
Abstract. The generation of harmonics of a high-power-laser-
pulse éeld in a gas during impact ionisation of atoms by
oscillating electrons is studied theoretically. Fields are
considered under conditions when the oscillation energy of
electrons in the radiation éeld, remaining nonrelativistic,
considerably exceeds the ionisation potential of an atom. In
addition, the radiation éeld was assumed weak compared to
the atomic éeld (Ea � 5:1� 109 V cmÿ1), which allowed us
to neglect the éeld ionisation of atoms, taking into account
only the impact ionisation of atoms by oscillating electrons.
Under such conditions, along with the elastic scattering of
electrons, the inelastic scattering of oscillating electrons
accompanied by ionisation of gas atoms can make a
signiécant contribution to a nonlinear current induced in
the plasma.

Keywords: generation of harmonics, strong high-frequency éeld,
elastic collisions, inelastic collisions.

1. Introduction: Formulation of the problem

The generation of harmonics of a high-frequency radiation
éeld in a plasma caused by elastic scattering of oscillating
electrons from ions was érst considered by Silin [1]. It was
assumed that the plasma was completely ionised and only
elastic collisions of electrons with ions were taken into
account. In this paper, we consider a plasma with an
arbitrary degree of ionisation, taking into account, along
with elastic collisions, also inelastic (ionising) collisions of
electrons with neutral atoms. It is known (see Chapters 17
and 18 in [2]) that at large, but still non-relativistic energies,
the cross sections for ionising collisions of electrons with
gas atoms decrease with decreasing energy slower than
cross sections for elastic collisions. Already for energies
exceeding the ionisation energy, ionising collisions of
electrons with atoms become dominating.

We will describe the dynamics of electrons in a weakly
ionised gas in a strong high-frequency electromagnetic éeld
of frequency o0

E � E0 cos�o0t�, (1)

by using the kinetic equation for the electron distribution
function f :

qf
qt
� eE

m

qf
qv
� Jinel� f � � Jel� f �. (2)

Here, e and m are the electron charge and mass, and Jinel
and Jel are the integrals of inelastic (ionising) and elastic
collisions, respectively. We neglected in (2) the magnetic
component of the Lorentz force and the gradient term in
the left-hand side, which is justiéed for nonrelativistic
oscillation velocities of electrons in éeld (1), i.e.

ve � eE0=�mo0�5 c. (3)

At the same time, the éeld is assumed strong, so that the
electron oscillation energy eE greatly exceeds the ionisation
potential I of an atom, i.e.

eE �
1

2
mv 2

e 4 I. (4)

The representation of the éled in form (1) does not
exclude its spatial inhomogeneity. In particular, this can be
the éeld of a diverging or converging wave or of a plane
wave with the nonzero wave vector. We will consider the
coordinate dependence of the éeld below by performing
spatial differentiation.

Inequality (4) allows us to neglect the chaotic motion of
electrons after ionisation and to write the inelastic (ionising)
collision integral in (2) in the form [3]

Jinel � d�v�
�
vinel�jv 0j� f �v 0�dv 0. (5)

Here, vinel(jvj) � n0vs(v) is the frequency of ionising
electron collisions depending on v; s(v) is the ionisation
cross section of an atom by an electron; v � jvj; n0 is the
atomic density in the gas. The cross section s(v) can be
described with good accuracy by the Born approximation
[2]

s�v� � a
v 2

Z�vÿ vi� ln
v
vi
, (6)

where

Z�x� � 1 for x > 0;
0 for x < 0

�

M.V. Kuzelev, A.A. Rukhadze A.M. Prokhorov General Physics
Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991Moscow,
Russia; e-mail: rukh@fpl.gpi.ru

Received 7 June 2007; revision received 5 July 2007
Kvantovaya Elektronika 37 (10) 924 ë 926 (2007)
Translated by M.N. Sapozhnikov

PACSnumbers: 42.65.Ky; 42.50.Hz
DOI:10.1070/QE2007v037n10ABEH013658

Generation of laser-pulse-éeld harmonics
in a gas upon impact ionisation of atoms

M.V. Kuzelev, A.A. Rukhadze

464/359 ëMB ë 26/xii-07 ë SVERKA ë 3 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 37 (10) 924 ë 926 (2007) ß2007 Kvantovaya Elektronika and Turpion Ltd



is the Heaviside formula, and vi � (2I=m)1=2 and a �
2pZe 4=(mI ) (Z is the charge of the atom nucleus) depend
on the gas (for hydrogen, I � 13:6 eV and a �
16:3 cm4 sÿ2).

