-widths of
the line [k � (kr � kl)=2)] are also given. The imaginary part
of the function Zj � Zj

0 � iZj
00 describes the dependence of

the unsaturated gain on the detuning oj ÿ oab, while the
real part is responsible for linear dispersion. The nonlinear
gain saturation and nonlinear dispersion caused by the self-
action of counterpropagating waves are described by the
imaginary and real parts of the coefécients bj � bj

0 � ibj
00,

while the same parameters caused by the interaction of
counterpropagating waves are described by the imaginary
and real parts of the coefécients yj � yj

0 � iyj
00, respectively.

Figure 1 presents these functions for or � ol � o and l �
3.39 mm, ga � 18 MHz, gb � 27 MHz, gab � 120 MHz, and
ku � 300 MHz, which are used in calculations below.

The solution of Eqn (2), which is supplemented by the
conditions of periodicity of the éelds and the conditions on
a partially transmitting mirror with the reêectivity R, is
found in the form of plane waves:

Er�z� � E0r exp

�
ikr

� z

0

nzr�z�dz
�
; (5)

El�z� � E0l exp

�
ÿ ikl

� z

L

nzl�z�dz
�
; (6)
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Figure 1. Dependences of the real (a) and imaginary (b) parts of coefécients Z, b, and y on detuning.
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where L is the resonator length. In the small-gain
approximation, the refractive index nzj�z� for each of the
waves over the gas-discharge tube length H is

nzr � 1� 2pKr � 1ÿ 1

kr
K0�Zr ÿ brIr ÿ ylIl�; (7)

and nzr � nzl � 1 outside the tube. The éeld periodicity
condition gives the system of complex equations for coun-
terpropagating waves

ÿjj � iej � kj

� L

0

nzj�z�dz � 2p~q: (8)

Here, ~q is a large integer (the longitudinal index of a mode);
er; l � e0 � de; e0 � ln (1=

�����Rp ) are mirror losses; �de and jj

are losses and phase shifts of counterpropagating waves
caused by the action of nonreciprocal elements, which are
additional to the geometric-optical shift. By equating the
imaginary parts of (8) to zero, which means that the
saturated gain of each of the waves is equal to its losses, we
obtain the expression for the wave intensities:

Ir �
Zrb

00
l ÿ Zly

00
l

b 00r b 00l ÿ y 00r y 00l
; Zr � Zr

00 ÿ er
KH

: (9)

The real parts of (8) give equations for lasing frequencies or

and ol:

or � O� dor � �c=L�KH�Z 0r ÿ Irb
0
r ÿ Ily

0
l�; (10)

where O � (c=L)2p~q is the frequency of the empty resonator
and dor � (c=L)jr is the frequency base. When the laser
resonator does not contain sources producing unequal
losses or unequal frequencies of counterpropagating waves,
both waves have equal frequencies and intensities over the
entire lasing region. The dependence of the wave intensities
Ir � Il � Z=(b 00 � y 00), where b � (br � bl)=2, y � (yr� yl)=2,
and Z � (Zr � Zl)=2, on the detuning represents a curve with
a dip near the central transition frequency. Such depend-
ence is typical for single-mode normal lasers. The picture
cardinally changes when a certain difference of losses or
frequency difference is produced for counterpropagating
waves with the help of special nonreciprocal devices, of
which the most popular are elements based on the Faraday
effect.

Due to different losses er; l � e0 � de for counterpropa-
gating waves, their intensities and frequencies are also
different: Ir ÿ Il � 2DI and or ÿ ol � 2Do. It follows
from (9) and (10) that

Ir; l � Z
1

b 00 � y 00
� de
KH

1

b 00 ÿ y 00
� I� DI,

(11)

Do � ÿ de
c

2L

b 0 � y 0

b 00 ÿ y 00
:

Because the dependences of coefécients b 00 and y 00 on the
detuning are even, while these dependences for coefécients
b 0 and y 0 are odd, the intensity difference is an even
function, while the frequency difference is an odd function
of the detuning oÿ oab. It follows from (11) that
nonreciprocal additions DI and Do change their signs
when the average lasing frequency o � (or � ol)=2 passes
through a value ocr at which the condition b 00 ÿ y 00 � 0 is

fulélled. By using the expressions for b 00 and y 00 presented
in Appendix 1, we énd that this condition is fulélled for
detunings

Dcr � �
jocr ÿ oabj

ku
� �

�
gab
ku

�2� gagb
�ga � gb�gab

�1=2
; (12)

which are symmetrical with respect to oab. The difference
jocr ÿ oabj is about 16 MHz for the line at 3.39 mm and
about 3 MHz for the line at 0.6328 mm. Near these detu-
nings, the energy exchange occurs between coun-
terpropagating waves due to their strong coupling. For
frequency detunings x � (oÿ oab)=(ku) <ÿDcr and x > Dcr

(where y 00 < b 00), the intensity of the strong wave (i.e. the
wave with lower losses) increases resonantly, whereas the
intensity of the weak wave (the wave with higher losses)
decreases. Within the frequency region ÿDcr < x < Dcr

(where y 00 > b 00), the weak-wave intensity increases at the
expense of the strong wave. If the difference of losses of
counterpropagating wave is small, both waves can be
generated in this frequency interval. In this case, due to the
energy redistribution caused by a strong coupling, the
intensity of the wave with higher losses exceeds the intensity
of the wave with lower losses. As the loss difference
increases, the wave with higher losses can completely
quench the wave with lower losses. The appearance of
intensity resonances for frequency detunings close to �Dcr

is accompanied by a drastic change in the difference
frequency. The results of numerical calculations presented
in Figs 2a and b conérm our estimates.

In the case when the phase nonreciprocity 2do �
dor ÿ dol is produced between counterpropagating waves,
in the low frequency region o < oab the wave of the higher
frequency is stronger because it is stronger ampliéed being
closer to the central transition frequency. For o > oab, the
situation changes, and the wave with the lower frequency is
ampliéed stronger. Because outside the strong coupling
region the energy is transferred from the weak wave to
the strong one, the intensity difference of the counter-
propagating waves

Ir; l � I� F �oÿ oab�
b 00 ÿ y 00

� I� DI (13)

is an odd function of the detuning (here, F is the parameter
that is an even function of the detuning) (see Fig. 2c). For
this reason, the dependences of the intensities of counter-
propagating waves within the strong-coupling region have
the X-like shape. In this case, the frequency difference
(Fig. 2d) is an even function of the detuning. The depend-
ence of the frequency difference on the detuning within the
strong-coupling region has the form of a resonance peak
whose centre coincides with that of the gain line. Note that
both for the amplitude and phase nonreciprocities, the
dependences of the sum of intensities on the detuning are
described by a symmetric curve with a dip near the gain-line
centre.

3. Results of the experimental study
of nonreciprocal effects and attempts
to explain them

The inequality of frequencies of counterpropagating waves
in a single-mode ring laser without nonreciprocal devices
was érst reported in [9]. The experiment was performed in a
laser with a square resonator (with an arm of 92 cm)
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emitting at 3.39 mm. By inserting a needle point or a razor
blade into a laser beam (at a distance of about 1 mm from
the beam axis), beats at a frequency of � 5 kHz were
obtained. It was pointed out that this effect, which was later
called the diffraction nonreciprocity, was stronger when the
needle point was inserted into the beam near the tube
window. The authors related the frequency difference Do to
the nonreciprocity Dn �10ÿ10 of the refractive indices of a
medium for counterpropagating waves by assuming that the
reason for this nonreciprocity is the intensity saturation.
Thus, the nonlinearity of this phenomenon has been
pointed out already in the érst paper.

The coherent correlation between the loss difference
produced by a nonreciprocal element and the behaviour of
intensities of counterpropagating waves was studied exper-
imentally in [11]. It was found that, when counterpro-
pagating waves had equal losses, each of them was gen-
erated over the entire detuning region. When losses were
different, one of the waves was suppressed near the centre of
the gain line, whereas the intensity of the other wave
increased. As loss difference increased, one of he waves
was suppressed in a large detuning interval. The results
obtained in this paper can be explained completely within
the framework of the plane-wave model (see Figs 2a, b).

Such dependences were also observed in lasers without
specially produced amplitude nonreciprocity [10]. The
dependences of intensities of counterpropagating waves
on the detuning presented in Fig. 3 suggest that a source
of amplitude nonreciprocity exists in the laser resonator. In
this case, the dependence of the beat frequency had the form
of the dispersion curve. The authors of paper [10] assumed
that the Q factors of the resonator for counterpropagating

waves are different. By assuming that jDZj=Z � 10ÿ2 (where
DZ � (Zr ÿ Zl)=2), they could compare the obtained depend-
ences with theoretical curves described by expressions (9).
They have failed to explain the reason for the difference of
losses for counterpropagating waves. Its existence was
simply postulated in this paper and other papers (see, for
example, [18, 36]). In [12], where one-directional lasing was
érst obtained in a ring laser, it was assumed that different
losses for counterpropagating waves appear due to the
combined action of diffraction and transverse inhomoge-
neity of the active medium. The concept of frequency-
dependent losses for counterpropagating waves was intro-
duced; however, the mechanism of nonreciprocity formation
was not determined.

