
Abstract. The properties of dissipative solitons propagating
in an active nonlinear ébre with a Bragg grating are studied
without using the slowly-varying amplitude approximation. It
is shown that dissipative solitons with close initial velocities
acquire during their propagation certain values from a
discrete set of velocities.

Keywords: dissipative solitons, Bragg grating, slowly-varying
amplitude approximation.

1. Introduction

Bragg gratings are widely used in modern optics and laser
technology to provide frequency-selective transmission or
reêection of light. They are widely used in single-mode
optical ébres in modern ébreoptic communication systems
[1 ë 3]. Although at present ébre Bragg grating (FBGs) are
often used in the linear regime, they are undoubtedly
promising for essentially nonlinear regimes, including
regimes of Bragg solitons ë stable localised structures of
highly intense laser radiation [2, 3].

Dissipative optical solitons, i.e. stable localised light
structures in homogeneous nonlinear-optical media and
systems with sources and energy losses, have properties
interesting both for science and applications, for example,
information processing [3 ë 7]. Dissipative solitons in a
passive one-dimensional photon-crystal élm excited by
external radiation have been considered recently in paper
[8]. Dissipative solitons in active FBGs with the homoge-
neous ampliécation and absorption distribution in the
longitudinal direction have been studied in [9] by using
the slowly-varying amplitude approximation (SVAA). It
was found that in this case Bragg solitons represent a
one-parametric family, i.e. their velocity can be arbitrary
in a certain range and detuning (frequency) ë discrete. Some

studies have been performed for immobile dissipative Bragg
solitons without the SVAA. It has been found that in this
case they are localised near the maxima of the refractive
index grating [10 ë 11]. In this paper, we discuss some other
results obtained without the SVAA for propagating dis-
sipative Bragg solitons.

2. Theoretical model and initial relations

Consider the longitudinal propagation of counterpropagat-
ing waves in a single-mode ébre with a FBG and nonlinear
(depending on the laser radiation intensity) ampliécation
and absorption. We assume that the longitudinal distribu-
tion of the linear ampliécation and absorption is
homogeneous. This model can be also used in the case
of the inhomogeneous distribution of ampliécation and
absorption for the periodic change in the ébre segments
with ampliécation and absorption, if the lengths of these
segments are small enough. The saturation of ampliécation
and absorption is described by their power expansion
taking into account the terms up to the éfth power in the
éeld amplitudes. The inertialless saturation approximation
is valid for the continuous regime and for pulses, whose
duration exceeds the relaxation time of the medium. The
wave equation for the electric éeld strength E can be
written in the form:
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is the electric inductance of the medium; w1, w3 and w5 are
the coefécients of the linear and cubic polarisabilities and
the polarisability of the éfth order, respectively, which in
the general case are complex and their imaginary parts are
responsible for the dissipative mechanisms of absorption
and ampliécation. Let us assume that E(z; t) � Ref�A(z; t)�
� exp (ÿ io0t)g, where o0 is the central radiation fre-
quency. By using the approximation of a slowly-varying
amplitude in time (but not along the longitudinal coor-
dinate z), we obtain the equation for the change in the
complex éeld amplitude A(z; t):
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Here, the asterisk denotes a complex conjugate quantity; c
is the speed of light in vacuum; e0 � 1� 4pw1 is the linear
dielectric constant; the coefécient e1 is responsible for the
small modulation depth of the linear dielectric constant,
while e2 and e3 are propotional to the polarisability
coefécients of the third and éfth orders, respectively
(e2 � 3pw3, e3 � 5pw5=2); bB � p=L is the Bragg wave
number; and L is the period of the Bragg grating.

3. Propagating dissipative Bragg solitons
in the slowly-varying amplitude approximation

Within the framework of the SVAA over the longitudinal
coordinate z, the general solution of Eqn (2) has the form

E�z; t� � 1

2
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where Af; b(z; t) are envelopes of the waves propagating
forward and backward along the z axis, respectively. Then,
we obtain from (2) a system of equations for coupled modes
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where Vg is the group velocity in the ébre in the absence of
a FBG; d1 � (o0 ÿ oB)=Vg is the detuning from the Bragg
frequency oB; d2 � 2pIm(w1)o0=�cRe(e0)� is the parameter
of linear absorption or ampliécation; w � o0e1=�4c�
(Re(e0))

1=2� is the coupling coefécient caused by the grating,
which appears upon interaction between the forward and
backward waves; G � g1 � ig2 � o0e2=�2c(Re(e0))

1=2� is the
third-order nonlinearity parameter; S � s1 � is2 � o0e3=�2c
� (Re(e0))

1=2� is the éfth-order nonlinearity parameter. In
the general case, ¤ and S are complex quantities and their
imaginary parts are responsible for the dissipative mech-
anisms of absorption and ampliécation. System of coupled
modes (4) has been studied and its numerical soliton
solution Af;b(z; t) has been found in [9]. A dissipative Bragg
soliton propagating at a relative velocity of v � 0:024 is
shown in Fig. 1. Figure 1a shows the intensity proéles
If;b(z) � jAf;bj2 of the forward and backward waves. Here
and in Fig. 2, the electric éeld amplitudes are normalised as
An � A(g1=w)

1=2 (index n is omitted). The empiric relation
(If ÿ Ib)=(If � Ib) � v is fulélled for the intensities in the
centre of the soliton. Figure 1b shows the phase difference
¶(z) of the forward and backward waves for the same
propagating dissipative soliton. Note that its relative
velocity v in this approximation can be chosen arbitrarily,
and for this velocity, other parameters of the medium being
éxed, the frequency detuning of the dissipative Bragg
soliton is the required quantity with a discrete set of

possible values. Thus, within the framework of the SVAA,
Bragg dissipative solitons represent a one-parametric
family, unlike the two-parametric family of conservative
(without ampliécation and absorption of the electric éeld)
Bragg solitons, because both the velocity and detuning for a
conservative soliton can be simultaneously arbitrary quan-
tities [3].