Except restrictions (3) and (4), it is necessary to take into
account another very important restriction inherent in the
model under study, namely, the neglect of the tunnel
ionisation of atoms in a strong electromagnetic éled
compared to the impact ionisation. This is possible only
in relatively weak éelds, weaker than the atomic éeld:
E < Ea � 5:1� 109 V cmÿ1. For gas (hydrogen) pressures
of the order of atmospheric and the éeld frequency
o0 � 2� 1015 sÿ1 (the wavelength l � 1 mm), this neglect
is valid for electromagnetic éeld power densities P <
1017 W cmÿ2, and according to (3), the inequality
P > 1014 W cmÿ2 should be fulélled. Note that the electron
oscillation energy in the high-frequency éeld can achieve a
few kiloelectronvolts.

As for the elastic collision integral, the scattering of
electrons by atoms under condition (4) does not differ from
the Coulomb scattering of electrons by nuclei, and therefore
Jel( f ) can be written in the form of the Landau electron ë
ion collision integral [4]

Jel� f � �
2pe 2e 2i niL0

m 2

q
qvk

�
v 2dkj ÿ vkvj

v 3

qf
qvj

�
, (7)

where ei is the ion charge; L0 � 10ÿ 20 is the Coulomb
logarithm; and ni is the total ion density in the gas, i.e. the
ion density of both ionised and unionised atoms; and dkj is
the Kronecker delta.

2. Frequencies of ionisation and elastic electron
collisions

Before proceeding to the problem of generation of
harmonics of éeld (1) in a gas under conditions being
considered, we investigate the ionisation of the gas by using
the above-presented equations and obtain the expression
describing the rise of the electron density ne(t). It follows
from Eqn (2), taking into account (5) and (7) that the
electron density rises exponentially in time:

qne
qt
� g�E0�ne � n0

�
vinel�jv 0j� f �v 0�dv 0. (8)

To determine the rise increment g(E0) (the ionisation
collision frequency of electrons), it is necessary to calculate
f (v). Let us assume that the inequalities

o0 4 g�E0�, veff�E0�, op (9)

are fulélled, where veff(E0) is the effective inelastic collision
frequency, which is determined below, and op �
(4pe 2ne=m)1=2 is the Langmuir electron frequency. Under
these assumptions, the right-hand side of Eqn (2) can be
neglected in the érst approximation and the solution can be
represented in the form of the function of the characteristic
vÿ ve sino0t � const [3]

f�t;v��ne f0�t; v�, f0�d�v?�d
ÿ
vkÿv sino0t� ve sinj

�
. (10)

Here, v? Ë vk are the transverse and longitudinal (with
respect to the electric éeld E) components of the electron

velocity; j is the éeld phase at the instant of the electron
creation due to ionisation; and the function f0 is normalised
to unity. Taking into account inequalities (9), function (10)
should be averaged over phases j to obtain the known
function

h f0i �
pÿ1d

ÿ
v?��

v 2
e ÿ �vk ÿ ve sino0t�2

�1=2 (11)

describing the uniform distribution over phases [5]. By
substituting (11) into (8), we obtain the expression

g�E0� �
2an0
pvi

ln 2 ve
vi

(12)

for the avalanche ionisation constant [6].
In conclusion of the section, we calculate the effective

frequency of elastic collisions of electrons oscillating in a
strong high-frequency éeld with gas atoms. For this
purpose, we will use distribution (11) and the Coulomb
cross section for scattering of electrons by ions. This
approximation is justiéed under condition (4). In this
case, the Coulomb scattering cross section should be written
in the form

sK �
2e 2e 2i L0

m 2v 4
Z�vÿ vi�. (13)

Taking distribution (11) into account, we obtain

veff�E0� � ni

� ve

vi
dv

2e 2e 2i L0

pm 2v 3

1ÿ
v 2
e ÿ v 2

�1=2 � e 2e 2i L0ni
pm 2v 2

i ve
. (14)

By comparing (14) and (12), we see that the ionisation
frequency exceeds the elastic collision frequency under
conditions ve > vi and ne > nivi=ve.

3. Generation of high-frequency éeld harmonics

Consider now the generation of harmonics of a strong high-
frequency éeld upon gas ionisation. The generation mecha-
nism is emission by oscillating electrons during ionisation of
atoms. Here, the electron distribution function averaged
over phases (11) can no longer be used, and Eqn (2) should
be solved by the method of successive approximations and
the correction f1 to unaveraged distribution (10) should be
found. According to (2), we have

q f1
qt
� eE

m

q f1
qv
� Jinel �f0 � � Jel� f0 �, (15)

where Jinel( f0 ) and Jel( f0 ) are described by expressions (5)
and (7) taking (6) into account. Equation (15) differs from
the equation studied in [1] by the presence of the érst term
taking into account inelastic electron collisions*. But
because the solution of Eqn (15) is additive with respect
to the right-hand side, we énd érst its solution taking into
account only inelastic collisions and then ë taking into
account only elastic collisions. In the case of only inelastic
collisions, the solution of Eqn (15) has the form

f1�v� � n0

� t

ÿ1
dt 0Jinel

�
f0�vÿ ve sino0t� ve sinj�

�
. (16)

