
Abstract. It is shown that the single-frequency output power
of a semiconductor laser with a built-in horizontal waveguide
and typical parameters is restricted from above. This res-
triction is caused by a change in the effective gain for
longitudinal modes adjacent to the laser mode due to a
nonlinear process producing oscillations of the carrier con-
centration at the intermode frequencies. If the laser resonator
contains random or deliberately introduced inhomogeneities,
the maximum achievable single-frequency output power can
considerably (more than by an order of magnitude) exceed the
output power in the absence of inhomogeneities.

Keywords: semiconductor laser, single-frequency lasing, nonlinear
interaction of modes, longitudinal instability.

1. Introduction

The manufacturing technology of modern heterolasers, in
particular, based on AlGaAs/InGaAs/GaAs heterostruc-
tures with quantum-well active regions has achieved so high
level that now it is possible to simulate reliably many
emission parameters of these lasers. This is related to a high
reproducibility of their manufacturing process and the
exclusion of uncontrollable factors which are not taken into
account in a physical model of lasers. For example, in
papers [1 ë 3] the transverse distribution of the laser beam
intensity, its divergence, and the light ë current character-
istic of near-IR ridge lasers were simulated. Moreover, in [3]
the simulation was performed taking into account the
spatial `burning out' of the inversion in the resonator, i.e.
taking into account the optical nonlinearity of saturation of
the active region. This nonlinearity is signiécant for high
pump levels and, correspondingly, for high output energies
of lasers. The latter circumstance is especially typical of
modern heterolasers.

Despite the advances achieved, the simulation of some
emission characteristics of heterolasers is still complicated.
First of all, it is the emission spectrum and, in particular, the
radiation power achievable upon single-frequency lasing.
Note at once that we will consider below the most popular

lasers with the Fabry ë Perot resonator without selective
elements such as phase and amplitude gratings or reêectors.
The emission spectrum, i.e. the structure of excited longi-
tudinal modes cannot be predicted even for ridge lasers [1 ë
3], for which the spectrum of transverse modes can be
simulated. The diféculties encountered in simulating the
emission spectrum of a typical heterolaser are related to a
broad width of the gain band compared to the spectral
interval between adjacent longitudinal modes. As a result,
the gain difference for adjacent longitudinal modes is
extremely small, being 10ÿ3 ÿ 10ÿ5 of the gain.

Thus, the lasing spectrum is formed by a rather `êat' top
of the gain band. This leads to a high sensitivity of the
heterolaser spectrum to various perturbations resulting in
the redistribution of the mode gain at the 10ÿ3 ÿ 10ÿ5 level
of the threshold. Such perturbations can be caused by many
reasons. In this paper, we will consider only two reasons,
which cannot be eliminated in principle. The érst one is the
residual optical inhomogeneity of the resonator along its
axis, which is always present in real lasers and is determined
by the quality of the manufacturing technology of hetero-
structures. The residual inhomogeneity produces random
spectral selectivity, and its inêuence on the lasing spectrum
was investigated in a number of papers (see, for example,
[4 ë 10]). The second fundamental physical reason for
changing the mode gain is the nonlinear interaction of
modes through oscillations of the inversion (carrier con-
centration) at the intermode frequencies caused by the beats
of the total laser radiation intensity. In our opinion, this
mechanism dominates at high output powers. For a laser
with the resonator formed by the diode faces, this mech-
anism was studied in connection with the problem of
stability of single-frequency lasing [11].

Among many quite intricate problems of simulating the
spectral parameters of heterolasers, we will consider only the
simplest problem of simulating the output power in the
single-frequency regime for a ridge laser or its physical
analogue. Lasers of this type (index-guided lasers) have a
technologically built-in waveguide. The main speciéc feature
of these lasers is that they are transversely single-mode and,
moreover, the transverse distribution of the laser-mode
amplitude is speciéed in them only by the built-in wave-
guide, i.e. is independent of the lasing regime, and is close to
the distribution characterising the `cold' (in the absence of
pumping) resonator. In this case, on the one hand, the
interaction of the éeld and inversion can be considered
taking into account their spatial inhomogeneity, by using in
this way the adequate and comparatively simple laser model.
On the other hand, the index-guided lasers have many
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applications at present, and therefore the problem of
simulating their limiting single-frequency output power is
of current interest.

