
Abstract. A new method of statistical simulation of quantum
systems is presented which is based on the generation of data
by the Monte Carlo method and their purposeful tomography
with the energy minimisation. The numerical solution of the
problem is based on the optimisation of the target functional
providing a compromise between the maximisation of the
statistical likelihood function and the energy minimisation.
The method does not involve complicated and ill-posed
multidimensional computational procedures and can be used
to calculate the wave functions and energies of the ground and
excited stationary sates of complex quantum systems. The
applications of the method are illustrated.

Keywords: statistical simulation of quantum systems, Monte Carlo
method, statistical likelihood function.

1. Introduction

The study of quantum systems is important for solving
modern applied problems of physics, chemistry, micro and
nanoelectronics, biotechnology and other scientiéc éelds.
Because only few quantum-mechanical problems can be
solved exactly, the methods of numerical mathematical
simulation become increasingly urgent. The fundamental
breakthrough in the éeld of information technologies,
which can be achieved in the near future, is also related to
the development of principles of quantum calculations
[1 ë 3]. However, the realisation of the concept of a
quantum computer itself requires time-consuming calcu-
lations for developing the physical principles of functioning
and interaction of the basic elements of quantum informa-
tion ë qubits.

The numerical methods of studying the Schr�odinger
equation can be divided into regular (deterministic) and
statistical methods. In the case of multidimensional prob-
lems, the deterministic methods run into serious calculation
problems. For example, if we wish to specify a regular grid
to study a system consisting of 10 particles, even in the
absence of a spin the problem is described in the coné-
guration space of dimensionality 30. If we specify the grid of

only 10 points for each of the variables, then 1030 nodes
should be speciéed in the entire conéguration space. We see
that the complexity of simulations increases exponentially
with the number of particles in the system. It is clear that
such a huge amount of data cannot be recorded in and
processed with the help of modern materials.

In our opinion, statistical simulation methods can
provide a substantial progress in the investigation of multi-
dimensional quantum-mechanical problems. Moreover, the
application of these methods is justiéed due to the funda-
mental statistical nature of quantum phenomena themselves.
It should be taken into account that the statistical behaviour
of quantum systems principally differ from classical random
processes (such as diffusion). The difference is that the
statistical simulation of quantum systems should be per-
formed taking into account the known Bohr principle of
complementarity. According to this principle, to perform
the complete statistical description of a quantum state, it is
necessary to use data from different unitarily coupled
representations. For example, data from the coordinate
space should be supplemented with data from the momen-
tum space [4, 5].

Within the framework of the statistical approach, a
quantum state can be described by two methods: either by
using the state vector (c functions) or specifying samplings
from mutually complementary distributions. If the sizes of
mutually complementary samplings are large, both these
methods are almost equivalent. In particular, the c function
can be approximately reconstructed from samplings (by
using quantum tomography).

The energy of a quantum state, which we wish to
minimise, can be most simply calculated from mutually
complementary samplings. In this case, the coordinate
sampling is used to calculate the potential energy, and
the momentum sampling is used to calculate the kinetic
energy. Note that, the problem of minimisation in the
classical problem is reduced to the trivial rolling down of
all points to the potential well bottom in the coordinate
space and to the stopping of all points in the momentum
space. In quantum mechanics, according to the uncertainty
relation, such a scenario is impossible. According to the
complementarity principle, the coordinate and momentum
distributions should reêect the same object, namely, the
complex c function, while the coordinate and momentum
wave functions should be related by the Fourier transform.

The manipulation by data in the coordinate and
momentum spaces should be performed keeping in mind
that a single state vector should correspond to mutually
complementary data. This requirement is provided by
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quantum tomography. The so-called root approach was
successfully used in experimental studies on the statistical
reconstruction of polarisation quantum states of three- and
four-level optical quantum systems [6 ë 9]. It was shown by
mathematical simulations that statistical methods can be
also used to reconstruct and control the state vector in
multidimensional Hilbert spaces (for example, when the
number of basis states amounts to many hundreds or
thousands) [4, 5, 10].

The main goal of mathematical simulations within the
framework of the proposed approach is the calculation of
the vectors of stationary quantum states by using statistical
evolution in the direction of decreasing energy. The method
is based on the optimisation of the target functional formed
by the factors taken with the opposite signs, which take into
account the statistical logarithmic likelihood function and
energy. The iterative numerical procedure is performed to
deéne more accurately step-by-step the quantum state
vector until the system reaches the minimum energy with
a high accuracy. Note that the reconstruction of excited
stationary states is achieved by the elementary reénement of
the algorithm and does not lead to any complications
compared to the determination of the ground state. In
this case, it is necessary to work simply in the space of
vectors which are the orthogonal complement to the
reconstructed stationary state vectors.