The inêuence of the phase nonreciprocity produced by a
Faraday element on the lasing intensity was experimentally
studied in [11]. The corresponding dependences obtained in
this paper well agree with our calculations (see Figs 2c, d).
Such dependences were also observed in resonators without
nonreciprocal elements when the diaphragming of the
resonator caused its misalignment. In [13], experiments
were performed both for a pure 20Ne isotope and the
mixture of isotopes 20Ne and 22Ne at a wavelength of
3.39 mm. A discharge tube of length 0.18 m had a diameter
of 3 mm and was fed from a dc supply. The use of a high-
frequency discharge (� 40 MHz) almost did not change the
picture of the effect. The laser resonator (L � 0:75 m) was
formed by two plane mirrors and one spherical mirror (with
the radius of curvature R � 1:2 m), which could be replaced
by a plane mirror. Two apertures were placed symmetrically
from both sides of the active medium. Their position and
diameter could be controlled. When one of the apertures of
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Figure 2. Dependences of the dimensionless intensities Ir and Il of counterpropagating waves, their sum IS (a, c), and the frequency nonreciprocity
ol ÿ or (b, d) on detuning calculated in the cases of using a device producing different losses for counterpropagating waves, for er � 1, el � 1:002,
KH � 0:12, L � 1 m (a, b), and using a device providing the frequency difference for counterpropagating waves do � 0:5 MHz for KH � 0:12 and
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diameter � 1 mm was displaced to the resonator axis or
from it by a distance of fractions of millimetre, the counter-
propagating waves had different intensities Ir and Il. The
typical behaviour of these intensities for a pure isotope is
shown in Fig. 4. The difference Ir ÿ Il was determined by
the degree of insertion of the aperture into the beam, and its
sign changed after the passage of the resonator frequency O
through the value oab. Figure 5 shows the dependences of
the lasing frequency difference on the detuning. One can see
that the sign of the frequency difference did not change over
the entire lasing region. An increase in the discharge current
resulted in the increase in DI and Do. If the plane mirror
was replaced by a spherical one, the maximum frequency
splitting increased by a factor of three (from 500 to
1500 kHz). The minimal frequency difference Do (0.8 ë
1.2 kHz) observed in experiments was determined by the
locking band.

It was assumed in [13] that the main reason for non-
reciprocity is the radial inhomogeneity of the saturated
refractive index of the medium. Due to nonreciprocal
focusing related to the resonator geometry, the mutual
action of counterpropagating waves on each other can be
different. According to [13], due to incomplete overlap of
radiation beams in the active medium, the paths of counter-
propagating waves are different, their difference changing
during frequency tuning due to refraction appearing upon

the misalignment of the resonator with an asymmetric
aperture. If radiation propagates in the medium not parallel
to the tube axis, the beam path bends and deêects to one of
the sides depending on the gradient of the refractive index of
the medium. The gradient sign changes to the opposite after
the frequency o passes through the value oab. The authors
of [13] explain in this way the distortion of the lasing region:
for frequencies o > oab, the beam is inclined to the tube
axis, ampliécation increases and the lasing region expands,
while the frequency region o < oab narrows down.

The idea that the frequency and amplitude nonreciproc-
ity appears due to different distributions of the éelds of
counterpropagating waves proposed in [13, 14] was devel-
oped in [20]. It was shown that the frequency splitting Do
was maximal if the aperture was placed near a cell with the
active medium. As the aperture was removed from the cell
along the beam axis, the frequency splitting Do decreased
monotonically and vanished when the aperture was in a
plane located approximately at equal distances from the cell
ends. The movement of the aperture through this plane was
accompanied by a change in the sign of Do, and the value of
Do increased and achieved its maximum when the aperture
approached the other end of the cell. The dependence on the
resonator geometry was manifested in the fact that the
frequency splitting increased with increasing the curvature
of resonator mirrors.

Ir
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0
ÿ200 ÿ100 0 100 oÿ oab

�
MHz

Il

ÿ200 ÿ100 0 100 oÿ oab

�
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0.03

0.02
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0

Figure 3. Dependences of the dimensionless intensities Ir and Il of counterpropagating waves in a ring laser with a symmetric aperture [10] on
detuning.
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Figure 4. Dependences of the dimensionless intensities Ir and Il of coun-
terpropagating waves in a ring laser with an asymmetric aperture [13] on
detuning.
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Figure 5. Dependences of the frequency difference �or ÿ ol�=�2p� of
counterpropagating waves in a ring laser with an asymmetric aperture
[13] on detuning.
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The experiment performed in [13] was repeated later by
French researchers [22] on a setup with different parameters.
They used a three-mirror ring resonator of length L � 1:2 m
with one spherical mirror with the radius of curvature
R � 2 m. The ratio of these parameters provided the
approximate equality of the g parameters of this resonator
and that used in [13]. The diameters D1 and D2 of apertures
were 2.6 mm. The laser also operated in the single-longi-
tudinal mode regime at 3.39 mm. But unlike [13], the authors
of paper [22] used discharge tubes of a larger internal
diameter (6 mm), which, in their opinion, should reduce
the inêuence of the lens effect. This resulted in a decrease in
the maximum achievable frequency splitting after aperture
misalignment approximately by 35 times compared to that
observed in [13]. In this case, the dependence of the
frequency splitting Do on the detuning oÿ oab remained
almost an even (somewhat asymmetric) function, as in
Fig. 5. Note that the intensity proéles have a distinct
asymmetry, which is the same for counterpropagating waves
in the aligned resonator (for Do � 0). When the aperture
was displaced perpendicular to the beam, the frequencies
and intensities of the waves became different. The intensity
proéles acquired different asymmetry, the wave with a
higher asymmetry having a higher frequency. The authors
of [22] explained these results by different losses for
counterpropagating waves, as was earlier assumed in [12].
They assumed that the reason for the difference of losses is
the misalignment of the resonator. However, the authors of
[22] attempted to substantiate the nonreciprocity of losses
by using the plane-wave model, which is impossible in
principle. Moreover, the dependences of the intensity and
frequency difference on the detuning obtained in [22] suggest
that the dominant mechanism of nonreciprocity in these
experiments is the phase nonreciprocity rather than the
difference of losses for counterpropagating waves.

Experiments with a laser emitting at 0.6328 mm [21] also
conérm the fact that the use of symmetric or asymmetric
apertures leads to qualitatively different results. It was
shown that the replacement of a symmetric iris aperture
by an aperture in the form of a half-plane resulted not only
in the increase in the frequency difference by two orders of
magnitude but also in the change of its sign. It was found
earlier that the displacement of the aperture perpendicular
to the beam was accompanied by oscillations of Do [9, 20].

By generalising the results of experimental studies [8 ë 22]
and comparing them with our calculations performed within
the framework of the plane-wave model, the following
conclusions can be formulated.

(i) Diaphragming of the radiation beam in a ring laser
leads to the frequency and amplitude nonreciprocity of
counterpropagating waves. In the case of symmetric dia-
phragms, the difference of wave intensities is described by an
even function, while the frequency difference is described by
an odd function of the frequency detuning from the gain line
centre. This means that in the aligned resonator the
dominating mechanism determining the behaviour of fre-
quencies and intensities is the difference of losses for
counterpropagating waves (the amplitude nonreciprocity).

(ii) When asymmetric apertures are used in ring lasers,
the difference of intensities of counterpropagating waves is
described by an odd function, while the frequency difference
is described by an even function of the frequency detuning
for the gain line centre, which indicates the dominant role of
the phase nonreciprocity in the misaligned laser.

(iii) The loss nonreciprocity makes it possible to obtain
one-directional lasing in a stable-resonator laser without
using nonreciprocal elements. The elimination of nonreci-
procity leads to the generation of both waves over the entire
lasing region.

(iv) The existence of resonances of the wave intensities
and their frequency difference near the strong-coupling
region suggests that they have the amplitude and (or) phase
nonreciprocity. The behaviour of the intensity and fre-
quency of counterpropagating waves within this region is
determined by the type of nonreciprocity dominating in the
given setup.

(v) The frequency and intensity differences of counter-
propagating waves depend considerably on the pump
current and the resonator geometry: the curvature of
mirrors, the mutual location of resonator elements and a
cell with the active medium, its diameter, and parameters
and position of the aperture.

In addition, it was established that the diaphragming of
the resonator leads to the asymmetry of a dip in the total
band of counterpropagating waves and distorts the lasing
region as a whole [11, 13, 22, 23].

To understand the reasons for one or other mechanism
of nonreciprocity in lasers without nonreciprocal elements
and explain the obtained dependences, it is necessary to
solve the eigenmode problem for the resonator containing a
nonlinear medium, taking into account diffraction from its
apertures. The theory of diffraction frequency and ampli-
tude nonreciprocity developed earlier [24 ë 30] has failed to
describe correctly experimental dependences.