Thus, the aim of this paper is to determine the maximum
output power that can be achieved in the single-frequency
regime in ridge heterolasers and to study the inêuence of the
optical inhomogeneity along the laser resonator axis on this
power.

2. Analysis of the stability
of single-frequency lasing

We will represent the éeld in the resonator of a semi-
conductor laser in the single-frequency regime in the form
of the superposition of the strong laser-mode éeld and weak
éelds of the subthreshold longitudinal modes, which are
spectrally close to the laser mode (we assume that all the
transverse modes, except the fundamental mode, are
suppressed):

E�r; t� � v�x; y�
h
C0 exp�ÿio0t�U0�z�

�
X
m6�0

Cm�t� exp�ÿiomt�Um�z�
i
� c:c:, (1)

where C0 is the laser-mode amplitude; Cm(t) are the
amplitudes of subthreshold modes with the mode index
m measured from the laser-mode index (which is positive
for higher-frequency modes compared to the laser mode
and negative for lower-frequency modes.) We assume that
the z axis is directed along the resonator axis. The
transverse distribution of the éeld v(x, y) corresponds to
the fundamental mode of a waveguide formed by the
heterostructure layers and the ridge.

As shown in [11], the system of equations for the slowly
varying complex amplitudes Cm(t) of subthreshold modes in
the presence of the strong laser mode splits into pairs of
equations for the modes located in the spectrum symmetri-
cally with respect to the laser mode. These equations have
the form

2ng
c

_Cm � DmCm � �a� i�wm
ÿ
Cm � C �ÿm

� � 0,

(2)

2ng
c

_C �ÿm � �Dÿm � ikm�C �ÿm � �ÿa� i�wm�Cm � C �ÿm� � 0,

where

wm � g0
1

�om ÿ o0�t
I

Isat
; (3)

ng � n� odn=do is the group mode refractive index; n is
the mode (waveguide) refractive index; D�m are the gain
deécits for the side modes, i.e. the differences between the
threshold gain g0, deéned below, and the gain for modes;

km �
2ng
c
�2o0 ÿ om ÿ oÿm�

is the parameter characterising the mode nonequidistance;

a � Re �qn=qN�
Im �qn=qN�

is the amplitude ë phase coupling coefécient (the Henry
factor); N is the carrier concentration in the active region;

g0 �
1

2L
ln

1

R1R2

is the threshold mode gain equal to losses at the resonator
mirrors with reêectances R1 and R2; L is the resonator
length; t is the spontaneous-emission lifetime of carriers; I
is the average emission intensity in the active region of the
laser;

Isat �
�ho0

�dG=dN�t
is the characteristic saturation intensity; G is the gain in the
active region; and dG=dN is the differential gain, or the
stimulated recombination `cross section'.

The system of equations (2) was obtained by assuming
that the éeld interacts with the active medium incoherently,
i.e. the medium is characterised by the complex permittivity
depending on the concentration of carriers. In turn the
carrier concentration is dynamically related to the total éeld
intensity in the resonator containing components oscillating
at the intermode frequencies. We assume for simplicity that
the coefécients Am and Bm from [11], characterising the
spatial overlap of the proéle of oscillations of the carrier
concentration with the mode éelds, are equal to unity. The
effects related to the inhomogeneous distribution of the
radiation intensity over the resonator length when the
reêectances of mirrors are considerably smaller than unity
where neglected, so that, strictly speaking, our analysis is
valid only for a high-Q resonator. In addition, we neglect
here the contribution from the dynamic grating of carriers
with the spatial scale equal to half the wavelength.

The inêuence of the nonlinearity of the medium in the
system of equations (2) is described by the terms propor-
tional to wm, i.e. according to (3), to the intensity of the
laser-mode éeld in the resonator. The radiation intensity I is
related to the pump current by the approximate expression
(see [11])

I

Isat
� yZ, (4)

where y � (N=G) dG=dN is the dimensionless parameter of
the order of unity, characterising the active medium, and
Z � J=Jth ÿ 1 is the relative excess of the pump current over
the threshold. The intensity I can be also expressed in terms
of the output radiation power

Pout � ISLg0, (5)

where S is the area of the transverse distribution of the
mode éeld [determined by the function v (x, y)]. The quan-
tity Pout in (5) is the total radiation power emerging from
both resonator mirrors.