This approach has, in our opinion, a substantial
advantage over the known method of statistical simulation
of quantum systems ë the so-called diffusion quantum
Monte Carlo method [11, 12]. The traditional quantum
Monte Carlo method is based on the representation of
the Schr�odinger equation in the form of the diffusion
equation for the imaginary time. This method ignores
the phase of a wave function and, hence, the presence of
mutually complementary distributions. Therefore, the dif-
fusion Monte Carlo method can be mainly used to estimate
the ground-state energy.

The proposed method of statistical tomography selection
of quantum states offers an advantage over the traditional
variation method [11, 12]. The main disadvantage of the
latter is that, as a rule, it relies on a successful choice of the
trial function with one ë two unknown free parameters,
which are selected from the energy minimisation conditions.
If the c function has many parameters (tens, hundreds,
thousands), the calculation procedure becomes an ill-posed
problem of linear algebra. In addition, it is necessary to
calculate an astronomical number of integrals. Note that the
method proposed in this paper does not require the explicit
calculations of integrals. The calculation problem related to
the solution of the root likelihood equation is well-posed
even if the state vector contains hundreds and thousands
parameters, while the possibilities of the method itself are
restricted in principle only by the resources of available
computers.

2. Computational aspects of the method

Figure 1 illustrates schematically the procedure of statistical
tomography simulations.

A quantum state is described by the state vector in the s-
dimensional Hilbert space c � (c0, c1, . . . , csÿ1). The state
vector is obtained due to the quantum tomography proce-
dure of optimising the target functional. The optimal value
of the target functional corresponds to the compromise

between the maximisation of the statistical likelihood and
energy minimisation. Statistical data are generated by the
Monte Carlo method by using the Metropolis algorithm.
The state vector is deéned more accurately step-by-step by
calculating the érst principal component of the density
matrix corresponding to the accumulated data.

Consider the main elements of the algorithm in more
detail. Let us assume that it is necessary to provide the
generation of points from a distribution with the probability
density p(x). The Metropolis algorithm [13 ë 15] is based on
the random walk of points with distribution tending
asymptotically to the speciéed distribution p(x). Practically,
the asymptotic distribution can be obtained in the case of
the optimal choice of random walk parameters after a few
(three ë éve) iterations. In our case, simulation becomes even
simpler because the evolution of distributions occurs con-
tinuously and, as follows from calculations, one ë two
iterations are sufécient.

The random walk algorithm is as follows. Let xold be the
position (coordinate) of a point at the given step of the
iteration process, and xnew be its possible new (trial) position
at the next step. The new possible coordinate can be
calculated from the expression xnew � xold � dg, where g
is a random number uniformly distributed in the interval
�ÿ0:5, 0:5� and d is the value speciéed by the user, which is
usually equal to three ë seven standard deviations.

The essence of the method is that the new position of the
point can be accepted or not, depending on the value
generated by a pseudorandom-number generator. For
this purpose, the ratio f of the new probability density
to the old one is calculated:

f � p�xnew�
p�xold�

. (1)

Let us assume that this ratio proved to be greater than a
random number g uniformly distributed in the interval
�0, 1�, i.e. f > g; then, the new value of the coordinate is
accepted, otherwise it is rejected, and the point remains in
the old place. Due to the action of the algorithm, the point
always jumps to a new place, if this is certainly advanta-
geous (i.e. if the probability density at the trial point is
higher). If, however, the probability density at a new point
is lower, the jump is possible as well, but only with some
probability, which is the higher, the smaller difference in the
probability densities. It is assumed that the required
distribution is established most rapidly (optimally), if
30%ë50% points move during one iteration, and the
value of the parameter d is usually chosen according to this
condition.

The maximum likelihood for the state vector is esti-
mated, taking into account the restriction on the vector
norm and energy, by optimising the variational functional
of the form [16]

Generation of statistical

data

Optimisation of the target

functional

Data accumulation

Figure 1. Scheme of the tomography simulation of quantum states.
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S � lnLÿ l1�cic �i ÿ 1� ÿ l2Hijcjc
�
i , (2)

where Hij are the matrix elements of the Hamiltonian; l1;2
are the Lagrange factors. Hereafter, summations is per-
formed over repeating indices.

