
Abstract. The propagation of probe radiation pulses in
ultracold atomic ensembles is studied theoretically under
conditions of electromagnetically induced transparency. The
pulse `stopping' process is considered which takes place upon
nonadiabatic switching off and subsequent switching on the
control éeld. We analysed the formation of an inverted
recovered probe radiation pulse, i.e. the pulse propagating in
the direction opposite to the propagation direction before the
pulse stopping. Based on this analysis, a scheme is proposed
for lidar probing atomic or molecular clouds in which the
probe pulse penetrates into a cloud over the speciéed depth,
while information on the cloud state is obtained from the
parameters of the inverted pulse. Calculations are performed
for an ensemble of 87Rb atoms.

Keywords: electromagnetically induced transparency, light scatte-
ring, radiation transfer, `stopping of light', lidar probing, atomic
traps.

1. Introduction

The creation of systems with the speciéed optical properties
and the search for methods for rapid controlling these
properties is one of the most important problems of modern
quantum optics and quantum electronics. The possibility of
changing the optical properties of matter by exposing it to
the additional, so-called control coherent radiation attracts
great recent interest. Such an exposure produces laser-
induced coherence in atomic and molecular systems or
solids, resulting in a substantial modiécation of their optical
characteristics. This modiécation can be observed exper-
imentally by the properties of a weak probe radiation. The
laser-induced atomic coherence forms the basis of well-
studied optical phenomena such as coherent population
trapping and electromagnetically induced transparency
(EIT) as well as of some comparatively new phenomena
called the slowing of light and stopping of light (see reviews
[1 ë 3] and references therein).

Along with analysis of the physical properties of induced
phenomena, their possible applications in quantum mag-
netometry, frequency standards, lasers, telecommunication
and optical calculation devices, and in the development of
new methods for optical information storage (in particular,
quantum information) are widely discussed. In this paper,
we propose and analyse theoretically the possible applica-
tion of EIT for optical probing of atomic ensembles.

At present optical methods for diagnostics of atomic and
molecular systems are widely used. The information on the
state of the medium under study is obtained from the
intensity, polarisation, and spectra of transmitted or scat-
tered radiation. However, all these methods have an
important disadvantage because the properties of radiation
detected in experiments are determined by its evolution
along the entire propagation path in the medium. Thus,
these methods give only the integral information, which
complicates the interpretation and determination of the
local properties of systems under study, especially in the
case of a large optical thickness and a considerable spatial
inhomogeneity.

The method that we propose here is based on the
analysis of the attenuation of a probe pulse, which is caused
by incoherent scattering and occurs even under EIT
conditions [4 ë 7]. The type of attenuation depends not
only on the probe-pulse parameters, for example, its spectral
width, but also on the properties of the medium such as the
concentration of atoms, their velocity, the presence of
impurities for which EIP conditions are not fulélled, the
type of interatomic interaction, etc. The method also
assumes the use of the effect of stopping light. It is known
that the switching on a control éled can `stop' a probe pulse
at an arbitrary depth in a medium. In this case, the probe
pulse disappears and the information on its properties is
preserved in the form of a low-frequency atomic coherence.
To read this information, i.e. to reconstruct the pulse, it is
necessary to switch on the control éeld again. It is important
that the parameters of the reconstructed pulse substantially
depend on the properties of the control éled upon reading.
In particular, it is possible to reconstruct the inverted pulse
propagating oppositely to the initial pulse. This occurs if the
direction of the wave vector of the control éeld during
reading is opposite to its direction during recording [8 ë 10].
Thus, stopping the probe pulse followed by the change of its
propagation direction to the opposite one allows the lidar
probing of the system under study by a speciéed depth. In
this case, as in traditional detection methods, the difference
of the detected pulse from the initial one is determined by its
attenuation over its propagation path. However, érst, this
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path passes only through a part of the atomic or molecular
ensemble and, second, a comparison of two pulses stopped
in different but close regions allows one to make certain
conclusions on the local properties of this ensemble.

In this paper, we consider the stopping of light and the
formation of inverted pulses in atomic clouds cooled in
traps. On the one hand, this choice is determined by their
possible practical applications, and on the other ë by the
lack of reliable detailed information on their shape, the
spatial density distribution, and the atomic velocity.

In section 2, we consider the general theory of radiation
transfer under the conditions of nonstationary EIT by using
the Keldysh diagrammatic technique. We obtained the
analytic expressions for the dielectric susceptibility tensor
of an inhomogeneous ensemble for the case of the instant
switching on and off the control éeld taking into account the
real Zeeman and hyperéne structures of atomic levels. The
transformation of a Gaussian probe pulse during its
propagation, recording, and reading is analysed in section
3 by solving numerically the radiation transfer equation. In
this section, the intermediate processes caused by non-
adiabatic switching off the control éeld are also studied
and the basic results of the paper are formulated.

2. Application of the diagrammatic technique
to describe radiation transfer under
nonstationary EIT conditions

We will analyse the eféciency of our method by the example
of an ensemble of 87Rb atoms cooled in a magnetooptical
trap. Figure 1 shows the scheme of the experiment on
observation of an inverted probe radiation pulse and the
structure of operating atomic transitions.

The control éeld with the wave vector kc directed along
the positive direction of the z axis is switched off when the
probe pulse propagating in the same direction has entered
the atomic medium completely or partially. The control éeld
is switched on again after some time, however its wave
vector k 0c is now oriented in the opposite direction. The
reconstructed probe pulse is detected with a photodetector
PD after reêection from a beamsplitter BS. Probe radiation
is éltered with a spectral élter (analyser) SF.

