
Abstract. The motion of an electron in the éelds of
relativistic-intensity linearly and circularly polarised laser
radiation is analysed. The analysis is based on the numerical
solution of the Newton equation with the Lorentz force. The
electromagnetic radiation of an electron interacting with a
laser pulse is studied. It is shown that this radiation is emitted
in the form of extremely short attosecond pulses. It is found
that an initially immobile electron does not move along égure-
eight trajectories in the éeld of a linearly polarised laser
pulse.

Keywords: relativistic electron motion, generation of attosecond
electromagnetic pulses.

1. Introduction

The type of motion of a charged particle (for example, an
electron) in the éeld of a relativistic laser pulse is
determined by the spatiotemporal intensity distribution
and polarisation of radiation. The parameters of the
electron motion can be found by solving the Newton
equation with the Lorentz force. In most papers, focused
laser beams with the Gaussian transverse intensity distri-
bution have been considered. Such beams have a waist at
the focus. The phase front in the focal plane called the
beam caustic can be considered plane.

The dynamics of an electron in an electromagnetic éeld
has been investigated by using the Newton equation with the
Lorentz force in a number of papers (see, for example, [1 ë
6]). It has been shown in [3, 4] that the electron is `captured'
during some time by a laser pulse and moves together with
it. The analysis of the electron motion in the case of
Gaussian beams [7] has shown that an electron initially
at rest on the laser beam axis is accelerated by laser
radiation to a great velocity at the laser pulse front and
then is decelerated at the pulse tail. An electron located
outside the laser beam axis is ejected at an angle to the laser
beam axis. The kinetic energy of such an electron can

achieve great values. Sometimes, this process is interpreted
as electron scattering. Note that in the case of very intense
laser radiation, the amplitude of electron oscillations
becomes comparable with the size of the optical-éeld caustic
waist.

The description of the electron motion in a high-
frequency éeld involves considerable diféculties due to a
great number of éeld oscillations. Therefore, the electron
motion is often analysed by using the Lorentz force
averaged over high-frequency oscillations instead of the
usual Lorentz force [8 ë 11]. This force is called the ponder-
motive force in the literature. It is obvious that the concept
of the pondermotive force for very short, few-cycle pulses
becomes meaningless, and the electron motion should be
analysed by using the exact Lorentz force.

Previous papers have not paid a proper attention to
comparing electron motions in the éelds of linearly and
circularly polarised radiation, which is one of the problems
studied in our paper. Also, the ejection of electrons with a
high kinetic energy from the interaction region should be
additionally analysed. In addition, it is not clear whether the
égure-eight trajectory can be realised in the case of a linearly
polarised laser pulse.

It is also interesting to study in detail the generation of
electromagnetic radiation by an electron interacting with an
intense electromagnetic éeld. The questions concerning the
radiation of a charged particle moving in a plane éeld have
been considered, for example, in paper [12].

2. Equations of motion

We investigate in this paper the dynamics of an electron in
an intense electromagnetic éeld. The electron motion in the
éeld of a short laser pulse of the relativistic intensity with
different polarisations (linear and circular) is analysed by
solving the Newton equation with the Lorentz force.

Consider a focused laser beam with the Gaussian
transverse intensity distribution. The phase front of the
beam in the caustic vicinity can be assumed plane. We will
use the approximation in which the interaction of laser
radiation with the electron is localised in the given vicinity.
Under certain conditions due to interaction with the éeld,
the electron can leave this region with the nonzero kinetic
energy. We will estimate the longitudinal size of a caustic by
the double Rayleigh length 2LR, where LR � pr 2

0 =l and r0
and l are the beam radius at the caustic centre and its
wavelength, respectively.

The electron is subjected to the high-frequency Lorentz
force, and the equation of electron motion has the form
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dp

dt
� ÿeEÿ e

c
�vH �, (1)

where p is the electron momentum; E and H are the electric
and magnetic laser éeld strengths; and e > 0 is the absolute
value of the electron charge. Equation (1) is supplemented
with the initial conditions

v�0� � v0, r�0� � r0 (2)

for the electron velocity and position.
Let us choose the coordinate system in which the laser

pulse propagates along the z axis. The phase front of the
laser pulse is plane and the constant-phase surface is
perpendicular to the z axis.