The characteristic feature of our approach [38] is the
possibility of using the methods and results of the well-
developed theory of open resonators [39 ë 41] to study the
characteristics of lasers with a weakly nonlinear medium.
This approach, based on the standard asymptotic expansion
[42], allows one to construct a simple solution of a system of
integro-differential equations determining the eigenmodes of
the resonator containing a model aperture and a weakly
nonlinear radially inhomogeneous active medium. The use
of the results of calculations of the eigenmodes of passive
resonators formed by mirrors of énite size [39, 41] allowed
us to relate variations in the losses and frequencies of the
resonator mode with a change in its volume, which is caused
in our case by the action of the lens and diaphragming
properties of the medium.

4. Eigenmodes of a ring resonator
with a weakly nonlinear medium

Because the problem of generation of counterpropagating
waves is nonlinear and has no explicit solution, it can be
solved only by the method of successive approximations.
The success depends on a proper choice of the initial
approximation, which should already contain most impor-
tant information on the required solution. Mirrors used in
gas lasers have typically quite large apertures, so that the
mode structure in these lasers is well described by the
Hermite ëGaussian approximation. The induced transverse
inhomogeneity of the medium in the éeld of Gaussian
beams [caused by the nonlinear part of the polarisability
(A1.4)] is quadratic. For this reason, we consider a reso-
nator with a quadratically inhomogeneous active medium
linear in éeld as an unperturbed system, i.e. we assume that
the dependence of the polarisability K�1�j on the transverse
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coordinates is described by a quadratic function (see
Appendix 2):

K�1�j �x; y� � K0j

�
1ÿ x 2

d 2
x

ÿ y 2

d 2
y

�
;

(14)

2pK0j � ÿ
K0Zj

kj
.

Here, K0j is the polarisability on the resonator axis; dx and
dy are the half-widths of distributions along the x and y
axes. The obtained results can be easily generalised to the
case of the negative curvature of the gain proéle (A2.2).

Consider a ring optical resonator in which a gas-
discharge tube of length H with Brewster windows is placed
and an aperture with the Gaussian transmission proéle

T �x; y� � exp

�
ÿ x 2

a 2
x

ÿ y 2

a 2
y

�
is mounted in the section zt, where ax and ay are the half-
width of the aperture along the x and y axes. This model is
chosen because it gives a simple analytic description of
resonator eigenmodes in the single-mode approximation
since transverse mode losses increase with the mode index.
Our numerical calculations of the resonator eigenmodes
with a Gaussian aperture are in good qualitative agreement
with calculations performed for resonators with mirrors of
a énite size. We do not consider here frequency locking and
assume that backward reêection from the resonator
elements is absent. Depolarisation effects in such resonators
are small and radiation proves to be plane polarised, which
allows the use of the scalar model of the éeld in the
resonator.

The problem of the eigenmodes of a resonator contain-
ing a Gaussian aperture and a linear quadratic inho-
mogeneous medium can be solved in the explicit form.
The relevant equations have the form

�D� k 2
j �Ej�x; y; z� � ÿ4pk 2

j Pj�x; y; z�; (15)

where D is the Laplace operator. These equations are
supplemented by the conditions of transformation of the
éelds of the waves propagating through the resonator
elements and by the conditions of their reproducibility after
each round trip in the resonator:

Ej�x; y; z� L� � Ej�x; y; z�: (16)

We will seek the solution of Eqn (15) in the quasi-optical
approximation in the form

Ej�x; y; z� � E0jcj�x; y; z� exp�ikjWj�z�� � c:c:, (17)

where E0j is the constant amplitudes of counterpropagating
waves; Wj(z) and cj(x; y; z) are slowly varying functions of
coordinates. Let us substitute (17) into (15) and perform the
corresponding transformations. Then, according to the
parabolic equation method [42], we pass to the dimension-
less variables x! x (k=L)1=2; y! y (k=L)1=2, and z! z=L
and equate coefécients at the successive powers k to zero.
In the principal order, we obtain the eikonal equation

qWj
qz
� qWl

qz
� 1� 2pK0 � n�1�z : (18)

The érst-order terms in k give equations for slowly varying
wave amplitudes cj (x; y; z):�

q 2

qx 2
� q 2

qy 2
� 2in�1�z

q
qz
� n�1�x x 2 � n�1�y y 2

�
cj�r� � 0: (19)

Here,

n�1�p � ÿpK0
�
2L

dp

�2
� 2K0LZMp �p � x; y� (20)

are the transverse components of the refractive index of the
medium; Mp � L=(kd 2

p ) is the dimensionless parameter of
the transverse inhomogeneity of the medium; Zr � Zl � Z.
The real part n�1�p

0 determines the focusing properties of the
medium. The action of the imaginary part n�1�p

00 can be
compared to the action of an aperture with the quadratic
transmission law.

The solution of differential equation (19) with complex
coefécients n�1�z and n�1�p is well-known Hermite ëGaussian
functions. The fundamental TEM00~q resonator mode is
described by the Gaussian beam with two symmetry planes:

cj�x; y; z� � cxj�x; z�cyj�y; z�: (21)

By using the formalism of wave matrices, we represent the
expression for cxj (x; z) in the form

cxj�x; z� �
1

�mxj�z��1=2
exp

�
ix 2

2qxj�z�
�
: (22)

A similar expression can be also written for the yz plane.
Here, the dimensionless parameters qÿ1pj �z� � Spj�z��
iWpj�z� � spj�z�L� 2iL=�kw 2

pj�z�� are introduced, which
characterise the wave-front curvatures spj and half-widths
of the counterpropagating Gaussian beams in the section z.
These parameters are transformed during the propagation
of beams in the resonator by the rules

qpj�z� �
apj�z� � bpj�z�qpj�0�
cpj�z� � dpj�z�qpj�0�

: (23)

The parameters mpj are transformed as

mpj�z� � apj�z� � bpj�z�qÿ1pj �0�: (24)

Here, qpj (0) are the values of the parameters qpj in the
reference section z0; apj (z); bpj (z); cpj (z); and dpj (z) are the
elements of the matrix of transformation of the beam
parameters of the optical system located between planes z0
and z. The wave matrices describing the evolution of the
Gaussian beam propagating in the resonator are presented
in Appendix 3.

To énd qpr in the section z, it is necessary to énd the
cavity-round-trip matrix ApBpCpDp as the product of the
wave matrix of individual elements through which the light
beam propagates. Because the refractive indices of the
medium are identical for counterpropagating waves, we
énd the matrix of the resonator for the counterpropagating
wave by interchanging elements Ap and Dp. Then, taking
condition (16) into account, we énd from relations (32) the
expressions for parameters qÿ1pr; pl in the resonator section z:
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qÿ1pr; pl�z� � �
Dp�z� ÿ Ap�z�

2Bp�z�
� i

�
1ÿ G 2

p

B 2
p �z�

�1=2
: (25)

The Gp parameter of the resonator in (25) deéned as Gp �
Gpr � Gpl � �Ap �Dp�=2, in the ideal resonator, where the
elements of the A0pB0pC0pD0p matrix are real, is reduced to
the real parameter Gp � gp of the resonator conéguration.
In our case, the Gp parameter is a complex frequency-
dependent quantity [see expression (A3.7)]. The distribu-
tions of the wave éelds also become frequency-dependent.
By representing (25) in the form

qÿ1pr; pl�z� � �S0p�1�Up1� � iW0p�1�Up2�;

where the values of W0p and S0p correspond to the ideal
resonator and quantities Up1; p2 � Up1; p2

0 � iUp1; p2
00 determine

the perturbation of éeld distributions by the medium and
aperture, we obtain that the reciprocal (the same for
counterpropagating beams) deformation of éeld distribu-
tions is determined by the values dWp �W0pUp2

0 and
dSp � S0pU

0
pl, while the nonreciprocal components have

the form

DWp �
Wpr ÿWpl

2
� S0pUp1

00 ;

DSp �
Spr � Spl

2
� ÿW0pUp2

00 :

(26)

In real laser systems, where an aperture is used for mode
selection, it is the aperture that mainly contributes to the
nonreciprocity of the transverse distributions of the éelds.
The expressions for these nonreciprocity components can be
written in the form

DWp�z� � Np

B 2
0p�zt� ÿ �zÿ zt�2

B 2
0p�z�

� Np

�
w 2
0p�zt�

w 2
0p�z�

ÿ �zÿ zt� 2
B 2
0p�z�

�
; (27)

from which it follows that the deformation of éeld
distributions is determined to a great extent by the
resonator geometry. In this case, the nonreciprocity DWp

is maximal in the vicinity of the aperture and decreases with
distance from the aperture. The transverse inhomogeneity
of the active medium makes an additional contribution to
the deformation of the éeld distributions of counter-
propagating waves, and although this contribution is
generally considerably smaller than distortions introduced
by the aperture, the inêuence of the medium should not be
neglected.

The wave amplitudes (22) are reproduced after the round
trip in the resonator accurate to the propagation constants.
The expressions for them are obtained by substituting (25)
into (24):

Lp � Lpr � Lpl � �mp�z� 1��ÿ1=2

� exp

�
ÿ 1

2
ln
h
Gp � �G 2

p � 1�1=2
i�
� exp

�
ÿ i

2
arccosGp

�
.