*In addition, as mentioned above, the ion density in the term
containing the elastic scattering integral is the density of all neutral
and ionised atoms, which is justiéed by condition (4).
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Because the electron density changes slowly, we énd

q j1
qt
� q

qt

�
v f1dv

� 2en0neaik

�1
vi

dv ln
v
vi
d�vÿ ve�sino0tÿ sinj��, (17)

where ik is the unit vector along the high-frequency éeld
direction. Expression (17) was obtained by using cross
section (6) and assuming that ne slowly varies in time with
the rise increment (12). Because of the ionisation of atoms,
the density of neutral atoms in the plasma also slowly varies
in time and ne � n0 � ni � const.

Further calculations of the right-hand side are similar to
the calculation of the Landau collision integral performed in
[1]. Let us represent the delta function in the integral form,
expand the integrand in the harmonics of the fundamental
frequency o0, average over j, assuming that the inequality
ve 4 vi is fulélled, and carry out ln (ve=vi) from the integrand
in the form ln (ve=vi) � L. After simple calculations, we
obtain

qj1
qt
� 4

p
en0neaLik

X
n5 1

sin�no0t�F�n�, (18)

where

F�n� � �1ÿ �ÿ1�n � �1
0

dx

x
J0�x�Jn�x� �

2

pn 2
sin

p
2
n, (19)

and J0 and Jn are the Bessel functions.
One can see from (18) that the expansion of the current

j1 in harmonics contains only odd harmonics of the laser
éeld, and therefore only these harmonics will be produced
by this current. Then, the ratio of the amplitudes of
harmonics of the electric éeld to the fundamental-harmonic
amplitude is described by the expression

E inel
n

E0

� 8n0a
p 2o0ve

ln
ve
vi

1

n 3�n� 1� sin
p
2
n. (20)

We derived this expression by using Maxwell's equations
with current (18)

rotrotE� 1

c 2
q 2E

qt 2
� ÿ 4p

c 2
q j1
qt

, (21)

and assuming that the laser-pulse éeld (1) is a plane wave.
Relation (20), as all expressions presented above, was

obtained by taking into account in (2) and (15) only inelastic
(ionising) electron collisions and neglecting elastic collisions.

Elastic collisions can be simply taken into account. Thus,
when only elastic collisions are taken into account in
Eqn (2), the correction to the plasma current can be found
in the same way as (18) and is given by the expression [cf.
(18) and (19)]

q j1
qt
� 8e 2e 2i eneL0

m 2vevin�n� 1� ik
X
n5 1

sin�no0t� sin
p
2
n. (22)

One can see from here that the current induced in the
plasma is purely ohmic in this case as well and contains
only odd harmonics of the high-frequency éeld. Taking into

account only elastic collisions, the ratio of the nth harmonic
amplitude to the fundamental-harmonic amplitude is
described by the expression

E el
n

E0

� 8e 2e 2i niL0

m 2o0viv 2
e

1

n�n� 1� sin
p
2
n. (23)

By comparing expressions (20) and (23), we see that
although the amplitudes of harmonics in the case of only
elastic electron collisions decrease with increasing n slower
than upon inelastic collisions, they are smaller by a factor
of vi=ve in the high-frequency éeld strength and therefore
dominate at small n 2.

4. Discussion of results

It is interesting to compare the results obtained above with
the results of paper [1] in which a completely ionised plasma
in an external high-frequency éeld with the Maxwell
distribution function with oscillating electrons was consid-
ered. Let us present the expression

j1 � E0

X
n5 0

cos��2n� 1�o0t�
e 2ne
mo 2

0

16nie
2
i o

3
0

eE 3
0

L0 ln
eE0

mo0vT
(24)

for the current induced in the plasma and the ratio of the
nth harmonic amplitude of the high-frequency éeld to the
fundamental-harmonic amplitude

En

E0

� 2n� 1

n�n� 1�
nie

2e 2i L0

m 2o0v 3
e

ln
eE0

mo0vT
, (25)

obtained in [1]. Here, vT is the thermal velocity of plasma
electrons. It follows from a comparison of expressions (23)
and (25) (we can compare the results only for elastic
collisions) that under the condition

v 2
i

v 2
e

n 2 < 1 (26)

the emission of éeld harmonics during ionisation of the gas
by the éeld dominates, whereas in the opposite limit the
éeld harmonics in a preliminarily prepared completely
ionised plasma can be generated more intensely. Note,
however, that inequality (26) determines the condition of
applicability of the results obtained in [1], and this means
that the most intense éeld harmonics will be always
generated during gas ionisation by the éeld itself.
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