Equation (1) written for individual components has the
form

d

dt

mvx
�1ÿ v2=c 2�1=2

� ÿe
�
Ex ÿ

vz
c
Hy

�
, (3)

d

dt

mvy
�1ÿ v2=c 2�1=2

� e
�
Ey �

vz
c
Hx

�
, (4)

d

dt

mvz
�1ÿ v2=c 2�1=2

� ÿe
� vx
c
Hy ÿ

vy
c
Hx

�
, (5)

where m is the electron rest mass. In the case of linear
polarisation, we assume that the electric éeld is directed
along the x axis. In this case, the magnetic éeld is directed
along the y axis: Ex � Hy � E0(x; y; x ) cosox, where x �
tÿ z=c and o � 2pc=l. Similarly, in the case of circular
polarisation, Ex � Hy � (1=

���
2
p

)E0(x; y; x ) cosox and Ey �
ÿHx � (1=

���
2
p

)E0(x; y; x ) sinox. The éeld amplitude
E0(x; y; x ) is related to the intensity I by the expression

I�x; y; x� � c

8p
E 2
0 �x; y; x�. (6)

Note that, for the same laser radiation intensity, the
amplitudes of éelds with different polarisations differ by a
factor of

���
2
p

.
We will describe the time and coordinate dependence of

the amplitude E0(x; y; x ) by the expression

E0�x; y; x� � Em exp

�
ÿ
�
xÿ zd=c

t

�s
ÿ
� �x 2� y 2�1=2

r0

�q�
. (7)

Here, Em is the maximum éeld strength; zd is the initial time
shift of the laser pulse with respect to the electron providing
the smooth switching on of the éeld in the numerical
solution; and t is the pulse duration. The parameter s
determines the temporal pulse shape, and the parameter q
determines the transverse éeld strength distribution. In this
paper, we studied mainly laser beams with Gaussian
temporal and transverse éeld distributions (s � q � 2).
For r!1, the éeld represents an inénite plane wave.

If the longitudinal displacements of a charged particle
interacting with an intense light pulse exceed the caustic size,
distribution (7) cannot be used. The phase and group
velocities of the pulse in vacuum are equal to c.

The calculations were performed by assuming, as a rule,
that for t � 0 a charged particle is located at the point

z0 � 0. Many calculations were performed for the case when
a charged particle is located on the beam axis (x0 � y0 � 0)
for t � 0, but the inêuence of the initial radial displacement
on the motion type was also considered. If according to
initial conditions (2), we have v0y � 0, the electron motion is
localised in the xz plane.

3. Electron motion in a linearly
polarised radiation éeld

We performed calculations by using expression (7) for
different values of s and q, but the electron dynamics was
analysed in most detail for s � 2 and 4 and q � 2.

Equations (3) ë (5) can be written in the dimensionless
variables x=l, z=l, ct=l, and v=c. In the case of the
numerical solution, of interest are the dimensionless coor-
dinates, the components of the velocity and acceleration
(lv 0x=c

2 and lv 0z=c
2), and the total kinetic energy W=(mc 2)

of the particle. Hereafter, the prime means the time
derivative.

The dimensionless éeld amplitude is expressed in terms
of the dimensionless intensity I=Ir, where Ir is the relativistic
intensity. In the literature, several expressions for Ir are used
which differ in the numerical factor. In our opinion, the
most correct criterion for deéning Ir can be based on a
comparison of the maximal total energy of an electron
oscillating in the éeld of a short laser pulse with the rest
energy mc 2. Then,

Ir �
m 2c 3o 2

8pe 2
� 1:37� 1018lÿ2.

Here, Ir is expressed in W cmÿ2 and l in micrometres.
Figure 1 shows the time proéles for x=l, vx=c, z=l, vz=c,

lv 0z=c
2, and W=(mc 2). These proéles were obtained for

distribution (7) in the case of a short pulse with parameters
I=Ir � 25 (relativistic case), s � 2 (Gaussian pulse),
ct=l � 4, q � 2, and r0=l � 5 for the zero initial velocity
and zero initial transverse displacement of the electron.

The case of linear polarisation under study has the
following speciéc features:

(i) The transverse coordinate x and velocity vx oscillate
with a variable frequency, the oscillation frequency at the
beginning and end of a pulse (at low intensities) being
coincident with the frequency of the initial electromagnetic
radiation; for high intensities, the frequency decreases
considerably and the shape of oscillations very strongly
differs from the sinusoidal shape;

(ii) the longitudinal velocity vz oscillates at the double
oscillation frequency of the transverse coordinate and
velocity, the velocity magnitude being always nonnegative,
the shape of oscillations approaching the rectangular shape
and the longitudinal velocity being zero after completion of
the pulse;

(iii) the average longitudinal velocity can achieve values
close to c, resulting in the peculiar `capture' of the particle
by the laser pulse éeld and a considerable increase in the
time of interaction between the particle and éeld;

(iv) the longitudinal acceleration v 0z oscillates around
zero synchronously with oscillations of the longitudinal
velocity, the positive and negative acceleration values being
approximately equal, and oscillations themselves represent-
ing narrow peaks at the instants of time corresponding to
the zero longitudinal velocity;
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(v) the longitudinal coordinate vz increases with time
almost linearly, and the longitudinal displacement during
the pulse is énite, its value being quite large (a few tens of
wavelengths in the case under study).

