
Abstract. It is shown that the rate of development of spatial
instability caused by small-scale self-focusing strongly
depends on the mutual arrangement of nonlinear media
and spatial élters in a setup. The expressions are obtained for
the arrangement of elements providing the minimal growth
rate of intensity êuctuations. The results of two-dimensional
calculations conérm the eféciency of this method of sup-
pressing small-scale self-focusing.
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1. Introduction

The increase in the laser-beam-intensity êuctuations caused
by small-scale self-focusing (SSF) is one of the main factors
restricting the output parameters of high-power laser setups
emitting nanosecond and subnanosecond pulses. Small-
scale self-focusing leads to the damage of the elements of
laser systems due to a drastic increase in the peak intensity
and energy density, causes the degradation of the laser
beam quality and increases its divergence.

Various methods of reducing the inêuence of SSF were
analysed in many studies based on the linearized Bespalov ë
Talanov theory [1] more than a quarter of century ago
[2 ë 6]. The use of spatial élters (SFs) for retranslating
images in optical schemes and éltering high spatial
frequencies was considered in [2, 3]. The possibility of
suppressing SSF by selecting appropriately telescope
parameters was pointed out in [5], and the SSF suppression
due the optimal mutual arrangement of elements was
studied in [4, 6]. However, the attention of researchers in
those years was focused on the analysis of single-pass
multistage systems in which each of the stages operated in
the nearly limiting regime. This prevented a detailed
analysis of the SSF suppression in a simplest system
containing two nonlinear media and a SF and the obtaining

of quantitative expressions for the optimal arrangement of
elements depending on the value of the B integral and
angular dimensions of the SF aperture.

Modern high-power facilities [7 ë 10] are based on multi-
pass ampliéers in which the main phase incursion occurs in
the output and preceding elements. The optical schemes
include SFs providing the image retranslation and reducing
the spatial inhomogeneity of the beam by éltering high
spatial frequencies.

At the same time, modern laser facilities are designed by
neglecting the possibility of suppressing SSF due to the
optimal arrangement of nonlinear elements and SFs,
although the laser beams with the smoothed intensity
distribution at the periphery used for ampliécation allow
one to move elements quite freely in the scheme by violating
the principle of exact retranslation without the appearance
of diffraction outbursts at the beam periphery. Simulations
of the 12 ë 16-kJ four-channel Luch neodymium phosphate
glass laser facility by using the Fresnel software package [7]
have shown that the rate of spatial instability development
caused by SSF depends considerably on the mutual arrange-
ment of ampliéers and SFs in the facility.

In this paper, we considered a simpliéed problem,
determined criteria for the choice of the optimal arrange-
ment of elements, and estimated the reduction of intensity
êuctuations. The numerical simulation was used to verify
the results obtained for restricted two-dimensional beams in
the case of quite strong perturbations and to determine the
dependences of the root-mean-square deviation of the beam
intensity and the ratio of the peak intensity to the average
intensity on the B integral and the angular size of the SF
aperture for various mutual arrangements of elements.

2. Optical scheme

We will illustrate the SSF suppression effects by simulating
an optical scheme containing two glass rods and two
identical SFs. The érst SF is mounted in front of the érst
rod. It restricts the width of the spatial perturbation
spectrum at the input to the system. The second SF is
mounted between the rods. By changing the position of the
second rod with respect to the image of the érst rod formed
by this SF, we can control the growth rate of perturbations
in the system.

The rods were made of glass with the linear and
nonlinear refractive indices n0 � 1:516 and n2 � 1:1�
10ÿ13 CGSE units, respectively. The length of each of
the rods was 300 mm. The typical laser beam diameter
for such rods is 40 ë 60 mm; however, the suppression effect
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is independent of the beam diameter. Spatial élters consist
of two ideal lenses with a focal distance of 1 m, and the
aperture diameter was varied from 2 to 6 mm. The radiation
wavelength was 1.053 mm. The average radiation intensity
was 3 GW cmÿ2. For these parameters, the B integral for
each nonlinear medium (B1 � B2 � B) was 1.6 rad. The
total B integral for both media is BS � B1 � B2 � 3:2 rad.

3. The Bespalov ëTalanov SSF theory
(case of small perturbations)

Because most of the papers devoted to SSF studies in laser
setups were published a quarter of century ago, we present
here the basic expressions obtained in these papers by using
the notation accepted in a later paper [11].