The logarithmic likelihood lnL, taking into account
statistical data in mutually complimentary coordinate and
momentum spaces, is speciéed by the expression

lnL �
Xn
k�1

ln
ÿ
cic
�
j ji�xk�j �j �xk�

�

�
Xm
l�1

ln
ÿ
cic
�
j ~ji�pl�~j �j �pl�

�
, (3)

where ~ji( p) is the Fourier transform of the function ji(x).
The term containing the Lagrange factor l1 takes into
account the normalisation of the state vector.

The choice of the factor l2 > 0 determines the relative
contribution of the energy term to the target functional. The
maximisation of the value of S is a compromise between an
increase in the logarithmic likelihood lnL and a decrease in
the average energy �E � Hij cjc

�
i . For large values of l2, the

energy term dominates, in accordance with the variational
Monte Carlo method. Small values of l2 correspond to the
solution of the problem based on the speciéed éxed data
sampling.

The average energy �E was estimated in particular
calculations, which are considered below, from the sample
average energy, i.e. the sum of the average potential energy,
which can be measured in the coordinate space, and the
average kinetic energy, which can be measured in the
momentum space.

The equation following from the stability condition for
the target functional represented above corresponds to the
combination of the statistical maximum likelihood principle
with the variational principle of quantum mechanics:

�Rij ÿ l2Hij�cj � l1ci. (4)

Here, the matrix R is determined by the expression

Rij �
Xn
k�1

j �i �xk�jj�xk�
P�xk�

�
Xm
l�1

~j �i �pl�~jj�pl�
~P�pl�

, (5)

and the densities P(xk) and ~P(pl) correspond to the
mutually complementary data in the coordinate and
momentum spaces, respectively, corresponding to the
same state vector c. It is assumed that n and m measure-
ments were performed in the coordinate and momentum
spaces, respectively.

Similarly, the matrix elements of the Hamiltonian can be
estimated by the Monte Carlo method as

Hij �
1

n

Xn
k�1

j �i �xk�V�xk�jj�xk�
P�xk�

� 1

m

Xm
l�1

~j �i �pl�T�pl�~jj�pl�
~P�pl�

.

(6)

Here, T and V are the kinetic and potential energies of the
system in the momentum and coordinate spaces, respec-
tively.

By multiplying both sides of Eqn (4) by c �i and perform-
ing summation over i, we obtain the relation between the
Lagrange parameters:

�n�m� � l1 � l2 �E . (7)

The described algorithm analyses a fraction of statistical
data containing, as a rule, a few hundreds or thousand
points. The state vector is successively reéned by using the
accumulated density matrix [16]. Thus, if c0 is the state
vector at a step, corresponding to the sample size n0, and c is
the vector corresponding to the sample size n, the combined
not normalised density matrix will be described by the
expression

r � n0c0c
�
0 � ncc�. (8)

It can be shown in this case that the reéned state vector
should be estimated as the érst principal component of the
combined density matrix [16, 17].

Note that the considered method can be used for
calculating numerically both the ground and excited states.
In the latter case, the algorithm should be supplemented by
a simple condition according to which the required state
vector should be orthogonal to all the stationary states
found earlier.

3. Applications of the method

The érst illustrative example is the consideration of the
stationary states of motion in the Peschl ëTeller potential
well. The corresponding potential is described by the
expression [18, 19]

U�x� � ÿ U0

cosh 2�x=a� � ÿ
�h 2

2m0a
2

l�lÿ 1�
cosh 2�x=a� . (9)

Here, m0 is the particle mass; the dimensionless parameter l
characterises the potential well depth; and a is the spatial
scale.

This problem can be solved exactly. We restrict our
consideration to the discrete-spectrum states, i.e. the bound
states corresponding to the negative or zero energy. The
corresponding energy levels are described by the expression

En � ÿ
�h 2

2m0a
2
�lÿ 1ÿ n�2, (10)

where n � 0; 1, . . . , nmax, the condition nmax 4 (lÿ 1) cor-
responding to the bound states.