4. Propagating dissipative Bragg solitons beyond
the slowly-varying amplitude approximation

In the previous section, Bragg solitons have been studied
within the framework of the SVAA. This approximation is
also used to describe the properties of conservative Bragg
solitons [3]. The use of this approximation is valid for
solitons whose longitudinal length exceeds the modulation
period (and, correspondingly, the light wavelength). How-
ever, in the case of shorter Bragg solitons, noticeable
quantitative deviations from the predictions of the standard
method of coupled modes are possible. Of more interest are
qualitatively new effects whose analogue is absent when the
standard approximation of coupled modes is used. If we
consider an immobile Bragg soliton, it can be located in any
place of the FBG within the framework of the SVAA
because in this approximation all these positions are
equivalent. However, it is obvious that the longitudinal
modulation of the refractive index makes different positions
of the soliton inequivalent (in a inénite FBG only the
symmetry with respect to the displacement per grating
period should be preserved).

It was shown in [10, 11] that beyond the SVAA, the
stable longitudinal positions of immobile ébre Bragg soli-
tons are located near the maxima of the refractive index
grating. Note that in a wide-aperture cavity with a FBG the
centres of stable immobile solitons are also localised in the
transverse direction in the maxima of the FBG of the
refractive index [12]. Thus, we can consider the refractive
index grating for a soliton as a periodic potential U(z) for a
mechanical particle. The stable immobile soliton is located
in the maxima of the refractive index grating, while the
immobile particle ë in the minima of the potential éeld. The
particle deêected from its equilibrium position begins to
oscillate near this position. The same effect can be observed
for slow solitons, which are initially in the equilibrium
position. This result can be obtained by solving numerically
Eqn (2). As initial values for t0 � 0, the numerically known
solution of equations of coupled modes was written in the
form
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Figure 1. Proéles of intensities If; b(z) (a) of the forward ( 1 ) and
backward ( 2 ) waves and phase differences ¶(z) (b) of the forward and
backward waves of a propagating dissipative soliton for d2 � 0:022,
g1 � 2, g2 � ÿ0:15, s1 � ÿ0:15, s2 � 0:15, w � 100, d1 � 99:18431 and
v � 0:024:
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A�z; t0� � Af�z� exp�ibBz� � Ab�z� exp�ÿibBz�; (5)

where Af; b(z) are envelopes of the forward and backward
waves obtained within the framework of the SVAA.

At rather large initial perturbations of the particle, i.e.
when its initial velocity is high enough, the particle over-
comes the érst potential barrier and moves ahead. We have
found that faster dissipative Bragg solitons, which can
overcome the érst period of the refractive index grating,
propagate in the grating with a weak velocity modulation.
Figure 2 shows the time evolution of this soliton obtained
by solving numerically (2) by using the soliton solution for
Af; b(z) within the framework of the SVAA; in this case, it
was assumed that v � 0:02 [this parameter is necessary to
calculate the initial value from expression (5)]. Note that the
value of jA(z; t)j2 is modulated in time upon propagation of
a soliton in the grating and, in general, this structure stably
repeats at a considerable time interval Dt � 0:15 (the
normalised time tn � wVt). Figure 2 illustrates only a frag-
ment of the soliton development for Dt � 0:008.

Figure 3 shows the displacement of the centres of these
more fast dissipative Bragg solitons in time, where dark and
light point correspond, respectively, to the displacements of
soliton centres whose initial velocities v of envelopes are 0.02
and 0.024 within the framework of the SVAA. It is obvious
that at the beginning, the time displacement of the soliton
centre with the initial velocity v � 0:02 has an oscillating
character (this means that the instant soliton velocity also
oscillates during its propagation), but later this soliton
propagates with a nearly constant velocity. The slope of
the solid straight line shows that the acquired velocity is
0.026, unlike the initial value of 0.02. If the soliton starts
with the velocity v � 0:024 (light points), its centre moves
somewhat faster than the centre of a soliton with the initial
velocity v � 0:02. However, in some time the latter also
acquires the average velocity 0.026.

An analogous analysis of the propagation of solitons
with different initial velocities shows that propagating
solitons with close initial velocities acquire deénite values
form a discrete set of velocities v � 0, 0.015, 0.026, ... .

5. Conclusions

Thus, we have obtained qualitatively new results beyond
the slowly-varying amplitude approximation, which are
absent within the framework of this approximation. The
most important result is the discreteness of the set of
average propagation velocities of dissipative Bragg solitons
and localisation of an immobile soliton in the FBG near the
maximum of the refractive index.
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Figure 2. Time evolution of a dissipative Bragg soliton.
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Figure 3. Displacement of centres of dissipative Bragg solitons capable
of overcoming the érst period of the refractive index grating.
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