The equation for a linearly polarised wave propagating
in a medium with the cubic nonlinearity has the form

qE
qz
� 1

2ik
D?Eÿ ikgEjEj2, (1)

where E is the electric éeld strength of the wave; k � 2pn0=l
is the wave number; l is the wavelength in vacuum; and g �
n2=(2n0).

We seek the solution in the form of the harmonic
perturbation

E � �A0 � A1�z� cos�qx�� exp
ÿÿ ikgjA0j2z

�
, (2)

where A0 is the unperturbed wave amplitude; q is the
transverse wave number of the perturbation; and A1 is the
complex amplitude of the perturbation, which can be
represented in the form A1 � U� iV. The case V � 0
corresponds to the amplitude modulation, the case U � 0 ë
to the nearly phase modulation. The modulus of the
perturbation amplitude is jA1j� (U 2 � V 2)1=2 and the
perturbation phase is f � arctan (V=U).

By assuming that jA1j5A0, we obtain the solution

U � U0 cosh�SY� ÿ
1

S
V0 sinh�SY�,

(3a)

V � ÿSU0 sinh�SY� � V0 cosh�SY�,
where U0 � U(z � 0); V0 � V(z � 0);

Y � q 2

2k
z; S �

�
2
B

Y
ÿ 1

�1=2
; B � kgjA0j2z.

The quantity B is called the B integral [4] and characterises
the phase incursion of the unperturbed beam due to the
nonlinear part of the refractive index.

For B � 0 (nonlinearity is absent), expressions (3a) are
transformed to the solution

U � U0 cosYÿ V0 sinY,
(3b)

V � U0 sinY� V0 cosY

for a linear system.
Let us deéne the amplitude perturbation transfer coefé-

cient as Ka(q,f) � jA1(z)j=jA1(0)j. It follows from expres-
sions (3a) that Ka depends on the B integral, the spatial
perturbation frequency, and the perturbation phase at the

input to a nonlinear medium. Depending on the initial
perturbation phase, the perturbation amplitude can either
increase or decrease.

For the given spatial frequency, a perturbation with the
phase at the input to the nonlinear medium equal to

f in
max�q� �

1

2

�
p
2
� arctan

�
Yÿ B

SY
tanh�SY�

��
� pm1 (4a)

will increase most rapidly, while a perturbation with the
initial phase

fmin�q� � f in
max�q� ÿ

p
2
� pm2 (4b)

will decrease most rapidly, where m1 and m2 are arbitrary
integers.

The maximum amplitude perturbation transfer coefé-
cient is

K max
a �q� � Ka

ÿ
q;f in

max

� � B

SY
sinh�SY�

�
�
1�

�
B

SY
sinh�SY�

�2�1=2
, (5a)

and the minimum coefécient is

K min
a �q� � 1

K max
a �q� . (5b)

It also follows from expressions (3a) that the phase of the
perturbation with the maximum growth rate at the output
from the nonlinear medium is

f out
max�q� � ÿ

p
2
ÿ f in

max�q�. (6)

We obtain from expression (5a) that for the wave
number qmax � 2�pBn0=(Ll)�1=2 (where L is the nonlinear
medium length), the coefécient K max

a (q) achieves its max-
imum equal to expB. For low spatial frequencies (q! 0),
K max

a tends to B� (1� B 2)1=2.
The results of papers [2 ë 6] presented above allow us to

make the following conclusions.
If a perturbation at the input to the system consists of

many spatial harmonics with random phases, the nonlinear
medium acts as a élter, by amplifying selectively the har-
monics with the phase close to f in

max(q). At the output from
the nonlinear medium, the phase of ampliéed harmonics is
not already arbitrary and quite rigorously deéned.

For moderate values of the B integral (B � 1:6), the
maximum transfer coefécients for most rapidly growing
perturbations and for low-frequency perturbations differ
only by � 30%. The narrowing of the SF bandwidth will
reduce the power of ampliéed perturbations with the rate
that is proportional in fact to the decrease in the area of the
SF aperture.