Taking this relation into account, the condition for the
periodicity of éeld (16) has the form

ie0 �
1

2

X
p�x; y

arccosGp � kL

� 1

0

n �1�z �z� dz � 0: (28)

Because the replacement of one of the highly reêecting
mirrors by a semitransparent mirror does not change the
transverse structure of the éelds, we introduced losses e0.
The choice of the sign in the expansion

arccos�G 0p � iG 00p � � ÿ
�
arccos

�
G 0p
sp

�
� 2p~qÿ i arcoshsp�

is determined by the fulélment of the condition of the éeld
weakening after the round trip in the resonator, where
arcosh sp > 0; and

sp �
1

2

��
�1� G 0p�2 � �G 00p �2

�1=2

�
�
�1ÿ G 0p�2 � �G 00p �2

�1=2�
:

The imaginary part of Eqn (28) gives the threshold gain
K0thH

K0thHZ 00 � e0 �
1

2

X
p�x; y

arcosh sp: (29)

The real part of (28) determines the frequency for which
condition (29) is fulélled:

oth �
c

L

�
1

2

X
p�x; y

arccos�G 0p=sp� � 2p~q� K0thHZ 0
�
: (30)

Let us analyse the obtained dependences for a weakly
perturbed resonator, by using the parameters of the
Gaussian aperture (Np) and transverse inhomogeneity of
the medium (Mp � n�1�p ) as small parameters, which are the
quantities inverse to the effective Fresnel numbers. We
assume that

jn�1�p j < Np < 1: (31)

In addition, we restrict out consideration to resonators in
which conditions (1ÿ G 0p)

2 4 (G 00p )
2 and (1� G 0p)

2 4 (G 00p )
2

are fulélled simultaneously. Then, by using relation (A3.9),
we obtain the expression

e�1� � 1

2

X
p�x; y

arcosh sp � eN � K0H

�
X
p�x; y

w 2
0p�z0�
4d 2

p

�
Z 00
�
1� w 2

0p�zt�
2a 2

p

�
m1p � Z 0

w 2
0p�zt�
2a 2

p

m2p

�
(32)

for the wave losses, where m1p and m2p are the parameters of
the resonator conéguration, which are presented in
Application 3. The érst term is responsible for losses on
the Gaussian aperture:

eN �
1

4

X
p�x; y

Np

W0p�zt�
�
1� Np

2W0p�zt�
�

� 1

2

X
p�x; y

�
w0p�zt�
2ap

�2�
1�

�
w0p�zt�
2ap

�2�
: (33)
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Two other terms in (32) determine the frequency-dependent
change in the losses for the fundamental resonator mode
caused by the action of the quadratic inhomogeneity of the
active medium. The quantity K0HZ 00, which is proportional
to ampliécation and repeats the symmetric gain proéle, is
responsible for the gain reduction compared to the gain in a
medium layer with the homogeneous distribution of the
gain K0H. The reduction of the gain can be related to the
increase in mode losses. The term proportional to Z 0 is
responsible for a change in losses on the aperture caused by
the deformation of the transverse distribution of the éeld by
a lens in the medium, and its frequency dependence has the
dispersion shape. For o < oab, the scattering lens of the
medium increases the width of the éeld distribution, thereby
increasing aperture losses. At the line centre for o � oab,
this term is zero, and for o > oab, the lens of the medium
operates as a collecting lens, thereby reducing losses.

Taking (29) and (32) into account, the expression for the
threshold gain can be written in the form

K0thH � �e0 � eN�
�
Z 00 ÿ

X
p�x; y

�
w0p�z0�
2dp

�2

�
�
m1pZ

00 � m2pZ
0 w

2
0p�zt�
2a 2

p

��ÿ1
: (34)

By using expression (A3.10), we obtain from (30) the
expression for detuning of the threshold frequency from the
eigenmode of the ideal resonator O � (c=L)�(1=2)�P

p�x; y arccos gp � 2p~q �:

oth ÿ O � ON �
c

L
K0thH

�
�
Z 0
�
1ÿ

X
p�x; y

w 2
0p�z0�
2d 2

p

mp1

�
� Z 00

X
p�x; y

w 2
0p�z0�
2d 2

p

w 2
0p�zt�
2a 2

p

mp2

�
:

(35)
The quantity

ON �
c

2L

X
p�x; y

�
w0p�zt�
2ap

�4 gp

�1ÿ g 2
p �1=2

is responsible for the resonator frequency shift caused by a
decrease in the mode volume due to diffraction from the
aperture.

One can see from (35) that the dispersion lens of the
medium reduces the linear frequency locking (which is
determined by the term proportional to Z 0). Indeed, for
o < oab, the medium lens operates as a diverging lens,
increasing the mode volume and thereby decreasing the
resonator frequency, by shifting it from the frequency oab.
For o > oab, the medium lens operates as a collecting lens,
decreasing the mode volume and thereby increasing the
resonator frequency. At the gain line centre for o � oab, the
optical power of the lens is zero. The asymmetric shift of the
active mode appears due to the combined action of two
apertures: the Gaussian aperture and frequency-dependent
aperture formed by the medium. This shift is proportional
to Z 00. This means that the shift is maximal when the
resonator frequency O is tuned to the line centre.

Thus, we have constructed the solution of the problem:
we have found the distributions of the éelds of counter-
propagating modes in an arbitrary section of the resonator
and also losses and frequency detunings at the lasing

threshold. We have established that the combined action
of the transverse inhomogeneity of the medium and aperture
distorts the lasing region [asymmetry of losses e�1� (32) and
threshold frequencies oth (35) of the resonator mode], which
was observed in [11, 13, 22, 23]. The asymmetry of the
lasing region [proportional to the parameter m2p (A3.12)]
can be minimised by choosing the optimal mutual arrange-
ment of resonator elements and radii of curvature of
resonator mirrors. In addition, the asymmetry depends
on the half-width ap of the aperture: as the half-width is
decreased from a1p to a2p, the asymmetry increases approx-
imately by a factor of (a2p=a1p)

2. The asymmetry also
depends on the transverse inhomogeneity of the medium,
which is determined by the discharge geometry and current,
and by pressure in the tube with the active medium.

Our results, obtained by using the theory of resonators,
contradict the results obtained in [27, 29]. Let us present
expressions (14) for threshold frequencies and gains from
[27] [they follow from Eqns (16) in [25]]:

o�1� � O� c

L
w 0; e�1� � eN � w 00; (36)

w � Z

�
K�x; y�cr�x; y; z�cl�x; y; z�dV�

cr�x; z�cl�x; z�dV
� w 0 � iw 00; (37)

where V is the resonator volume. The dependence of the
gain K on transverse coordinates is determined by function
(A2.1). After corresponding algebraic transformations of
(37), taking into account that the wave matrices are
unimodular, we obtain

w � K0thHZ

�
1� 1

h

X
p�x; y

Mp

� h=2

ÿh=2
�qÿ1pl � qÿ1pr �ÿ1dz

�
: (38)

By comparing expressions (36) ë (38) with the corresponding
formulas of our paper, it is easy to see the discrepancy
between them. The dependences of threshold gains and
frequencies on the transverse number of the mode are also
different. The nonlinear problem was solved in papers
[24 ë 30] by multiplying the parabolic equation for the
slowly varying amplitude of one of the waves by the
amplitude of the other wave and then integrating over the
resonator volume. In this case, the wave frequencies and
intensities were determined by neglecting the periodicity of
the éeld, the transverse éeld distributions in the resonator
were found by neglecting the inêuence of the active
medium, and losses for counterpropagating waves were
assumed equal. It will be shown below that it is the
additional deformation of the transverse éeld distributions
of counterpropagating waves caused by the nonlinear
medium that leads to different losses for counterpropagat-
ing waves.

5. Nonlinear theory

The eigenmode problem for a ring optical resonator with
the active gas medium is solved in the weak-nonlinearity
approximation. In this case, we can assume that the
nonlinearity of the medium will not change the general type
of the solution of Eqn (15) obtained in the érst approx-
imation. The nonlinear polarisation of the medium
calculated in the weak-saturation approximation has the
form
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2pPr�x; y; z� � ÿ
1

kr
K�x; y�

� �Zr ÿ brI r�x; y; z� � ylI l�x; y; z��Er�x; y; z�: (39)

This expression shows that the spatial inhomogeneity of the
nonlinear medium in the éeld of Gaussian beams is caused
both by the transverse inhomogeneity of the unsaturated
gain K(x; y) in the medium and the spatial inhomogeneity
of intracavity éelds. Indeed, we have for Gaussian beams

I j�x; y; z� � Izj�z� exp
�
ÿ 2x 2

w 2
xj�z�

ÿ 2y 2

w 2
yj�z�

�
; (40)

where Izj � Ij fj (z) is the intensity of the jth wave on the
resonator axis; Ij is deéned by expression (A1.2); and the
parameter

fj � jmxj�z�myj�z�jÿ1 exp
�
ÿ 2kj

� z

0

n 00zj�t�dt
�

describes the evolution of the beam along the resonator
axis. By using the parabolic approximation, we represent
the intensities of counterpropagating Gussian beams as

I j�x; y; z� � Izj�z�
�
1ÿ 2x 2

w 2
xj�z�

ÿ 2y 2

w 2
yj�z�

�
and write the expression for the nonlinear polarisation of
the medium (39) in the form

2pPr�x; y; z� � ÿ
1

kr
K0

�
Zr ÿ brIzr�z� ÿ ylIzl�z�

�
X
p�x; y
�ZrMpr ÿ brFpr�z�Izr�z� ÿ ylFpl�z�Izl�z��p 2

�
; (41)

where Fpj (z) �Mp �Wpj (z) are the dimensionless param-
eters of the transverse inhomogeneity of the nonlinear
medium.