Single-frequency lasing will be stable when the effective
gain deécits

D eff
�m �

Dm � Dÿm
2

�Re

��
Dm ÿ Dÿm ÿ ikm

2
� awm

�2
ÿ �1� a 2�w 2

m

�1=2
(6)

are positive for all pairs of coupled modes.
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For the low-intensity laser radiation (when wm 5D�m),
the effective gain deécits D eff

�m coincide with the initial
deécits D�m, and the stability condition is trivial: all
D�m should be positive, i.e. the gain for all the side
longitudinal modes should be lower than the threshold
gain. Therefore, for the low output power, single-frequency
lasing at the mode with the maximal gain will be always
stable because all other modes remain below the threshold
due to the gain saturation. Because the mode with the
maximal gain always exists (except the degenerate case,
when the gains for two or more modes coincide), the single-
frequency lasing regime is possible for the mode gain band
of an arbitrary shape for the low output power. For high
intensities (when wm is comparable with D�m or exceeds
them), the stability condition D eff

�m > 0 is no longer trivial,
and, as will be shown below, single-frequency lasing cannot
be always achieved.

Consider érst the ideal case, when the resonator of a
semiconductor laser does not contain longitudinal inhomo-
geneities producing the coupling of counterpropagating
waves in the resonator. In this case, the spectral proéle
of the mode gain will be a smooth function proportional to
the spectral contour of the material gain of the active
medium. This function can be represented near its maximum
in the form

g�o� � g�oa� ÿ a�oÿ oa�2, (7)

where oa is the frequency at which the mode gain is
maximal, and a � ÿ1=2q

2g=qo 2 is the parameter determin-
ing the curvature of the gain proéle near the maximum.

The intermode distance in the ideal case under study in
the zero-order approximation is determined by the group
mode refractive index ng:

om�1 ÿ om � O � pc
ngL

. (8)

Thus, om � o0 �mO and

Dm � g�o0� ÿ g�om� � a
��o0 �mOÿ oa�2 ÿ �o0 ÿ oa�2

�
� D�m 2 � 2md�, wm �

w
m
, (9)

where d � (o0 ÿ oa)=O is the relative detuning of the laser-
mode frequency from the frequency of the gain maximum;

w � ng
pcS�ho0

dG

dN
Pout ;

D � aO 2 is the gain deécit for the subthreshold modes
adjacent to the laser mode at the lasing threshold, when the
laser mode is located at the maximum of the gain band.

The deviation of the modes from the equidistant location
in the ideal case under study is determined by the dispersion
of the group refractive index ng:

km � m 2k, (10)

where

k � 2O 2

c

qng
qo
� ÿp l 2

0

n 2
gL

2

qng
ql
� p

l 3
0

n 2
gL

2

q 2n

ql 2
.

By using equalities (6), (9), and (10), the stability
condition D eff

�m > 0 can be represented by the system of
inequalities

dÿm < d < d�m �m > 0�, (11)

d�m �
1

2

�
ÿ a

p

m 2
�
�
m 2 � 1� a 2

1� b 2

�
p

m 2

�2 �1=2�
, (12)

where p � Pout=P0 is the dimensionless output radiation
power;

P0 �
pcS�ho0D
ng�dG=dN�

� p 2�hc 2Sl 3
0

4n 3
gL

2�dG=dN�
���� q 2g

ql 2

���� (13)

is the characteristic output power at which the effect of
nonlinearity becomes considerable; and

b � k
2D
� Re �q 2n=ql 2�

Im �q 2n=ql 2� �
4p
l0

q 2n=ql 2

jq 2g=ql 2j (14)

is the dimensionless nonequidistance of modes caused by
the dispersion of the group mode refractive index.