4. Suppression of self-focusing in a system
of two nonlinear media

The change in the perturbation amplitude and phase in a
system of two identical separated nonlinear media is
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described by applying successively expressions (3a), (3b),
and again (3a). In this case, if neither a telescope nor a SF is
placed between the two nonlinear media in the system
under study, the value of Y in (3a) is calculated by using
the distance Dz between the output end of the érst
nonlinear medium (NM1) and the input end of the second
nonlinear medium (NM2). Otherwise, Dz is the distance
between the image of the NM1 output end formed by a
telescope and the NM2 input end. It was pointed out in
[4, 5] that the suppression of self-focusing depends on the
perturbed wave phase, however, the optimal conditions for
self-focusing suppression were not analysed.

Let us obtain the expression for the optimal distance Dz
based on simple considerations. Let us assume that the
perturbation phase at the NM1 input is f in

max(q), then,
according to (6), the perturbation phase at the NM1 output
is f out

max � ÿp=2ÿ f in
max(q). According to (3b), the perturba-

tion phase at the NM2 input will change by q 2Dz=(2k). Let
us select the value of Dz so that the condition

ÿ p
2
ÿ f in

max(q)�
q 2Dz
2k
� ÿ p

2
� f in

max(q)� pm (7)

is fulélled, where m is an integer.
The fulélment of condition (7) means that the pertur-

bation with the wave number q will decrease in the NM2
and its amplitude at the output from the entire system will
be the same as at the system input. By performing
calculations using expressions (3a) and (3b), we can see
that perturbations with the same spatial frequency but
different initial phases in this system also will not increase.
Thus, by selecting the distance between nonlinear media, we
can suppress self-focusing for any perturbation with the
speciéed spatial frequency. Because the integer factor m in
(7) can take arbitrary values, there exists the inénite set of
solutions of this equation. Since Dz is deéned in the system
under study as the distance between the image of the NM1
output end and the NM2 input end, we can consider not
only positive but also negative distances Dz. Let us show
that one of the solutions at which Dz is negative provides the
suppression of self-focusing in a considerably broader range
of spatial frequencies compared to all other solutions.

To do this, consider three cases of the NM2 location:
directly behind the NM1 output end (Dz � 0), displaced by
Dz � 20 cm from the NM1 output end, and displaced by
Dz � ÿ20 cm from the image of the NM1 output end. We
will consider perturbations with different spatial frequencies
by selecting the initial phase of these perturbations so that to
provide the maximum rate of their increase in the NM1
[expression (6)]. Figure 1 presents phases calculated at the
NM2 input. Curve ( 1 ) corresponds to the case when the
NM2 is located directly behind the NM1, curve ( 2 ) ë to its
displacement by Dz � 20 cm, and curve ( 3 ) ë to its displace-
ment by Dz � ÿ20 cm.

The dashed curves in Fig. 1 show dependences f in
max(q)

[expression (4a)], which we will call the `most dangerous'
phase curves. The dotted curves presents dependences
fmin(q) [expression (4b)], which we will call the `desirable'
phase curves. Note that both the `most dangerous' and
`desirable' phase curves have the negative derivative with
respect to the spatial frequency.

One can see that curves ( 1 ë 3 ) begin from one point in
the region of low spatial frequencies, but curves ( 1 ) and ( 2 )
have positive derivatives and intersect both the `desirable'

phase and `most dangerous' phase curves. Perturbations
with the spatial frequencies determined by points of
intersection of curves ( 1 ë 3 ) with the `desirable' phase
curves will not be ampliéed in the system under study.
Perturbations with the spatial frequencies determined by
points of intersection with the `most dangerous' phase
curves have the maximum transfer coefécient. Curve ( 3 )
has the negative derivative and is close to one of the
`desirable' phase curves in a rather broad spatial frequency
range.

Figure 2 presents the dependences of the maximum
perturbation transfer coefécient on the spatial frequency
for the same three cases of the mutual arrangement of the
NM1 and NM2. The shape of the curves considerably
depends on the distance between the nonlinear media. One
can see that, both for the positive and negative displace-
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Figure 1. Dependences of the perturbation-wave phase at the NM2 input
on the spatial perturbation frequency vsp � q=2p and the quantity vspl
(for l � 1:053 mm) for different locations of nonlinear media: the image
of the NM1 output end coincides with the NM2 input end (or the two
rods are mounted close to each other) ( 1 ); the distance between the NM1
output end and the NM2 input end is Dz � 20 cm ( 2 ); the distance
between the image of the NM1 output end and the NM2 input end is
Dz � ÿ20 cm ( 3 ). The dashed and dotted curves are the `desirable' and
`most dangerous' phases, respectively.
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Figure 2. Dependences of the maximum perturbation transfer coefécient
Kmax