Let us substitute expression (41) into Eqn (15) and
perform the corresponding transformation taking into
account that the quantities Izj to be determined are slowly
varying functions of the coordinate z. Then, we obtain from
(15) ë (17) the equations for the refractive indices of the
nonlinear active medium on the resonator axis

nzr�z� � 1ÿ 1

kr
K0�Zr ÿ brIzr�z� ÿ ylIzl�z�� (42)

and slowly varying amplitudes of counterpropagating waves�
q 2

qx 2
� q 2

qy 2
� 2inzj�z�

q
qz

� nxj�z�x 2 � nyj�z�y 2

�
cj�r� � 0; (43)

where

npr�z� � 2K0H �MpZr ÿ brFpr�z�Izr�z�

ÿ ylFpl�z�Izl�z��: (44)

Equations for nzl(z) and npl(z) are obtained from Eqns (42)
and (44), respectively, by the index interchange r$ l.
Equation (43) with variable coefécients cannot be solved in
the general case. However, when variations in the refractive
indices nj (x; y; z) � nzj (z)� nxj (z) x

2 � nyj (z)y
2 of the

medium at the wavelength are small, the propagation of
optical beams in the inhomogeneous medium can be
eféciently studied by the method of variable abcd matrices
with slowly varying elements [43] (see Appendix 3).

Thus, we still seek the solution of Eqns (43) with
coefécients slowly varying with z in the form of Gaussian
beams (21) and (22). We repeat the procedure of solving the
eigenmode problem for a resonator with a linear medium.
To determine the eigenmodes of a ring resonator with a
nonlinear medium, it is necessary to solve the system of six
equations: two equations (43) for determining the transverse
éeld distributions of counterpropagating waves and four
real equations for lasing intensities and frequencies, which
follows from the rate equations for the phases and
amplitudes of counterpropagating waves:

ie0 �
1

2

X
p�x; y

arccosGpj � kjL

� 1

0

nzj�z�dz � 0: (45)

Because this system cannot be solved analytically in the
general case, we used computer calculations. However, by
using some approximations, we obtained basic expressions
in the visible form and explained basic features of the
behaviour of lasing frequencies and intensities obtained
numerically, and elucidated thereby the physical mechanism
of nonreciprocity. For this purpose, we used the `short tube'
approximation. This approximation assumes that variations
in nzj (z), Wpj (z), and npj (z) over the tube length h � H=L
along the z axis are negligibly small, and these functions can
be replaced by their values in the section z0 and we can use
the known matrix [44] for a transversely inhomogeneous
medium. In addition, we restricted our consideration to the
case of small parameters perturbing the resonator (31). In
these approximations, by using (A3.9), we obtain expres-
sions

er � e�1�r ÿ K0H
X
p�x; y
��b 00r IzrFpr � y 00l IzlFpl�Wÿ1

0p m1p�

��b 0rIzrFpr � y 0lIzlFpl�Wÿ1
0p Npm2p� (46)

for losses for counterpropagating waves, where e�1�r is the
frequency-dependent resonator losses calculated in the
linear approximation.

From the conditions of the equality of the saturated gain
of each of the wave to its losses er (46), which follow from
Eqns (45), we obtain the intensities of counterpropagating
waves and represent them in the form Izr � Iz� DIz and
Izl � Iz ÿ DIz, where

Iz � Z
1

�b 00 � y 00�u1 ÿ �b 0 � y 0�u2
; (47)

DIz � Zuÿ21

X
p�x; y

DWp

W0p

� �b
00 ÿ y 00�m1p ÿ �b 0 ÿ y 0�m2pNp

�b 00u1 ÿ b 0u2� 2 ÿ �y 00u1 ÿ y 0u2� 2
; (48)

512 T.V. Radina



u1�z0� � 1ÿ
X
p�x; y

m1pFp�z0�=W0p�z0�;

u2�z0� �
X
p�x; y

m2pNpFp�z0�=W0p�z0�;

Z � Zr � Zl
2

; Zj �
aj ÿ e�1�j

K0H

is the relative excess of the unsaturated gain aj � K0HZ 00j
over linear losses e�1�j (32); Fp � (Fpr � Fpl�=2 �Mp �Wp;
and Wp � �Wpr �Wpl�=2.

One can see from (47) that the total intensity 2Iz of
counterpropagating waves has a dip near the gain line
centre. The `saturation aperture' reduces losses, thereby
reducing the dip depth (through the quantity proportional
to u1p). The term proportional to u2p is responsible for the
asymmetry of the dip related to the asymmetric character of
losses.

By substituting expressions for wave intensities into (46),
we obtain that losses of the waves in a resonator with a
nonlinear medium and an aperture are different in the
general case: er; l � e� De, where

e � e�1� ÿ K0HIz
X
p�x; y

Wp

W0p

��b 00 � y 00�m1p

��b 0 � y 0�m2pNp�; (49)

De � ÿK0HIz
X
p�x; y

DWp

W0p

�1� rp�

� ��b 00 ÿ y 00�m1p � �b 0 ÿ y 0�m2pNp�; (50)

rp �
Wp

W0p

�b 00 ÿ y 00�m1p � �b 0 ÿ y 0�m2pNp

�b 00 ÿ y 00�u1p ÿ �b 0 ÿ y 0�u2p
: (51)

The real parts of conditions (45) give equations for lasing
frequencies, from which, taking (47) and (48) into account,
we obtain the expression for their difference Do �
Do�1� � Do�3�, where the nonlinear component is

Do�3� � �aÿ e�1�� c

2L

X
p�x; y

Npm2pu1
DWp

W0p

� �b 0 ÿ y 0� 2 � �b 00 ÿ y 00� 2
�b 00u1 ÿ b 0u2� 2 ÿ �y 00u1 ÿ y 0u2� 2

; a � �ar � al�=2: (52)

The violation of symmetry in the location of resonator
elements gives rise to the amplitude and phase nonreci-
procity, the amplitude nonreciprocity being dominant in a
laser with the aligned resonator. Indeed, the difference of
losses for counterpropagating waves (50) is the correction of
the érst-order smallness in Np to the parameters of counter-
propagating Gaussian beams unperturbed by diffraction:
De � O(Np) because DWp � O(Np ) (27). The frequency
difference of the waves (52) proves to be the quantity of
a higher smallness order: Do�3� � O(N 2

p ). Note that in a
passive resonator with a Gaussian aperture, the aperture
losses for the resonator mode are represented by the érst-
order quantity, whereas frequency shifts caused by the
aperture are represented by the quantities of the second-
order smallness in the parameter Np.

The correctness of estimates that can be made from
expressions (47) ë (50) is conérmed by numerous computer
calculations, which were performed for resonators of differ-
ent conégurations (three- and four-mirror resonators). The
choice of the radii of mirrors was dictated only by the
fulélment of the condition of the resonator stability.

The inequality of losses can be easily explained by
considering the action of a system consisting of an aperture
and a transversely inhomogeneous nonlinear medium. The
nonlinear components of the optical power of a lens and
diaphragming properties of the medium, which cause the
additional nonreciprocal deformation of the éelds of
counterpropagating waves, are proportional to the param-
eter Wpj of the transverse inhomogeneity of the medium.
The inequality of éeld distributions of counterpropagating
waves over the length of a tube with the nonlinear medium
caused by the action of the aperture is the reason for
difference in the aperture and optical power of the medium
lens for counterpropagating waves. The counterpropagating
beams falling on the aperture after propagation through
such an `anisotropic' medium acquire different losses.
Figure 6 demonstrates good correlation between the non-
reciprocal change dwx � Dwx(zt � 0)ÿ Dwx(zt ÿ 0) of
transverse éeld distributions of counterpropagating waves
on the aperture (here, Dwx � �wxr(zt � 0)ÿ wxl(zt ÿ 0)�=2)
and the difference of the x components of their losses
Dex � (exr ÿ exl)=2 for different dimensionless detunings
x � (oÿ oab)=(ku) and positions of the aperture. In this
case, the nonreciprocity of losses appears mainly due to
different diaphragming properties of the nonlinear medium.
The corresponding term in (50), proportional to the differ-
ence b 00 ÿ y 00, is an even function of the frequency detuning
oÿ oab. The quantity proportional to b 0 ÿ y 0 determines
the asymmetric dependence of the nonlinear component of
losses on the detuning from the central frequency of the
transition: the `saturation lens' changes the transverse éeld
distributions of counterpropagating waves according to the
dispersion law, and as a result, the aperture losses acquire
the additional component, which is an odd function of the
detuning.
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Figure 6. Dependences of the nonreciprocal changes dwx of the trans-
verse distributions of éelds of counterpropagating waves (dashed curves)
and the difference Dex of their losses (solid curves) on the position zt of
the aperture in the resonator for dimensional detunings x � 0:1 ( 1 ), 0
( 2 ), and ÿ0:1 ( 3 ); gx � ÿ0:99, K0H � 0:5, z0 � 0:5, dx � dy � 1 mm.
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In this case, losses depend in a complicated way on the
resonator geometry, parameters of the active medium, and
detuning of the lasing frequency from the central transition
frequency. When the role of diffraction is negligible
(Np � 0), losses are a symmetric function of detuning. As
the inêuence of diffraction increases, the asymmetry of
nonlinear components of losses also increases. The sign and
value of the asymmetry of losses are determined by the
relation between the linear and nonlinear parts of transverse
components of the refractive index of the medium (44).