The wave functions (not normalised) of the stationary
states expressed in terms of the hypergeometric function can
be written in the form

cn�x� �
1

cosh �lÿ1ÿn��x=a�

�F

�
ÿ n; 2lÿ 1ÿ n; lÿ n;

1

2
�1ÿ tanh�x=a��

�
, (11)

where ÿ1 < x <1. These function can be also expressed
in terms of Gegenbauer polynomials, which are a particular
form of the Jacobi polynomials

cn�x� �
1

cosh �lÿ1ÿn��x=a� C
�lÿnÿ1=2�
n �tanh�x=a��. (12)
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Figure 2 illustrates the agreement of numerical simu-
lations with exact solutions. The shape of the potential well
(for l � 7 ), the energy levels of the stationary states
(Fig. 2a), and the wave functions for the three érst states
(Figs 2b ë d) are shown. The data are presented in the
dimensionless system of units, in which Planck's constant
�h, the particle mass m0, and the potential spatial scale
parameter a are equal to unity. The functions of a harmonic
oscillator were used as basis functions in expansions in
numerical calculations. The érst 40 stationary energy states
of the harmonic oscillator were used and a few hundreds of
thousands of random points were generated. One can see
that the results of statistical tomography simulation well
agree with exact solutions. Note that, to increase the
accuracy by an order of magnitude, the calculation time
should be increased approximately by two orders of
magnitude.

Another example concerns the study of a two-electron
helium-like atomic system. Consider a negative hydrogen
ion. The corresponding bond state of two electrons and a
proton is quite `friable'. The energy of the system (the
experimental value is E � ÿ0:5277 au [20]) is only slightly
lower than the level ÿ0:5 au at which the system can
spontaneously decompose into a hydrogen atom and an
electron. The negative hydrogen ion was érst considered in
classical papers of Bethe, Hylleraas, and Chandrasekhar
[21 ë 23] and papers of other authors.

Here we consider some aspects that are most interesting
from the point of view of quantum informatics. Due to the
above-mentioned `friability' of the quantum state of the
negative hydrogen ion, its treatment is considerably more
complicated than that of the helium atom. In particular, the
entanglement effects in the quantum state play a very
important role. The negative hydrogen ion has no excited

stationary states, while the ground state proves to be stable
only to the entanglement effect due to which the wave
function of the system of two electrons proves to be
inseparable. Because of the entanglement, the self-consistent
éeld Hartree ë Fock approximation is insufécient for
explaining the existence of a stable negative hydrogen ion.

The system under study has the zero spin. The two-
electron wave function of the system can be written as a
product of the coordinate and spin functions:

jci � c�r1; r2� 

1���
2
p �j"#i ÿ j#"i�, (13)

where the coordinate wave function should be symmetric
with respect to the permutation of particles because the spin
function is antisymmetric.

The hydrogen-like functions can be used as convenient
basis functions in the study of atomic systems. In this case,
the one-particle wave function in the coordinate space is
described by the expression

c�r� � jl�r�
r

Ylm�y;j�, (14)

where r, y, and j are spherical coordinates; Ylm(y,j) are
spherical functions; l and m are the orbital and magnetic
quantum numbers. The same wave functions in the momen-
tum representation has the form

~c�k� � ~jl�k�
k

Ylm�Y;F�, (15)

where k, Y, and F are spherical coordinates in the
momentum space.
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Figure 2. Simulations of stationary quantum states in the Peschl ë Teller potential: the shape of the potential well (for l � 7) and the energy levels of
stationary states (a); the ground state (F � 0:999993, E � ÿ17:995 au) (b); the érst excited state (F � 0:999992, E � ÿ12:497 au) (c); and the second
excited state (F � 0:998, E � ÿ7:997 au) (d).
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The coordinate and momentum wave functions are
related by the Hankel transformation [19]

~jl�k� �
�
2

p

�1=2

iÿl
�1
0

jl�r� jl�kr�dr, (16)

jl�r� �
�
2

p

�1=2
i l
�1
0

~jl�k� jl�kr�dk, (17)

in which spherical Bessel functions entering integrands are
deéned as

jl�kr� �
�
pkr
2

�1=2
Jl�1=2�kr�, (18)

and the radial parts of the wave function are normalised by
the condition�1

0

jjl�r�j2dr �
�1
0

j~jl�k�j2dk � 1. (19)

Note that, to calculate the Hankel transformation with
hydrogen-like functions, it is only necessary to calculate
énite sums and integrate the expressions containing the
products of the power and exponential functions.

The basis was restricted in numerical calculations to the
ten two-electron functions representing the product of one-
electron centrally symmetric hydrogen-like functions (l � 0,
n � 1, 2, 3, 4). The energy of the system was calculated to be
E � ÿ0:5273� 0:0008 au, which coincides within the error
with the experimental value presented above.