Let us take, for example, the following typical set of
parameters of a ridge laser (the values of material param-
eters presented below are close to those obtained
experimentally for the heterostructure described in [12]):
l0 � 1:06 mm, L � 400 mm, S � 4� 0:5 mm, dG=dN �
5� 10ÿ16 cm2, ng � 4, a � 3:5, q 2n=ql 2 � 6 mmÿ2, and
jq 2g=ql 2j � 8 mmÿ3. The calculation with these values gives
P0 � 0:9 mW and b � 9.

For each m > 0, inequalities (11) determine the detuning
interval of the laser mode from the maximum of the gain
band in which single-frequency lasing is stable with respect
to excitation of a pair of modes with indices �m. Consider
érst one such interval. For p5 1, lasing is stable in the
detuning interval between ÿm=2 and �m=2. This obvious
result corresponds to the fact that the continuous frequency
tuning near the threshold is possible only within the
frequency interval centred at the maximum of the gain
curve, whose width is equal to the intermode distance. As
the output power increases (with increasing parameter p),
this interval shifts to the red and broadens. The strong laser
mode induces the additional efécient ampliécation of the
mode with the index ÿm (with lower frequency) equal to
awm [see the system of equations (2)] and the same (in the
absolute value) additional efécient absorption for the mode
with the index m (with higher frequency). As a result, the
stability region shifts to the red. Another effect taking place
in the presence of the strong laser mode is the appearance of
coupling between the subthreshold modes. This effect results
in the broadening of the stability region. Although both
these effects are caused by the same physical mechanism and
are described by the same quantity wm in the system of
equations (2) for mode amplitudes, the second effect can be
manifested to a considerably lesser degree due to the
nonequidistance of modes which weakens the coupling
between subthreshold modes.

One can see from expression (12) that the rate of
broadening of the stability region with increasing the output
power is determined by the value (1� a 2)=(1� b 2). The
dependence of the location of the stability region (11) on the
output power is determined by the value of the nonequi-
distance parameter b (Fig. 1). If this parameter is small
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enough (jbaj4 1), the upper boundary d�m of the stability
region will be positive for all p; otherwise, it monotonically
(in asymptotics, linearly) decreases with increasing p. Thus,
for jbaj4 1, the stability interval broadens with increasing p
to the low-frequency side, whereas from the high-frequency
side this interval always includes at least the point d � 0 (i.e.
single-frequency lasing will be stable for any output power if
the position of the laser mode coincides with the maximum
of the gain band). If jbaj > 1, both boundaries of the
stability interval shift to the red with increasing the output
power.

Consider now the system of inequalities (11). The
stability interval of single-frequency lasing is the intersection
of intervals corresponding to the different values of m, i.e.
system (11) is equivalent to the condition

dÿ < d < d�, (15)

where

dÿ � max
m>0

dÿm , d _� � min
m>0

d�m .

The dependence of this resulting interval on the output
power p is also determined by b (Fig. 2). It can be shown
that for jbaj4 1, the stability interval monotonically
broadens with increasing p. Therefore, single-frequency
lasing is possible for any output power. In turn for jbaj > 1,
the width of the stability region begins to decrease
beginning from some value of p and vanishes for
p � pmax. Thus, for jbaj > 1, when the nonequidistance of
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Figure 1. Positions of the boundaries d�1 of the interval of relative detuning of the laser mode frequency from the gain maximum, in which single-mode
lasing is stable with respect to excitation of a nearest pair of side modes, as functions of the dimensionless output power p for the nonequidistance
parameter b � 0 (a), 1/3 (b), and 1 (c) (a � 3). The dashed lines show the position of the boundaries of this interval for jbaj4 1, i.e. when the
nonequidistance is so high that the interaction between side modes can be neglected.
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Figure 2. Positions of the boundaries d� of the stability region of single-frequency lasing as functions of the dimensionless output power p for the
nonequidistance parameter b � 1=3 (a), 1 (b), and b4 1 (c) (a � 3) (solid lines). The dashed lines show the dependences of d�m on p, each of them
representing the restriction of the stability region caused by excitation of one of the subthreshold modes (more exactly, of a pair of coupled modes).
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modes is high enough and modes are coupled weakly, the
single-frequency output power has a limit. The value of
pmax decreases with increasing the nonequidistance param-
eter b, achieving the minimal value pmax � 4=jaj for
jbaj4 1, i.e. when jkj4D and the nonequidistance
completely breaks the coupling between subthreshold
modes with indices �m. In this case, the nonlinear
interaction of the éelds splits into the interactions of the
strong laser mode with each of the weak subthreshold
modes.

