LETTERS PACS numbers: 42.55.Rz; 42.60.Lh DOI: 10.1070/QE2007v037n07ABEH013647

A 1.047-um GLS-23 neodymium phosphate glass amplifier

T.T. Basiev, A.G. Papashvili

Abstract. The gain of a GLS-23 neodymium phosphate glass is measured at a wavelength of 1.047 μ m of a Nd³⁺: YLiF₄ laser. Linear gains of $0.035 - 0.036$ cm⁻¹ are obtained for the active rod of length 13 cm pumped by 225 J, which points to the possibility of fabricating high-power lasers at this wavelength.

Keywords: neodymium phosphate glass amplifier, gain.

It is well known [\[1, 2\]](#page-1-0) that laser phosphate glasses are one of the best solid-state materials used for highly efficient amplification of high-power laser radiation and energy (up to $10^3 - 10^4$ J). Conventionally they are used to amplify radiation from master oscillators operating at the wavelength close to the maximum of the gain band $(\lambda = 1.053 \text{ \mu m})$ such as a Nd³⁺ : YLiF₄ laser emitting σ polarised radiation.

However, high-power laser radiation with a longer or shorter wavelength is required for a number of applications of laser physics. Thus, we showed earlier that pumping at 1.047 µm leads to a drastic increase in the gain and efficiency and expands the tuning range of F^{-2} : LiF colour-centre lasers [\[3, 4\]](#page-1-0).

Pico- and femtosecond terawatt amplifiers [\[5, 6\]](#page-1-0) have been developed based on wide-aperture F^{-2} : LiF colourcentre crystals for the past few years, in which 1.053 - μ m GLS-23 glass laser systems are used for high-power nanosecond pumping. The change in the nanosecond pump system from $\lambda = 1.053$ µm to 1.047 µm would allow one to increase substantially the gain and efficiency of pico- and femtosecond F^{-2} : LiF colour-centre amplifiers.

In this paper, we studied the possibility of application of laser phosphate glasses as 1.047-um amplifiers. As a probe radiation, we used nanosecond π -polarised pulses from a 5-15-mJ, 1.047-µm Nd^{3+} : YLiF₄ laser. As an amplifying stage, we used a pump cavity with the active element made of a GLS-23 phosphate glass of diameter 8 mm and length $L = 13$ cm.

Figure 1 shows the optical scheme for measuring the gain. The gain G was determined as a ratio of the energy E_{pr}^*

T.T. Basiev, A.G. Papashvili Laser Materials and Technology Research Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991 Moscow, Russia; e-mail: alex@lst.gpi.ru

Received 31 May 2007 Kvantovaya Elektronika 37 (7) 597 – 598 (2007) Translated by I.A. Ulitkin

Figure 1. Scheme of the experimental setup for measuring single-pass (solid lines) and double-pass (dashed lines) ampliécation.

of a probe pulse propagated through the amplifier during pumping to the energy E_{pr}^{0} propagated through the amplifier in the absence of pumping, i.e., $G = E_{pr}^*/E_{pr}^0$.

Measurements of the gain of a 1.047- μ m or 1.053- μ m Nd^{3+} : YLiF₄ laser in the single-pass and double-pass schemes were compared. For the constant energy of the probe input nanosecond signal, we obtained a dependence of the output energy E_{pr}^* on the pump energy E_{pump} of the GLS-23 amplifier flashlamp (Fig. 2).

Figure 2. Dependences of the gain of a single-pass amplifier on the energy of the flashlamp pumping the amplifier at 1.047 (\blacksquare) and 1.053 μ m (\spadesuit).

One can see from Fig. 2 that both at $1.053 \mu m$ and 1.047 µm the gain increases nonlinearly depending on the pump energy.

Figure 3 shows the experimental dependences of the energy E_{pr}^{*} on the energy E_{pr}^{0} of the probe (nanosecond) pulse for the single-pass ampliécation for a delay of the probe pulse by 150 µs with respect to the onset of the discharge of a 225 -J, 200 - μs pump flashlamp.

Figure 3. Dependences of the energy E_{pr}^{*} on the energy E_{pr}^{0} for a delay of the probe pulses by 150 ms with respect to the onset of the discharge of the pump flashlamp and at 1.047 (\blacksquare) and 1.053 μ m (\lozenge) .

The gains for radiation at 1.053 ($G = 3.3$) and 1.047 μ m $(G = 1.6)$ were determined from the obtained data.

The gains G in the double-pass scheme turned to be 10 and 2.5 at 1.053 and 1.047 µm, respectively. The linear gains determined by the expression $K = \ln G/L$ for both cases $(L = 13$ cm for the single-pass amplification and 26 cm for double-pass amplification) coincide and yield 0.089 – 0.09 cm⁻¹ at 1.053 µm and 0.035 – 0.036 cm⁻¹ at 1.047 µm.

The expected gain upon an increase in the length of the amplification channel up to 220 cm (a four-pass GLS-23 glass ampliéer with the active element of diameter 40 mm and $L = 55$ cm) can be estimated from the above data. By neglecting nonactive and radiative losses at $1.047 \mu m$, we can expect the gain of about $10³$, which is close to the value obtained in [5] and makes it possible to fabricate a highpower 1.047-μm, 10-J pump laser.

References

- 1. Garanin S.G., Zaretskii A.I., Il'kaev R.I., Kirillov G.A., Kochemasov G.G., Kurunov R.F., Murugov V.M., Sukharev S.A. Kvantovaya Elektron., 35, 299 (2005) [Quantum Electron., 35, 299 (2005)].
- 2. Alekseev I.E., Gapontsev V.I., Zhabotinskii M.E., Kravchenko V.V., Rudnitskii Yu.P., in Lazernye fosfatnye stekla (Laser Phosphate Glasses) (Moscow: Nauka, 1980).
- 3. Basiev T.T., Zverev P.G., Papashvili A.G., Fedorov V.V. Kvantovaya Elektron., 24, 591 (1997) [Quantum Electron., 27, 574 (1997)].
- 4. Basiev T.T., Papashvili A.G., Zverev P.G., Fedorov V.V. Tez. dokl. VII Vsesoyuz. konf. `Optika Lazerov' (Proc. VII All-Union Conf. On Laser Optics) (St. Petersburg, 1993) p. 81.
- 5. Basiev T.T., Garnov S.V., Vovchenko V.I., Karasik A.Ya. Klimentov S.M., Konyushkin V.A., Kravtsov S.B., Malyutin A.A., Papashvili A.G., Pivovarov P.A., Chunaev D.S. Kvantovaya Elektron., 36, 609 (2006) [Quantum Electron., 36, 609 (2006)].
- 6. Basiev T.T., Garnov S.V., Vovchenko V.I., Karasik A.Ya., Klimentov S.M., Konushkin V.A., Kravtsov S.B., Malutin A.A., Papashvili A.G., Pivovarov P.A., Chunaev D.S. Techn. Dig. IX Int. Conf. ILLA-2006 (Smolyan, Bulgaria, 2006) p. 175.