a on the spatial perturbation frequency vsp � q=2p and the quantity
vspl (for l � 1:053 mm) in a system of two nonlinear media and a SF
without an aperture (telescope) for different locations of nonlinear
media: the image of the NM1 output end coincides with the NM2 input
end (or the two rods are mounted close to each other) ( 1 ); the distance
between the NM1 output end and the NM2 input end is Dz � 20 cm ( 2 );
the distance between the image of the NM1 output end and the NM2
input end is Dz � ÿ20 cm ( 3 ).
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ments Dz according to Fig. 1, the spatial frequency exists for
which K max

a � 1. For positive displacements Dz, a sharp dip
appears in curve ( 2 ) (Fig. 2); however, its width is relatively
small. For the negative displacement of the NM2 with
respect to the NM1, the perturbation transfer coefécient
becomes considerably smaller in the entire spatial frequency
range compared to other cases.

The optimal displacement depends on the transmission
band of the SF and the shape of the spatial perturbation
spectrum. If the condition K max

a (q) � 1 should be provided
for the speciéed q � q1, the optimal solution of Eqn (7) is
written in the form

Dz � 4k

q 2
1

f in
max(q1). (8a)

If the SF has an aperture of angular size jlim 4 k=qmax, the
optimal displacement in the case of the uniform spatial
perturbation spectrum can be determined from the semi-
empirical expression

Dz � ÿ L

n0

arctanB

B
� l

p�0:85jlim�2
�
arctanBÿ p

2

�
. (8b)

This expression was derived by interpolating the depend-
ence f in

max(q) by a parabola and setting q1 equal to
0:85jlimk. By substituting the parameters of the nonlinear
medium into (8b), we obtain the optimal displacement
equal to ÿ24 cm for the angular aperture size of 1.5 mrad
and to ÿ38 cm for 1 mrad.

Thus, the linearized Bespalov ëTalanov theory in the
small perturbation approximation predicts that SSF in a
system of two nonlinear media and a SF can be considerably
suppressed by the proper mutual arrangement of the
elements.

Mathematical simulations allow the veriécation of this
prediction for the large perturbation amplitudes of spatially
restricted beams. The calculations of two-dimensional
intensity distributions give the evolution of the peak
intensity and its root-mean-square deviation from the
average value during the beam propagation.

5. Simulation of the transverse instability during
self-focusing of real beams

5.1 Brief characteristic of the model

Simulations were performed by using the Fresnel software
package. The parabolic equation was solved in the paraxial
approximation by using a series of Fourier transforms. A
laser beam is speciéed by a three-dimensional set of
complex numbers describing the spatial and time distribu-
tions of the electric-éeld amplitude and phase. The set can
contain up to 227 elements. Depending on the problem
being solved, sets of sizes 1� 8192� 8192, 8� 4096� 4096,
32� 2048� 2048, etc, were used. The érst number is the
number of time steps, and the two next numbers are the
numbers spatial steps.

Nonlinear-optical elements were simulated by the
method of step-by-step separation in which a homogeneous
medium is divided into a number of inénitely thin nonlinear
layers separated by vacuum gaps [12]. To obtain correct
results, the maximum phase increment in any nonlinear
layer should not exceed 0.1 ë 0.2 rad. The Fresnel program

takes into account the inêuence of linear and nonlinear
losses, the intensity ampliécation in the active medium, and
the change in the pulse shape caused by ampliécation
saturation. However, to simplify analysis, we do not
consider all these effects in this paper.

5.2 The input intensity distribution

The input beam was speciéed as a restricted beam with a
êat top and power P modulated by the amplitude by the
Gaussian noise of power Pnoise with the uniform on average
spectral distribution in the speciéed band. The far-éeld
noise intensity distribution (angular spectrum) represents a
speckle pattern with the characteristic angular sze l=D
(where D is the beam size). The term `uniform on average'
means that after the azimuthal averaging, the far-éeld noise
intensity is independent of the angle between the prop-
agation directions of the main wave and the noise
component. The maximum angle of deviation of the
propagation direction of the noise wave from the main
beam axis is 1.5 rad, the minimum near-éeld speckle size
being 0.7 mm.