The parameters a and b characterise the heterostructure
from which the laser is fabricated at the carrier concen-
tration in the active region corresponding to lasing. These
parameters are determined by the material properties of the
structure layers and by the structure geometry, i.e. the
thickness of layers and the ridge shape determining the
waveguide properties in the horizontal direction (along the
pÿ n junction). Therefore, they can be different for lasers
manufactured from different heterostructures. For typical
parameters of a semiconductor laser, the condition jbaj > 1
is fulélled, as a rule, i.e. the single-frequency output power
has a limit. Thus, calculations performed with the param-
eters of a ridge laser presented above give pmax � 1:2, which
corresponds to the output power Pmax

out � 1 mW. Thus, the
single-frequency output power of a laser with parameters
presented above and an ideal (optically homogeneous)
resonator cannot exceed 1 mW.

As mentioned above, the obtained results are valid,
strictly speaking, only for a high-Q resonator. It is difécult
to analyse mirrors losses analytically; however, it can be
done numerically. In this paper, we will not discuss this
question in detail, but note only that the maximal power
achievable in the single-frequency lasing regime increases. In
particular, for a laser resonator mirrors with reêectances
R1 � 95% and R2 � 5% and parameters presented above,
the calculation gives Pmax

out � 1:3 mW. This result was
obtained numerically for a more correct consideration of
the spatial overlap of the oscillation proéle of the carrier
concentration with mode éelds, i.e. taking into account that
the coefécients Am and Bm differ from unity. In this case, the
quantity wm becomes complex and is determined by the
expression that differs somewhat from (3).

Consider now the real case, when the laser resonator
contains longitudinal optical inhomogeneities resulting in
the modulation of the gain band. Let us assume that the
effective permittivity in the resonator depends on the
longitudinal coordinate

e�z� � e0 � de�z�, (16)

where e0 is the average value of the complex effective
permittivity; de(z) are the êuctuations of the effective
permittivity caused, for example, by the deviation of the
thickness or the composition of heterostructure layers from
their average values. The additions to the gain and the
spectral shift of the modes caused a small perturbation de(z)
can be written in the form

dgm � ÿ
o
cn

Im

� L
0 de�z�U 2

m�z�dz� L
0 U 2

m�z�dz
, (17)

dom � ÿ
o

2nng
Re

� L
0 de�z�U 2

m�z�dz� L
0 U 2

m�z�dz
.

In this case, the gain deécits and the mode nonequi-
distance are described by the expressions

Dm � D
��m 2 � 2md

��� dg0 ÿ dgm,
(18)

km � km 2 � 2ng
c
�2do0 ÿ dom ÿ doÿm�.

By using (6), (16), and (17), we can determine the
parameter pmax, i.e. the maximum output power at which
single-frequency lasing is possible. This power will be
different for lasing at different longitudinal modes because
additions (16) depend on the absolute number of a longi-
tudinal mode.

We used the following model of longitudinal inhomo-
geneities in the resonator of a semiconductor laser. The real
function

de�z� � 2n0dni, ziÿ1 < z < zi, i � 1, 2, . . . ,M (19)

was considered, where zi � iDz; Dz � L=M; n0 � Re
��
e
p

0 is
the average mode refractive index; dni are variations in the
mode refractive index representing uncorrelated Gaussian
real random quantities with the zero average value and the
root-mean-square deviation dn. Thus, the random function
de�z� had a normal distribution and a `white' spectrum in
the region of spatial frequencies from zero to qmax � p=Dz.
We considered the two particular realisations of random
function (18) with dn � 10ÿ5 and 10ÿ4 (note that a change
in the mode refractive index can be caused by a change in
the thickness of heterostructure layers with the quantum-
well active region by the value of the order of the lattice
constant); in both cases, Dz was set equal to 0.1 mm.