The effect of electron `capture' by an intense light éeld
and the anharmonicity of its oscillations were reported in
papers [3, 4, 7, 13]. In [14], the analytic expression describing
the longitudinal displacement of an electron was proposed.

Note that a charged particle has no égure-eight trajec-
tories. These trajectories were predicted in [15] for a plane
monochromatic linearly polarised wave for the reference
system in which a particle is at rest on average. During the
interaction of an initially immobile particle with a laser
pulse, the particle is immobile only outside the laser pulse,
while the average (over high-frequency oscillations) longi-
tudinal velocity of the particle inside the pulse is always
nonzero, and the maximum value vm of this velocity is
determined by the intensity and is achieved at the pulse
maximum. Therefore, the égure-eight trajectory can be
realised only on a êat top of the laser pulse, and to do

this the particle should propagate initially with the velocity
vm in the opposite direction to the laser pulse propagation.

Figure 2 presents an example of the égure-eight trajec-
tory calculated for an electron moving at the velocity vm in
the opposite direction to the laser pulse propagation. In this
case, the calculation was performed for a longer pulse
having a êat top (s � 4, ct=l � 16, q � 2, r0=l � 5, and
I=Ir � 25). For such parameters, vm=c � ÿ0:862. One can
see (Fig. 2a) that there is no longitudinal drift displacement
of the electron along the z axis in the êat part of the pulse,
and only oscillations with respect to an average value are
observed. Figure 2b shows the region of the electron
trajectory in coordinates x, z at the centre of the êat part
of the pulse. This region corresponds to motion along the
égure-eight trajectory during éve oscillations.

The next series of calculations was devoted to the study
of the motion of a charged particle that was initially
displaced with respect to the laser beam axis in the direction
x. The main result is that the particle is ejected from a light
pulse, both in the radial and longitudinal directions. The
particle continues to move after the propagation of the light
pulse. A very important property of such a movement is that
the nonzero radial and longitudinal velocity components of
the particle are preserved. The movement of this type was
investigated earlier, for example, in [5].

Figure 3a presents the trajectories for electrons with
different initial displacements with respect to the pulse axis.
The parameters of the laser pulse are as in Fig. 1. Figure 3b
shows the kinetic energy of the electron after its interaction
with the laser pulse as a function of the initial displacement.

The electron escape angle strongly depends on the initial
displacement. Electrons accelerated by the pulse can be
conditionally divided into three groups. The érst group
includes electrons with the initial displacement x0=l �
0:05ÿ 1. They leave the interaction region near the laser
pulse maximum and have the maximal kinetic energy. For
this group of electrons, the longitudinal component of the
force dominates, and they escape predominantly forward.
The second group contains electrons with the initial
displacement x0=l > 1. They leave the interaction region
at the very beginning of the pulse and have the minimal
kinetic energy. For this electron group, the transverse
component of the force dominates and their escape angle
tends to the right angle with respect to the propagation
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Figure 1. Time proéles of the parameters x=l (a), vx=c (b), z=l (c), vz=c
(d), lv 0z=c

2 (e), and W=�mc 2� (f) of the relativistic motion (I=Ir � 25) of
an electron for linearly polarised radiation. The proéles are obtained for
a short pulse with the éeld distribution (7) for s � 2 (Gaussian shape),
ct=l � 4, q � 2, r0=l � 5, the zero initial velocity and zero initial
transverse displacement of the electron.
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direction of the pulse. The third group contains electrons
with the initial displacement x0=l < 0:05. They oscillate for
a long time inside the pulse and escape from the interaction
region at the laser pulse `tail'. For this electron group, the
transverse component of the force also dominates, and their
escape angle tends to the right angle with respect to the
propagation direction of the pulse.

For the case of linear polarisation and the initial
displacement along the y axis under study, electrons are
not ejected from the beam.