We will characterise the beam inhomogeneity by the
ratio of the peak intensity to the average intensity Ipeak=Iav.
Although this quantity is very important for determining the
probability of damaging optical elements, we are aware of
only one paper [13] in which the empirical expression was
presented for calculating this ratio in the laser system with
SSF. To estimate correctly the peak intensity in simulations,
it is necessary to obtain a considerable calculation statistics.
In [13, 14], the beam inhomogeneity was characterised by
the so-called contrast rmsI=Iav, where rmsI is the root-mean-
square deviation of the beam intensity. This quantity can be
estimated by using smaller samplings. The values of rmsI=Iav
and Ipeak=Iav for the input intensity distribution are
described with good accuracy by the expressions

rmsI=Iav �
�
1�

�
Pnoise

P

�1=2 �2
ÿ 1, (9a)

Ipeak=Iav �
�
1� c

�
Pnoise

P

�1=2 �2
, c � 5. (9b)

The maximum size of the calculation network was
8192� 8192 points, the sampling step was 0.063 mm,
and the modulated-beam diameter was 42 cm. This diame-
ter greatly exceeds real beam diameters in the system under
study, which allowed us to replace in simulations the
statistics over realisations by spatial statistics. The sampling
step is an order of magnitude smaller than the minimum
speckle size, which also provides the high calculation
accuracy.

5.3 Results of simulation

The peak intensity Ipeak is the greatest intensity in the given
cross section of the beam. Let us deéne the maximum
intensity Imax as the greatest peak intensity over the entire
propagation path of the beam.

We determined in two-dimensional calculations the peak
beam intensity in many cross sections along the propagation
path from the input to the NM1 up to a distance of Z �
2 m from the NM2 output. Of most practical interest is the
peak intensity at the NM2 output and the maximum peak
intensity in a plane located behind the NM2. The former
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determines the NM2 damage probability, while the latter
determine the damage of an optical element that can be
found in this plane. Figure 3a shows the change of the peak
intensity of the modulated beam propagating in the NM2
and behind it. The beam evolution (with a random noise
component) during self-focusing occurs in the following
way: the beam intensity achieves a local maximum at one of
the points of the beam cross section and then begins to
decrease, while at another random point at a distance of Z
the beam intensity becomes maximal over the entire beam
cross section, etc. These points are often separated by a
great distance in the beam cross section, and therefore the
peak intensities for different distances Z can correspond to
points with different coordinates in the beam cross section.

The fraction of the noise éeld component at the NM1
input is Pnoise=P � 9� 10ÿ5, Ipeak=Iav � 1:1 (the contrast is
0.0185). The zero coordinate Z corresponds to the NM2
input, and the plane Z � 30 cm ë to the NM2 output. The
dashed curve is plotted for a system without self-focusing
suppression, in which the image of the NM1 output end
coincides with the NM2 input end. In this case, the beam
peak intensity increases continuously in the NM2
(Z � 0ÿ30 cm) and exceeds the average intensity by 2.8
times at the NM2 output. The peak intensity continuous to
increase behind the NM2 and achieves its maximum at a
distance of 5 cm (Z � 35 cm) from the NM2 boundary. The

peak intensity in this plane exceeds the average intensity by
3.4 times. The continuation of the increase in the peak
intensity during linear propagation is related to the shape of
the beam wavefront at the NM2 output. In the region of
main intensity peaks, the wavefront converges, while in the
region of intensity minima, it diverges. This results in the
increase in the intensity contrast and increase in the peak
intensity during beam propagation.