The longitudinal distribution of the éeld was described
by the threshold distribution

Um�z� �
������
R1

p
exp�ibmz� � exp�ÿibmz�,

(20)
bm �

p
L

~mÿ i

4L
ln

1

R1R2

,

where ~m � m0 �m is the `absolute' mode number; m0 is the
`absolute' laser mode number; R1 and R2 are the
reêectivities of mirrors for z � 0 and L, respectively. We
will consider the case with R1 � 95% and R2 � 5%.

For a laser with the parameters presented above, we
calculated additions to the gain and frequency shifts for a set
of longitudinal modes with wavelengths in the vicinity of
1.06 mm from realisations of the random function de(z) and
expressions (16). Then, the value of Pmax

out was calculated for
each of the modes. Figure 3 presents the results of calcu-
lations (additions to the gain and the value of Pmax

out ) for the
sampling of forty longitudinal modes.

The érst considered case (dn � 10ÿ5, Fig. 3a) corre-
sponds to the relatively weak perturbation of the gain
band, the root-mean-square addition to the gain being of
the order of D. The average value of Pmax

out weakly differs
from the maximum output power for the `ideal' case,
however, a scatter comparable with the average value
appears. In the second considered case (dn � 10ÿ4,
Fig. 3b), the perturbation of the gain band is rather strong,
the root-mean-square addition to the gain being an order of
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magnitude higher than D. In this case, single-frequency
lasing is possible on less than half the longitudinal modes
under study; however the output power can be more than an
order of magnitude higher than the value corresponding to
the `ideal' case; the single-frequency output power lasing for
some modes can achieve � 30 mW. Thus, the perturbation
of the spectral proéle of the mode gain caused by longi-
tudinal inhomogeneities in the resonator leads to the
increase of the maximal single-frequency output power.
These inhomogeneities can be not only random, as in the
case considered above, but can be deliberately introduced
into the resonator. As an example, consider a very small
(compared to the radiation wavelength) single inhomoge-
neity, which can be simulated as a jump of the effective
permittivity described by the delta function

de�z� � rd�zÿ z0�, (21)

where z0 determines the position of the inhomogeneity.
Such a jump corresponds to the reêectance

Rinh �
�

pr
l0n

�2
(22)

from the inhomogeneity (this expression is valid for
Rinh 5 1).

By substituting (18) and (20) into (16), we can easily
calculate additions to the gain and the frequency shifts of
longitudinal modes:

dgm � ÿ
���������
Rinh

p
L

� ������
R1

p
�R1R2�z0=2L

ÿ�R1R2�z0=2L������
R1

p �
sin

2p ~mz0
L

,

(23)

dom � ÿ
c
���������
Rinh

p
2ngL

�
2�

� ������
R1

p
�R1R2�z0=2L

� �R1R2�z0=2L������
R1

p �
cos

2p ~mz0
L

�
.

These additions depend periodically on the absolute mode
number ~m. Consider the case when an inhomogeneity with
the reêectance Rinh � 10ÿ4 is located at a distance of L=4
from the output mirror, i.e. when z0 � 3=4L. Figure 4
presents the calculated additions to the gain and the
maximum single-frequency power. The dependence dgm in
Fig. 4a is obtained by using expression (23). In this case,
the maximum output power in the presence of the
inhomogeneity achieves � 60 mW, which is one and a
half order of magnitude higher than that in the absence of
the inhomogeneity. If random inhomogeneities with
dn � 10ÿ4 are also present, which are taken into account
as described above, a scatter of in the maximum output
powers for different modes appears; however, the average
output power remains at the same level (Fig. 4b). Thus, by
introducing a longitudinal inhomogeneity into the reso-
nator of a semiconductor laser, we can increase in the
controllable way the maximum single-frequency output
power.