The dominant role of the mechanism of loss non-
reciprocity determines the behaviour of the amplitude
and frequency nonreciprocities of counterpropagating waves
(Fig. 7): the intensity difference is an even function of the
laser frequency detuning from the transition frequency and
changes its sign only within the strong-coupling region
(Fig. 7a); the frequency difference is an odd function of
detuning, as shown in Fig. 7b.

The amplitude (DI ) and frequency (Do) nonreciprocities
are maximal if the aperture is located near a cell with the
active medium. Figure 8 presents the dependences of losses
and intensities of counterpropagating waves when the
aperture is mounted directly behind the cell. In this case,
the increase in the loss nonreciprocity leads to the sup-
pression of one of the waves in a broad detuning range, as
was observed experimentally [11]. For certain values of
parameters, a drastic change in saturated losses at the lasing
region boundary can lead to the jump-wise increase in the
radiation intensity at this boundary. Such an asymmetric

jump is determined by the resonator geometry and increases
with increasing the ratio Wpj=W0p � (w0p=wpj)

2. Such effects
were experimentally observed in ring lasers in [13]. Dis-
tortions of the lasing region and the formation of the start
jump of the radiation intensity in two-mirror lasers were
investigated in [45]. By varying the aperture parameters and
the resonator geometry, we can both decrease and increase
the difference of losses of counterpropagating waves,
thereby decreasing or increasing the region of unidirectional
lasing. As the aperture is removed from the cell (along the
beam), the loss nonreciprocity decreases monotonically and
vanishes at some point. The passage through this point is
accompanied by a change of signs of DI and Do, and their
values again increase if the aperture approaches the other
end of the cell. Due to the elimination of nonreciprocity, the
two-wave regime exists over the entire lasing region, which
was demonstrated experimentally in [11].

The calculations showed that the type of dependences of
the radiation intensity and frequency difference on detuning
is preserved upon varying the radius of curvature R of a
spherical mirror and the aperture size ap. Because the
frequency and amplitude nonreciprocity of counterpropa-
gating waves is a nonlinear effect, it is clear why this effect is
small in the case of small apertures ë in this case, losses are
high and nonlinearity is correspondingly small. As the
aperture is increased up to a certain value, nonreciprocity
rapidly increases, and then, when the aperture exceeds the
Gaussian beam width, it begins to decrease.

The dependences of radiation intensities on detuning are
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Figure 7. Dependences of the dimensionless intensities Ir, Il, their sum IS (a) and the frequency difference ol ÿ or (b) of counterpropagating waves on
detuning for gx � 0:038; ax � ay � 1:2 mm, dx � dy � 1 mm, z0 � 0:125, zt � 0:625, e0 � 0:1, and KH0 � 0:3.
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Figure 8. Dependences of the x components e �1�x , exr, and exl of losses (a) and intensities Ir, Il (b) of counterpropagating waves on detuning for
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considerably different for the positive and negative gain
proéles K(x; y) [see expressions (A2.1) and (A2.2)], this is
manifested most distinctly for small values of dp. For these
proéles, corrections to unsaturated losses due to the trans-
verse inhomogeneity of the medium have opposite signs.
Saturated losses are also different. In the case of the positive
proéle K(x; y), saturation is proportional to the sum of
parameters of the transverse inhomogeneity Wpj �Mp,
while for the negative proéle ë to their difference Wpjÿ
Mp. This leads to different dependences of losses, phase
shifts, and, therefore, wave intensities on detuning. As a
rule, due to refractive-index saturation, losses at the
boundary of the lasing region decrease jump-wise. The
exception is resonators with very narrow gas-discharge
tubes for which the curvature of the gain proéle K(x; y)
of the medium is negative for some or other reasons. Here,
the resonator-mode losses can increase at the lasing-region
boundary. Note that, as follows from the data presented in
Appendix 2, the dependence K(x; y) can change during
lasing. This can change the type of asymmetry of the
radiation intensity proéle. Calculations performed for a
laser operating at the 20Neÿ 22Ne isotope mixture showed
that the type of nonreciprocity is preserved in this case as
well.

The behaviour of the intensities of counterpropagating
waves within the strong-coupling region will be studied
elsewhere. Here, we point out that the shape of intensity
peaks of counterpropagating waves within the strong-
coupling region is determined to a great extent by the
difference of losses for these waves. When the loss difference
is small, the boundaries of the regions of lasing for both
waves virtually coincide with the boundaries of the strong-
coupling region (Fig. 7a). As the loss difference increases,
the wave with higher losses is still generated in the entire
strong-coupling region; in this case, the frequency interval in
which the wave with lower losses is generated within the
strong-coupling region can decrease to zero (Fig. 8b).

6. Phase nonreciprocity
of counterpropagating waves

Let us calculate numerically the intensities and frequencies
of counterpropagating waves in a resonator similar to that
used in experiments [13] and [22]. A tube with the active
medium was placed symmetrically with respect to a
spherical mirror into a three-mirror resonator with one
spherical and two plane mirrors. Two apertures with
coordinates zt1 and zt2 were located symmetrically with
respect to the ends of the gas-discharge tube whose centre
was located at the section z0 � 0:5. When the apertures had
the same size, the frequencies and intensities of counter-
propagating waves were equal. Figure 9 presents the
dependences of the sum I � 2I j of intensities Ir � I l of
counterpropagating waves on detuning in a ring laser. The
upper curve corresponds to a large width d � dx � dy
(A2.1) of the radial distribution of the unsaturated gain.
One can see that the dependence of the radiation intensity
on detuning is asymmetric. The intensity of the waves in the
low-frequency detuning region (oÿ oab < 0) is higher than
that in the high-frequency region (oÿ oab > 0). In paper
[22], where a wide gas-discharge tube was used, so that the
width of the transverse distribution of the unsaturated gain
was rather large, the dependence of the radiation intensity
on detuning was similar. Here, the asymmetry of losses (49)

and, hence, the asymmetry of intensity (47) appears mainly
due to the éeld-induced transverse inhomogeneity of the
nonlinear medium. As d decreases, the dependence of the
radiation intensity on detuning becomes virtually symmetric
with respect to frequency oab (dashed curve). In this case,
the action of the transverse inhomogeneity of the linear
gain K(x; y) is compensated by the éeld-induced inhomo-
geneity. Such a situation was realised experimentally in a
laser with a suféciently narrow gas-discharge tube [13]. As d
further decreases, the inhomogeneity of the gain K(x; y)
becomes dominant. In this case, the intensity of the waves
in the low-frequency detuning region (oÿ oab < 0) is
smaller than that in the high-frequency region (oÿ
oab > 0) (lower curve). Figure 9 demonstrates the asym-
metry of the lasing region with respect to oab, which
increases with increasing the inhomogeneity parameter of
the medium (with decreasing d ).

When the resonator was misaligned either by displacing
the aperture [13, 22] or rotating mirrors [13], the dominant
role of the phase nonreciprocity was manifested (see Figs 4
and 5). Because such a misalignment does not change
signiécantly the type of nonreciprocity of transverse éeld
distributions of counterpropagating waves [46], it is neces-
sary to énd other sources of the phase nonreciprocity
appearing due to misalignment.

Theoretical calculations [47] conérmed experimentally
[47 ë 50] have shown that the main source of the phase
nonreciprocity is the Langmuir drift of neutral excited neon
atoms. The mechanism of the drift in a dc discharge is
described in [47], where the drift velocity of neon atoms at
low concentrations in the active medium was calculated. It
was found that the atomic beam directed to an anode was
localised near the gas-discharge tube walls, while the atomic
beam directed to a cathode was localised near the tube axis.
The drift velocities achieve 100 cm sÿ1 [50]. There also exist
mechanisms competing with the drift such as cataphoresis,
the dissociative recombination of molecular neon ions, etc.
The authors of paper [49] determined the values of the
difference frequency for counterpropagating waves in a ring
laser caused separately by the atomic drift due to the
Langmuir effect and the dissociative recombination of
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Figure 9. Dependences of the sum of intensities Ir � Il of counterpro-
pagating waves on detuning for the positive gain proéle; a1p � a2p � 1
mm, z0 � 0:5, zt1 � 0:2, zt2 � 0:8, R � 1:2 m, e0 � 0:1, K0H � 0:3.
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molecular neon ions. However, the fact that the type of
nonreciprocity is also preserved upon high-frequency pump-
ing of the discharge plasma [13] suggests the existence of
other mechanisms producing the directional movement of
excited atoms. In this connection it is of interest to consider
the problem of separation of working gases in a gas-
discharge tube due to thermal diffusion.