4. Electron motion in a circularly polarised
radiation éeld

Figure 4 shows the time proéles for x=l, vx=c, z=l, vz=c,
lv 0z=c

2, and W=(mc 2). These proéles are obtained for
distribution (7) in the case of a short pulse with parameters
I=Ir � 25 (relativistic case), s � 2 (Gaussian time proéle),
ct=l � 4, q � 2, and r0=l � 5 for the zero initial velocity
and the zero initial transverse displacement of an electron.
The case of circular polarisation under study has the
following speciéc features:

(i) Oscillations along coordinates x and y are sinusoidal
in contrast to the case of linear polarisation;

(ii) the transverse coordinate x and velocity vx oscillate
at a variable frequency, the oscillation frequency at the
beginning and end of the pulse (for low intensities)
coinciding with the frequency of the initial electromagnetic
radiation and considerably decreasing for high intensities;

(iii) the longitudinal velocity vz does not oscillate, and
the time dependence of the longitudinal coordinate z has no
steps;

(iv) the longitudinal acceleration v 0z has a `smooth' type:

an electron is accelerated by the leading edge of the pulse
and is decelerated at the pulse trailing edge.

The longitudinal displacements for linear and circular
polarisations are the same in the case of the same shape and
maximal intensity of pulses. The `smooth' longitudinal
velocity in the case of circular polarisation is the exact
average of the oscillating longitudinal velocity in the case of
linear polarisation.

5. Electromagnetic radiation of an electron
moving in the éeld of an intense light pulse

Consider the electromagnetic radiation of an electron
moving under the action of the Lorentz force produced
by the éeld of an intense laser pulse. A point at which
radiation is studied is speciéed by the radius vector R0

drawn to it from the origin of the coordinate system used to
analyse the electron motion.

We will use the characteristics of the electron motion in
the laser-pulse éeld obtained above to study the radiative
parameters of the electron. The expression for the electric
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Figure 3. Trajectories of electrons for different initial displacements with
respect to the pulse axis (a) and the kinetic electron energy after
interaction with the laser pulse as a function of the initial displacement
(b). The parameters of the laser pulse are the same as in Fig. 1.
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an electron for circularly polarised radiation. The laser pulse parameters
and initial data for the electron are as in Fig. 1.
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éeld of radiation obtained by using the Lienard ëWiechert
potential has the form (for the electron)

E � ÿe 1ÿ v 2=c 2

�Rÿ Rv=c�3
�
Rÿ v

c
R

�
ÿ e

c 2�rÿ Rv=c�3

�
�
R

��
Rÿ v

c
R

�
v 0
��

, (8)

where v � dr=dt and v 0 � d2r=dt 2. The vector R connects
the electron with the observation point. The radius vector
of the electron at the same coordinate system is denoted by
r. These vectors are related by the expression
r(t)� R(t) � R0. All the quantities in (8) are taken at the
instant of time t. They can be recalculated to the moment
treg of radiation arrival to the observation point. Taking
into account the delay, t and treg are related by the
expression t� R(t)=c � treg.

Below, the electric éeld of radiation of a moving electron
is determined at the observation point. This point is located
in the xz plane at a distance of R0=l � 7500. The angle y
between R0 and the z axis was varied in a broad range.

The amplitude of the electron radiation éeld in the
propagation direction of the laser pulse (y � 0) completely
reproduces the initial éeld amplitude. Figure 5 presents the
time dependences of the electric éeld at observation points
calculated for angles y � 158, 208, 258, and 308. One can see
that radiation represents a train of very short pulses. The
number of pulses and their mutual location correspond to
the motion trajectories presented in Fig. 1.

Figure 6 presents at the enlarged scale the time depend-
ences of the central-pulse éeld (Fig. 5) calculated for the
same angles y. One can see that the parameters of the
radiation pulse depend substantially on the observation
angle. There exists a critical angle at which the pulse shape
and structure drastically change. As follows from Fig. 1, the
trajectory of the relativistic electron consists of the parts
close to linear; the critical angle coincides with the angle of
inclination of the trajectory part from which radiation
occurs. For parameters presented above, the critical angle
is 228. The pulse for the observation angle smaller than the
critical angle (y � 158) is presented in Fig. 6a. The pulse
éeld takes negative and positive values and the total pulse
duration is approximately 8� 10ÿ2l=c. For the observation
angle close to the critical one (y � 208), the pulse begins to
change its polarity and acquires a more complicated shape
(Fig. 6b). For the observation angle exceeding the critical
one (y � 258), the pulse becomes considerably shorter and
completely changes its polarity. The total pulse duration is
approximately 10ÿ2l=c (Fig. 6c). For a wavelength of
l � 8� 10ÿ5 cm (Ti : sapphire laser), this corresponds to
the pulse duration of 26 as. As the value of y is further
increased, radiation splits into two separated pulses with
positive and negative polarities (Fig. 6d). The duration of
each of them is approximately 2� 10ÿ3l=c, corresponding
to 5.2 as. The maximum éeld strength is achieved for the
observation angle equal to the critical one. Note that the
critical angle and parameters of ultrashort pulses depend on
the value of I=Ir.