3. Discussion and conclusions

We have shown in this paper that the single-frequency
output power of a semiconductor laser with a built-in
horizontal waveguide and typical parameters is restricted
from above. This restriction is caused by a change in the
effective gain for longitudinal modes adjacent to the laser
mode due to the nonlinear interaction of the laser mode
with subthreshold modes caused by oscillations of the
carrier concentration at the intermode frequencies. The
maximum single-frequency output power for a typical ridge
laser with the ideal resonator is � 1 mW. For invariable
material parameters of the active medium, the maximum
output power is inversely proportional, according to (13),
to the square of the laser length and, hence, can be
increased by shortening the laser. The maximum output
power can be also increased by increasing the cross section
S of the radiation mode (note that in practice this cross
section is limited by the necessity of providing the
transverse stability of the éeld). In addition, the maximum
output power increases with decreasing the resonator Q
factor, i.e. with decreasing the reêectances of resonator
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Figure 3. Random modulation of the mode gain dgm (lines with squares) caused by the presence of longitudinal inhomogeneities in the laser resonator,
and the maximum output power Pmax

out at which single-mode lasing can occur at different longitudinal modes (columns). The two presented realisations
differ in the value of the root-mean-square êuctuation dn of the refractive index. The dashed straight line corresponds to the output power Pmax

out for the
resonator without inhomogeneities (the resonator parameters are presented in the text).

750 D.V. Batrak, A.P. Bogatov



mirrors. The maximum single-frequency output power of
the laser under study increases by 30% when mirrors with
reêectances R1 � R2 � 100% are replaced by mirrors with
R1 � 95% and R2 � 5%. Note, however, that the applic-
ability of our model for lasers with low reêectivities of
mirrors can be restricted due to the spatial inhomogeneity
of the gain caused by the inhomogeneous spatial `burning
out' of carriers.

The maximum single-frequency output power consid-
erably depends on the curvature of the mode gain proéle
near its maximum (characterised by the quantity jq 2g=ql 2j),
the mode nonequidistance caused by the dispersion of the
group refractive index (characterised by the quantity
q 2n=ql 2), and the amplitude ë phase coupling coefécient
a. To increase the maximum power, it is desirable to
maximise jq 2g=ql 2j and minimise q 2n=ql 2 and a. Thus,
for example, the maximum output power of the laser under
study could be increased from 1 to 100 mW either by
increasing jq 2g=ql 2j from 8 to � 90 mmÿ3 and decreasing
a from 3.5 to � 0:2 or by decreasing q 2n=ql 2 from 6 to
� 0:3 mmÿ2 keeping other parameters invariable.

One of the approximations used in our model is the
monochromaticity of the laser mode. In reality, the spectral
line corresponding to the laser mode always has a énite
width caused by the phase êuctuations of the laser mode
(amplitude êuctuations can be usually neglected). These
êuctuations do not affect the nonlinear interaction of the
laser mode with each of the weak modes separately, but
weaken, however, the coupling between weak modes, i.e. the
inêuence of the phase êuctuations of the laser mode will be
similar to the inêuence of the nonequidistance of modes.
Therefore, the nonmonochromaticity of the laser mode
being taken into account, the maximum single-frequency
output power should be lower than that obtained within the
framework of our model.

If the resonator of a semiconductor laser contains
longitudinal inhomogeneities producing the modulation
of the spectral proéle of the mode gain, the maximum
single-frequency output power can be in principle consid-
erably higher (more than by an order of magnitude) than
that in the `ideal' case of the absence of inhomogeneities.
This can be achieved if the characteristic modulation `depth'

exceeds the characteristic gain deécits in the absence of
inhomogeneities. For a laser with parameters under study,
this condition can be fulélled, for example, in the presence
of êuctuations of the effective refractive index along the
resonator length with the root-mean-square value dn �
10ÿ4. The increase in the maximum single-frequency output
power caused by random inhomogeneities is, however,
random, and therefore the experimental output powers
can strongly vary from sample to sample. The maximum
output power can be controllably increased by deliberately
introducing a longitudinal inhomogeneity. Thus, a micro-
scopic inhomogeneity (small compared to the radiation
wavelength) with the reêectance Rinh � 10ÿ4 present in
the resonator causes the increase in the single-frequency
output power up to a few tens of milliwatts, while random
inhomogeneities can produce only a relatively small scatter
in the output power.

As mentioned in Introduction, the results obtained in the
paper should be valid not only for ridge lasers but also for
any other semiconductor lasers with éxed transverse éeld
distributions.
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