The mass transfer in a mixture of two different gases
occurs both due to the concentration gradient of gases
(concentration êow) and due to the temperature gradient
(thermal-diffusion êow) [51]. The radial temperature dis-
tribution of the He ëNe mixture in a gas-discharge glass
tube is usually described by the zero-order Bessel function of
the érst kind [52]. The experimental veriécation of this
description [53] has shown that the temperature in the
central part of the gas discharge was higher than that
predicted by the theoretical distribution. Thus, the con-
traction of the discharge takes place in small-radius tubes,
which results in a considerable increase in the temperature
gradient. In a non-isothermal system containing a binary
gas mixture, this leads to the separation of components, so
that the heavier gas moves in the direction of the thermal
êow, whereas the lighter gas moves in the direction of the
temperature gradient [54]. This produces the concentration
gradient in the initially homogeneous mixture [51, 55],
resulting in the appearance of directional êows of the
mixture components. The inêuence of the transverse atomic
êows can be compensated by the preliminary alignment
[13, 20 ë 22], but it appears in the misaligned resonator.

The displacement of the aperture perpendicular to the
resonator plane or the misalignment of mirrors in a plane-
mirror resonator causes the displacement of the laser beam,
and in a resonator with spherical mirrors ë to the rotation of
the resonator axis [41, 46]. In this case, the optical axis
makes an angle with the tube axis (according to estimates of
the authors of paper [13], this angle in their experiments was
from 1 to 3 angular minutes), which results in the appear-
ance of the nonzero component of the projection of velocity
vz on the optical axis of the resonator, i.e. the appearance of
a longitudinal êow. The direction of the êow is determined
by the sign of the misalignment angle and the value ë by the
value of this angle and the temperature gradient in the tube.
This explanation is conérmed by the difference between
experimental data obtained in [13] and [22]. The increase in
the diameter of a gas-discharge tube from 3 mm in [13] to 6
mm in [22], other parameters of resonators being the same,
resulted in a decrease in the frequency splitting more than by
a factor of thirty. The authors of paper [22] explain this
difference by the fact that the radial inhomogeneity of the
unsaturated gain in narrow tubes is manifested much
stronger than in wide tubes (effect of a linear gas lens).
However, our theoretical analysis showed that this effect
cannot lead to the dominating role of the phase non-
reciprocity. Measurements performed in [49] show that
the difference frequency changes inversely proportionally
to the discharge tube radius, i.e. in our case it can change
only by a factor of four. We assume that the phase
nonreciprocity decreases because the temperature gradient
increases with decreasing the discharge tube cross section,
and as result, the optical axis in a narrow tube will stronger
deviate from the tube axis.

To take into account the misalignment of the resonator
caused by the displacement of the aperture perpendicular to
the resonator plane, we related it to certain values of the

projection vz of the velocity of atoms on the optical axis z of
the resonator. Now, by calculating the polarisation of a
medium (see Appendix 1), we should make the replacement
v! vÿ vz in the Maxwell velocity distribution of atoms, by
reducing it to the form W(v) � �1=(u ���

p
p

)� exp�ÿ�vÿ vz� 2�
uÿ2�, and transformations oj ÿ oab ! oj � kvz ÿ oab

should be performed in the expressions determining the
dependence of the polarisation of the medium in the éelds of
counterpropagating waves on detuning.

The degree of misalignment and, hence, the velocity vz
depend on the position of the asymmetric aperture in the
resonator and the degree of asymmetry of the aperture with
respect to the optical axis, and more exactly ë on the ratio
�dapwÿ10p (zt)� 2, where dap is the displacement of the aperture
centre from the optical axis. Let us explain this by the
example of a three-mirror resonator with one spherical
mirror, in which a tube with the active medium is located so
that its centre coincides with the waist of the beam caustic in
the resonator. If an asymmetric aperture is placed near the
gas-discharge tube in the resonator, the inclination angle w
of the optical axis to the tube axis will be maximal. As the
aperture is removed from the tube, the angle w decreases and
vanishes when the aperture is located on the spherical mirror
(symmetrically with respect to the centre of the medium). As
the aperture is further displaced, the angle changes its sign
and its value increases as the aperture approaches the other
end of the tube. If the discharge parameters and the
inclination angle w (i.e. the degree of the resonator misalign-
ment) are known, we can calculate the value of vz.

Figure 10 presents the dependences of the intensity and
frequency difference of counterpropagating waves on detun-
ing calculated numerically for different values of v � vz=u. It
is easy to see that for the values of v; close to zero, the
amplitude nonreciprocity mechanism dominates which is
related to the loss difference. The phase nonreciprocity is
negligibly small, which provides the symmetry of depend-
ences of the intensities and frequency difference of
counterpropagating waves with respect to oab. As v
increases, the asymmetry of the curves with respect to
the transition frequency also increases, and then, when
the role of the phase nonreciprocity becomes dominant,
the type of the asymmetry changes. The frequency difference
is now an even function, whereas the intensity difference of
counterpropagating waves is an odd function of detuning.

An increase in the role of the phase nonreciprocity leads
to a qualitative change in the behaviour of the intensity and
frequency difference within the strong-coupling region. This
is conérmed by experiments [19] in which the X-like
dependence of the output radiation intensity on detuning
was obtained upon modulation of the resonator perimeter,
which is similar to that in Fig. 10c.

Note that the phase nonreciprocity in four-mirror
resonators is manifested stronger than in three-mirror
resonators because the resonator with an odd number of
mirrors is subjected to misalignment to a lesser degree than
the resonator formed by an even number of mirrors [41].

7. Conclusions

Nonreciprocal diffraction effects have been classiéed based
on the analysis of experimental data on the inêuence of
diffraction phenomena on the frequencies and intensities of
counterpropagating waves and their comparison with
theoretical results. The basic conclusions are as follows:
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(i) The combined action of the transverse inhomogeneity
of the active medium and diffraction produce the asymmetry
of the lasing region and intensity proéles of counter-
propagating waves with respect to the central frequency
of the transition. This effect can be revealed even in the case
of the symmetric arrangement of elements in the resonator.

(ii) An asymmetric aperture-nonlinear medium system
placed into a ring resonator forms a nonreciprocal device
producing the inequality of losses and frequencies of
counterpropagating waves.

(iii) The dominance of the mechanism of different losses
over the phase nonreciprocity mechanism in a laser with the
aligned resonator determines the type of the dependences
obtained: the difference of intensities of counterpropagating
waves is an even function of the detuning oÿ oab of the
mean frequency, while the frequency difference is an odd
function.

(iv) The inequality of losses makes possible unidirec-
tional lasing in a ring laser without nonreciprocal devices.
The frequency region of unidirectional lasing can be
considerably broader than the strong-coupling region. If
the reasons producing different conditions for the prop-
agation of counterpropagating waves are eliminated, both
waves exist within the entire lasing region and their
intensities are equal.

(v) The misalignment of the resonator can lead to the
dominant role of the phase nonreciprocity when the
intensity difference of counterpropagating waves is
described by an odd function of detuning, and the frequency
difference is described by an even function.

(vi) In real situations, these nonreciprocity mechanisms
can exist simultaneously, resulting in the asymmetric

behaviour of the frequency and intensity difference of
counterpropagating waves with respect to oab.

(vii) The frequency and (or) phase nonreciprocity
existing in the resonator of a gas laser operating on a
pure isotope causes the appearance of the intensity and
frequency-difference resonances of counterpropagating
waves. They are not related to the resonances n 00j of the
saturated gains in the medium (whose values are determined
by the value of losses). They appear due to the nonlinear
interaction of waves in the medium. In this case, the
intensity resonances are accompanied by the resonances
of the refractive indices n 0j of the medium for counter-
propagating waves.

(viii) To increase the accuracy of measurements per-
formed by using ring gas lasers, it is necessary to study
thoroughly the gas-discharge plasma in narrow tubes. Probe
and resonator measurements of plasma parameters during
lasing and theoretical studies performed so far can give only
qualitative estimates of contributions of these parameters to
the relevant phenomena.