The pulse shortening observed in the relativistic case is
explained by the fact the electron propagates along linear
trajectory parts at the velocity close to the speed of light. As
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Figure 5. Time dependences of the perpendicular component E? of the electric éeld of electromagnetic radiation of a moving electron (with the same
parameters as in Fig. 1) at the observation points at a distance of R0=l � 7500 for angles y � 158, 208, 258, and 308.
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a result, the contributions of the éeld generated by the
electron at different moments of its motion arrive at the
observation point virtually simultaneously.

6. Parametric representation of the electron
motion in the Lorentz force éeld

The motion of a charged particle in a high-frequency
linearly polarised éeld in the form of a wave with a plane
wavefront propagating along the z axis is characterised by
the motion invariant [16]

� p 2 �m 2c 2�1=2 ÿ pz � const. (9)

Below, this variant is used to obtain the parametric
representation of the motion of a charged particle that
was initially located on the beam axis.

To obtain such a representation, vz is expressed in terms
of vx by using invariant (9) (assuming that vy � 0) and is
substituted into Eqn (3). Taking into account the accepted
approximation E(0; 0; x ) � C(x ), Eqn (3) is transformed to
a differential equation for x(x ), depending only on one
variable x. This equation is solved by the multiscale
asymptotic method, which is similar to that used in [14].
Its solutions for x and px (for the case vz0 � 0) can be
represented in the form of the converging series

x � e

mo 2

X1
n�0
�n� 1�oÿnC �n��x� cos

�
ox� np

2

�
, (10)

px � ÿ
e

o

X1
n�0

oÿnC �n��x� sin
�
ox� np

2

�
, (11)

where C �n� is the amplitude of the corresponding expansion
term of C(x) in powers of 1=o.

Solutions (10) and (11) were obtained by assuming that
the intensity at the maximum is such that the amplitude of
transverse oscillations is small compared to the character-
istic transverse scale r0 of intensity variations. In some
sense, these solutions are the generalisation of the solution
[15] for the electron motion in the stationary electro-
magnetic éeld of a plane wave to the nonstationary case.
They can be used to reéne the expression for the ponder-
motive force in relativistic éelds.

Expressions (10) and (11) were used for numerical
calculations of x, z, vx, and vz at the pulse axis. These
solutions were compared with the above results of numerical
calculations with the use of the Lorentz force, which were
performed for a charged particle located initially at the axis.
The use of only the two érst terms of series (10) and (11) in
calculations provided good accuracy.

7. Conclusions

(i) The electromagnetic radiation of an electron moving in
the éeld of a linearly polarised relativistic laser pulse in a
rather broad range of observation angles (the front
hemisphere except for axial values) represents a train of
short pulses. The duration of a pulse in the train is much
shorter than the light oscillation period. The parameters of
these ultrashort pulses depend on the value of I=Ir (Ir is the
relativistic intensity). The amplitude of the radiation éeld of
an electron in the propagation direction of the laser pulse
completely reproduces the amplitude of the initial éeld.

(ii) An electron in a relativistic éeld is partially `captured'
by this éeld, resulting in the dependence of its oscillation
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period on the local intensity. The oscillations of an electron
in a linearly polarised optical éeld are substantially anhar-
monic, while in a circularly polarised éeld they are
sinusoidal.

(iii) An electron initially displaced from the laser beam
axis is ejected from it in the longitudinal and transverse
directions with the kinetic energy comparable to the
oscillation energy.

(iv) In the case of linear polarisation, a particle does not
move along égure-eight trajectories. Such a trajectory can be
realised only on the êat top of a laser pulse when a particle
moves at a strictly speciéed velocity in the opposite direction
to the laser pulse.

(v) For an electron that is initially at rest at the laser
pulse axis, the longitudinal displacement is the same for
both polarisations for the same intensity of the pulse. The
longitudinal velocity in the case of circular polarisation is
the exact average of the oscillating longitudinal velocity in
the case of linear polarisation.

(vi) The parametric representation of the electron
motion in the éeld of a linearly polarised intense electro-
magnetic pulse has been proposed.
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