We will optimise the nonlinear system by decreasing the
maximum intensity Imax. Our calculations showed that the
optimal displacement for the nonlinear system is Dz �
ÿ24 cm. This value agrees with expression (8b). The solid
curve in Fig. 3a corresponds to a system with self-focusing
suppression, when the NM2 is displaced by 24 cm toward a
SF. This dependence shows that the maximum beam
intensity for the optimal system is considerably lower
than that for a system without self-focusing suppression
and nowhere exceeds 1.36 of the average intensity. This
intensity ratio at the NM2 output is 1.13, coinciding in fact
with the value 1.1, which was speciéed at the nonlinear-
medium input. For systems with the optimal self-focusing
suppression, the peak intensity typically decreases during
beam propagation in the NM2 until some plane (see Fig. 2).
Then, when the self-focusing effect in the NM2 becomes
dominant, the peak intensity begins to increase, which is
continued behind the NM2.
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Figure 3. Results of two-dimensional numerical simulations: the evolution of the peak-to-average beam intensity ratio during the propagation of
radiation behind the system of two nonlinear media (a); dependences of the perturbation transfer coefécient on the spatial frequency vsp and the
quantity vspl in systems without and with self-focusing suppression (curves are the results of simulation, points are predicted by the linearized
Bespalov ëTalanov theory) (b); spatial intensity distributions in systems without and with self-focusing suppression in planes Z � 35 and 80 cm,
respectively, corresponding to the maximum peak intensity (c, d); and cross sections of the intensity distribution in planes Z � 35 and 80 cm passing
through the brightest point of each of the distributions (e).
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Figure 3b presents the dependences of the transfer
coefécient Ka of the noise component on the spatial
frequency after propagation through the nonlinear system.
The curves show the results of the two-dimensional simu-
lation of self-focusing, and points are predicted by the
linearized Bespalov ëTolanov theory. One can see that even
in the system without self-focusing suppression, when the
maximum noise amplitude is almost equal to the average
amplitude of the beam éeld, the linearized theory well
predicts the amplitude transfer coefécient.

Figures 3c and 3d present the fragments of two-dimen-
sional intensity distributions for the system without and
with self-focusing suppression in planes Z � 35 and 80 cm,
respectively, and Fig. 3d shows the cross sections of these
distributions passing through the brightest point of each of
the distributions.

The results of simulation show that the contrast and
maximum intensity at the nonlinear-system output are
determined by the noise energy, which increases due to
self-focusing. Let us introduce the effective transfer coefé-
cient keff for the nonlinear system. The quantity k 2

effPnoise

describes the power density that increased due to self-
focusing after the beam propagation through the nonlinear
system. The two-dimensional calculations showed that the
quantities rmsI=Iav and Imax=Iav at the system output can be
approximately described by the expressions

rmsI=Iav �
�
1� keff

�
Pnoise

P

�1=2 �2
ÿ 1, (10a)

Imax=Iav �
�
1� ckeff

�
Pnoise

P

�1=2 �2
, c � 5. (10b)

In the system without self-focusing suppression, keff tends
to exp (0:9BS) when the SF transmission band is compa-
rable with qmax, and to BS � (1� B 2

S)
1=2 when the SF

transmission band is narrower than qmax=3. In the system
with the restricted SF transmission band, narrower than
qmax, and for the optimal negative displacement of the NM2
with respect to the NM1 determined by expression (8b), we
have keff � 0:5�BS � (1� B 2

S)
1=2�.

Unlike the empirical relations used in [13, 4], expres-
sions (10) have a simple physical meaning and take into
account the inêuence of the angular size of the SF aperture,
the mutual arrangement of elements, and the values of
initial perturbations.

Fresnel simulations showed that self-focusing suppres-
sion in a system of two nonlinear media and a SF is
preserved for a quite large ratio Ipeak=Iav � 1:22 at the
system input. In this case, as follows from two-dimensional
calculations (Fig. 4), the peak intensity in the system with
self-focusing suppression exceeds the average intensity by
1.44 times, and the maximum intensity exceeds the average
intensity by 1.9 times. In the system without self-focusing
suppression for the same input noise level, self-focusing
leads to the catastrophic increase in the beam intensity
inside the NM2 at a distance of 24 cm from the input end,
resulting in the damage of the medium.

In conclusion, we summarise in Table 1 the results of
two-dimensional SSF calculations for a beam with the noise
modulation.

6. Conclusions

We have shown that the peak intensity outbursts caused by
self-focusing in a system consisting of two nonlinear media
and a spatial élter can be considerably reduced by
providing the optimal mutual arrangement of these
media and the élter between them. The optimal displace-
ment depends on the parameters of nonlinear media and
the shape of the spatial perturbation spectrum.

The expressions relating the maximum intensity and
contrast after self-focusing with the parameters of the
nonlinear system and the input noise power are presented.

The suppression of self-focusing considerably improves
the reliability of multichannel high-intensity laser facilities.
To determine the possibility of a further increase in the
average output intensity, it is necessary to study the effect of
nonlinear imaging (hot image) and the inêuence of the gain
saturation in the active medium on self-focusing.
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