Appendix 1

It is assumed that the dependence of the polarisability
P(x; y; z) of the active medium on the éeld E(x; y; z) only
weakly differs from linear. Therefore, the relation between
these quantities can be described in the lower orders of the
perturbation theory [34] in a small saturation parameter
(dimensionless intensity)

I j�x; y; z� �
jdabEj�x; y; z�j 2

�h 2

ga � gb
gagbgab

; (A1.1)
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Figure 10. Dependences of the dimensionless intensities Ir, Il (a ë c) and the frequency difference ol ÿ or (d) of counterpropagating waves on detuning
for different values of �v � vz=u, a1p � 2 mm, and a2p � 1:6 mm. The values of other parameters are same as in Fig. 9.
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and the polarisability can be represented as a sum of linear
(K�1�j ) and nonlinear (K�3�j ) components: Pj � KjEj � (K�1�j �
K�3�j )Ej: In the case of plane waves, expression (A1.1) takes
the form

Ij�z� �
jdabEj�z�j 2

�h 2

ga � gb
gagbgab

: (A1.2)

For rareéed gases, in which spectral lines have the Doppler
proéle caused by the thermal motion of atoms, K�1�j is
described by the expression

2pK�1�j � ÿ
KZj

kj
; (A1.3)

where

Zj � Z�zj� � 2i

�1
0

exp �ÿr 2 � 2irzj�dr

is the plasma function of the complex argument zj �
(oÿ oab � igab)=(ku); K � 2pd 2

abN=(�hu) is the gain per unit
length; dab is the transition dipole moment; N is the
stationary unsaturated excess of the density of active atoms
(excitation density); and u is the root-mean-square velocity
of atoms. The nonlinear part of the polarisability of the r
wave calculated in the third order of the perturbation
theory can be found from the expression

2pK�3�r �
1

kr
K�brI r � ylI l�: (A1.4)

Here,

br � iZ 00r � 2i
gab
ku
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ylt; (A1.5)
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Appendix 2

The dependence of K(x; y) on various physical parameters
in narrow gas-discharge tubes has not been studied yet. The
radial inhomogeneity of the polarisability is caused by the
inhomogeneity of the gain K(x; y), which is determined by

many factors: the discharge geometry, the gas mixture
composition, pump parameters [56 ë 60], the working
transition, etc. Figures 1A2a and b show the radial
dependences of the gain in a wide enough gas-discharge
tube placed into the resonator of a 1.15-mm HeëNe laser
[56], which illustrate the fact that the dependence of the
gain on the discharge current is determined by pressure in
the tube. At a low pressure (1 Torr), the gain increases with
increasing discharge current (Fig. 1A2a) and the distribu-
tion width decreases. At a pressure of 3 Torr, the gain
decreases with increasing the pump current and changes to
absorption (Fig. 1A2b).

Measurements performed in a narrow gas-discharge tube
at the optimal pressure at the transitions at 0.6328 and
3.39 mm showed [57] that the dependences of the gain K(x; y)
on the pump current at the same pressure are different for
different transitions. In the case of the 0.6328-mm transition,
a dip was observed at the centre of the gain band at high
pump currents, whereas the current dependence of K(x; y)
for the 3.39-mm transition was rather weak and a dip was
not observed (Fig. 1A2d).

In [56, 57], a discharge was excited by a direct current. In
[58], the distribution K(x; y) was studied in the gas-discharge
tube (with the inner diameter � 3 mm) of a 0.6328-mm Heë
Ne laser upon high-frequency excitation. It was found that
upon excitation by an alternating current, the gain increased
with distance from the cell walls much faster than upon
excitation by a direct current. However, the type of depend-
ences was preserved: the gain at the cell centre begins to
decrease with increasing pump current and énally changes
to absorption.

By generalising the experimental data, we can say that
the radial dependence of the gain K is well described within
rather broad discharge-current and pressure ranges of the
working mixture of He ëNe lasers by one of he dependences

K�x; y� � K0

�
1ÿ x 2

d 2
x

ÿ y 2

d 2
y

�
; (A2.1)

K�x; y� � K0

�
1� x 2

d 2
x

� y 2

d 2
y

�
: (A2.2)

Here, K0 is the gain on the resonator axis; dx and dy are the
distribution half-widths in the directions of the transverse
axes x and y. The curvature of distribution proéle (A2.1) is
assumed positive and that of (A2.2) ë negative.

Appendix 3

To determine the complex parameters qxj (z) and pxj (z), we
substitute (22) into (43) and equate coefécients at the same
powers of x. As a result, we obtain that qxj (z) satisées the
Riccati equation

nzj�z�
dqxj
dz
� 1ÿ nxj�z�q 2

xj ; (A3.1)

and the parameter pxj (z) is expressed in terms of qxj (z) by
the quadrature

pxj�z� � ÿ
1

2

� z

0

dt

nzj�t�qxj�t�
: (A3.2)

The Riccati equation with variable coefécients cannot be
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solved in the general case. It was shown in [43] that, if the
coefécients in the Riccati equation are represented by
slowly varying functions of coordinates, a plane ë parallel
layer of a quadratic inhomogeneous active medium can be
associated with the matrix

apj�z� �
�
npj�0�
npj�z�

�1=4
coshUpj�z� �

n 0pj�0�
4npj�0�

� 1

�npj�0�npj�z��1=4
sinhUpj�z�;

bpj�z� �
1

�npj�0�npj�z��1=4
sinhUpj�z�;

cpj � �npj�0�npj�z��1=4 sinhUpj�z� ÿ
n 0pj�z�
4npj�z�

�
npj�0�
npj�z�

�1=4

� coshUpj�z� �
n 0pj�0�
4npj�0�

�
n 0pj�z�
npj�0�

�1=4
coshUpj�z� (A3.3)

ÿ n 0pj�0�
16npj�0�

n 0pj�z�
npj�z�

1

�npj�0�npj�z��1=4
sinhUpj�z�;

dpj �
�
npj�z�
npj�0�

�1=4
coshUpj�z� ÿ

n 0pj�z�
4npj�z�

� 1

�npj�0�npj�z��1=4
sinhUpj�z�;

Upj�z� �
� z

0

n
1=2
pj �t�dt:

Here, the prime denotes the derivative with respect to z. In
the case when the complex refractive index npj of the
medium (20) is independent of the longitudinal coordinate
z, this matrix takes the known form [44]

T m
pj �z� �

cosh
������
npj
p

z �1= ������
npj
p � sinh ������

npj
p

z������
npj
p

sinh
������
npj
p

z cosh
������
npj
p

z

 !
: (A3.4)

As the initial section z0, we will take the middle of the
active medium layer and place an aperture in the same arm
of the resonator at a distance of ÿzt from the layer end. This
allows us to separate explicitly the matrix T0pr �
A0pB0pC0pD0p of the ideal resonator without relation to
its conéguration. The resonator matrix for the r wave has
the form

Tpj � T m
pj �h=2�T fs�zt�T �N�p T fs�ÿzt�T0pjT

fs�ÿh=2�T m
pj �h=2�

�h � H=L�: (A3.5)

To the free interval of length Dz and a Gaussian aperture,
matrices

T fs�Dz� � 1 Dz
0 1

� �
, T �N�p � 1 0

2iNp 1

� �
�
Np �

L

ka 2
p

�
(A3.6)
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Figure 1A2. Radial dependences of the gain a for l � 1:15 (a, b), 0.6328 (c), and 3.39 mm (d) for pressures in the tube of 1 (a) and 3 Torr (b), the pump
current 5 ( 1 ), 10 ( 2 ), 20 ( 3 ), and 45 mA ( 4 ) [56] (a, b) and 10 ( 1 ), 15 ( 2 ), 20 ( 3 ), and 40 mA ( 4 ) [57] (c, d).
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correspond. Matrix (A3.4) corresponds to a layer of a
quadratic inhomogeneous active medium.

Let us calculate the elements of the ApBpCpDp matrix
(A3.5) when parameters perturbing the resonator are small
(jnpjj < Np < 1), then énd the Gpj parameter of the resonator
and reduce it to the form Gpj � (Apj �Dpj�=2 � gp � dGpj,
where gp � (A0p �D0p)=2;

dGpj � iNpB0p�zt� �
1

2
npj h�B0p�z0� ÿ �h=2�2C0p�

� iNpnpj h�B0p�zt�zt ÿ �h=2�2A0p�zt��: (A3.7)

The values of matrix elements A0p(zt) and B0p(zt) of the
unperturbed resonator at the section x � zt of the aperture
are related to the matrix elements in the reference (initial)
section by the expressions

A0p�zt� � A0p�z0� ÿ ztC0p; B0p�zt� � B0p�z0� ÿ ztD0p:

Let us present the wave propagation constants in the
form

Lpj � L0p exp�idGpj�; Gpj � dG 0pj � iG 00pj : (A3.8)

This allows us to write the quantities G 00pj and dG 0pj in the
form

G 00pj � n 00pj h�2W0p�z0��ÿ1m1p � n 0pj hNp�2W0p�zt��ÿ1m2p
�Np�2W0p�zt��ÿ1m3p; (A3.9)

dG 0pj � n 0pj h�2W0p�z0��ÿ1m1p ÿ n 00p hNp�2W0p�zt��ÿ1m2p

ÿN 2
p �2W0p�zt��ÿ2m4p; (A3.10)

where

m1p �
1

2

�
1ÿ

�
h

2

�2 C0p

B0p�z0�
�
�1�NpW

ÿ1
0p �zt��; (A3.11)

m2p �
gp

2�1ÿ g 2
p �1=2

�
1ÿ

�
h

2

�2 C0p

B0p�z0�
�

�W0p�z0�
�
zt ÿ

�
h

2

�2 A0p�zt�
B0p�zt�

�
; (A3.12)

m3p � 1�Np�2W ÿ1
0p ��zt�; m4p �

gp

�1ÿ g 2
p �1=2

; (A3.13)

W0p�z� �
�
1ÿ g 2

p

B 2
0p�z�

�1=2
� 2L

kw 2
0p�z�

: (A3.14)

Because, as a rule, h < 1, we can neglect the terms
proportional to �h=2�2 in expressions (A3.7), (A3.11),
and (A3.12).
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