To describe the entanglement of a quantum state
visually, we represent the wave function of a two-particle
state in the form of the Schmidt decomposition [24, 25], in
which, as follows from numerical calculations, only the two
érst modes make a substantial contribution. In this approx-
imation, the radial two-particle wave function has the form

c�r1; r2� �
�����
l1

p
c1�r1�c1�r2� ÿ

�����
l2

p
c2�r1�c2�r2�. (20)

Similarly to (19), we will normalise this wave function by
the condition�1

0

�1
0

jc�r1; r2�j2dr1dr2 � 1. (21)

The calculation shows that l1 � 0:88 and l2 � 0:12, and the
total contribution of the third and higher modes does not
exceed 0.5%. The modes found in this way are shown in
Fig. 3a. Note that the Schmidt modes are mutually
orthogonal: hc2jc1i � 0.

Let us explain the physical meaning of the Schmidt
modes. As the degree of closeness of the states jci and jwi,
we will use the square of the modulus of their scalar product
(édelity) F � jhwjcij2; it is obvious that 04F4 1. Among
all the separable states speciéed by the product w(r1)w(r2),
the state deéned by the érst Schmidt mode, for which the
parameter F takes the maximum possible value, proves to be
the closest to the two-particle state c(r1, r2). This means
that, by using the method of self-consistent Hartree ë Fock
éeld corresponding to the separable approximation, the
quantum state can be described with accuracy no better than
l1 � 0:88, which is not sufécient for explaining the stability
of the negative hydrogen ion.

Among all the two-mode approximations, the wave
function speciéed by the two érst Schmidt modes proves
to be the closest to the true function. We can easily pass
from the Schmidt representation to another visual repre-
sentation of the entangled quantum state for the negative
hydrogen ion

c�r1; r2� � N�u1�r1�u2�r2� � u2�r1�u1�r2��, (22)

where N � (
���
l
p

1 �
�����
l2

p
)=2 is the normalisation factor.

Expression (22) can be called the two-orbital approximation
for wave functions. The orbitals and Schmidt modes are
related by the transformation

u1�r� � cos�a�c1�r� � sin�a�c2�r�, (23)

u2�r� � cos�a�c1�r� ÿ sin�a�c2�r�, (24)

where the angle a is chosen so that the expansion has form
(22) and does not contain the terms proportional to
u1(r1)u1(r2) and u2(r1)u2(r2). This requirement leads to
the condition

a � arctan

�
l2
l1

�1=4
, (25)

from which it follows that a � 308. The obtained orbitals
(Fig. 3b), unlike the Schmidt modes, are not orthogonal
and

hu2ju1i �
�����
l1

p
ÿ

�����
l2

p�����
l1

p
�

�����
l2

p . (26)

The two-orbital approximation can be visually interpreted
as follows: each of the electrons, attempting to occupy the
orbital closest to a proton, `ejects' another electron into a
more distant and more `blurred' orbital (see Fig. 3b).

4. Conclusions

Let us summarise brieêy the main results of the paper.
(i) A new method of the statistical simulation of

quantum system has been proposed. The method is based
on the generation of mutually complimentary data in the
coordinate and momentum spaces and their purposeful
tomography with the energy minimisation. Statistical
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Figure 3. Schmidt modes (a) and orbitals (b) for the negative hydrogen
ion.
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data were generated by using the Metropolis algorithm. The
iteration procedure of the estimate of the state vector was
based on the solution of the root likelihood equation and
the calculation of the érst principal component of the den-
sity matrix corresponding to the accumulated data. The
method does not involve complicated and ill-posed multi-
dimensional computational procedures and can be used to
calculate the wave functions and energies of the ground and
excited stationary states of quantum systems.

(ii) The examples of application of the proposed method
and algorithm to a quantum system with the Peschl ë Teller
potential and to the two-electron state describing the nega-
tive hydrogen ion have been presented. The results of
numerical calculations are in good agreement with analytic
solutions and experimental data.

(iii) Based on the Schmidt expansion, the entanglement
of the quantum state has been analysed for the negative
hydrogen ion. It has been shown that the bound state of two
electrons and a proton cannot be interpreted in the self-
consistent éeld Hartree ë Fock approximation and is des-
cribed by the two-orbital model proposed in the paper. The
Schmidt modes and quantum orbitals have been calculated
numerically for this problem.
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