The operating transitions for the control and probe éelds
are chosen by assuming that only atoms at the hyperéne-
structure level F � 1 of the ground state are conéned in a
trap upon cooling. It is assumed that the probe éeld is quasi-
resonant with the F � 1! F 0 � 1 transition (D1 line) and
the control éled is quasi-resonant with the F � 2! F 0 � 1
transition. The distribution of atoms among Zeeman
sublevels of the F � 1 state is assumed uniform due to
virtually isotropic irradiation upon laser cooling. The
excited-state hyperéne splitting is 816.7 MHz, which exceeds
the excited-level width more than by two orders of
magnitude. Therefore, the F 0 � 2 sublevel is neglected in
calculations. We also consider only the case of collinear
geometry, when the wave vectors of the probe and control
éelds during excitation of the coherent state (polariton
recording) are directed along the same axis, which we
choose as the quantisation axis. Polarisations of the control
and probe éelds are assumed circular for deéniteness, the
control éeld being right-hand polarised and the probe éeld
being either right-hand or left-hand circularly polarised
(Fig. 1 corresponds to the latter case).

Atomic clouds in magnetooptical traps have character-

istic temperatures between 50 and 100 mK. In this case,
Doppler shifts are considerably smaller than the widths of
excited-state levels. For typical control-éeld intensities used
in light stopping experiments, Doppler shifts are also
considerably smaller than the spectral widths of induced
transparency bands related to EIT. For this reason, we will
assume that atoms are at rest. Note that the assumptions
about the collinearity of the éelds and immobility of atoms
are not necessary. The collinearity is important in light
stopping experiments because it allows one to increase
considerably the `stopping time' by decreasing the destruc-
tion rate of low-frequency coherence caused by atomic
motion [11]. If probing is performed by using EIT, the
time during which the control éeld is switched off can be
made arbitrarily small, and the atomic motion can be
considered in the general calculation scheme.

We will describe the propagation of light in an atomic
cloud under nonstationary EIT conditions by using the
Green function formalism. The application of this formal-
ism to describe radiation transfer in atomic clouds cooled in
a magnetooptical trap is described in detail in recent review
[12]. An example when the evolution of the atomic sub-
system is determined by the control éeld, along with other
factors, was considered in [7]. The approach developed in
[7, 12] can be generalised to the case considered here. This
generalisation can be performed by several methods. We will
use here the Konstantinov ë Perel ëKeldysh diagrammatic
technique [13 ë 16] for nonequilibrium systems, which was
earlier used successfully for solving the problems of scatter-
ing of light by ultracold clouds [17].

The source of information on the state of a medium in
the probe method considered in our paper is the properties
of a pulse coherently scattered in the medium. For the
collinear geometry and invariable polarisation of the control
éled considered here, the dielectric susceptibility tensor of
the atomic ensemble is diagonal and therefore the polar-
isation of the probe pulse will not change during its
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Figure 1. Schemes of the experiment (a) and operating transitions (b):
PD: photodetector; SF: spectral élter; BS: beamsplitter; kp is the wave
vector of the probe éeld; kc and k 0c are the wave vectors of the control
éeld at different experimental stages.
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evolution, remaining circular. Thus, the main characteristic
is the pulse intensity. This intensity for the coherent
component is determined by the average value of the
frequency component of the éeld-strength operator
hE�m �r; t�i. This value in the lowest order of expansion in
the probe-radiation intensity can be represented by the
graphic expansion

Here, the wavy and solid lines correspond to the photon
and atomic Green functions, respectively. The tops corre-
spond to the interaction of light with atoms of the medium
in the dipole approximation. The thin dashed straight lines
are the coherent components of the probe input éeld. The
signs at the tops correspond to the choice of a certain type of
time ordering of Green functions appearing in the Keldysh
technique.

The atomic Green functions G �ÿÿ�nn for excited states are
shown in diagrams (1) by thick solid lines. Unlike thin lines
corresponding to free atoms in the ground state, these lines
are obtained by the summation of diagrams taking into
account spontaneous decay and the interaction of atoms
with the classical control éeld (see below).

The inénite series in the right-hand side of (1) can be
summed, by reducing (1) to the Dyson equation

Such an approach is convenient for considering the
stopping of light in the absence of the counterpropagating
control radiation, when the reconstructed probe pulse
propagates in the positive direction of the z axis.

When the control éeld propagates after the repeated
switching on in the negative direction of the z axis, it is more
convenient to act otherwise. As follows from our analysis
(see below), in this case only one of the loops in each
diagram in (1) describes the creation of the inverted pulse,
while the rest of them take into account the interaction of
the probe pulse with atoms during its propagation until a
stop and after its reconstruction. Thus, it is convenient to
calculate the inverted pulse by grouping diagrams in (1) in
the following way:

Here, hE�m (r; t)ib is the average éeld strength on a photo-
detector taking into account the propagation direction and
spectral éltration of the components of control radiation;
~G �ÿÿ�nn is the excited-state Green function in which only the
terms depending on the mutual orientation of the wave
vectors of the control éled at the two stages of the system
evolution and, therefore, responsible for the formation of
the inverted probe pulse, are preserved.

Diagram (3) can be easily interpreted. The thick dashed
line satisfying Eqn (2) describes the propagation of the
probe pulse in the positive direction of the z axis at the érst
stage, when the probe éeld was not switched off yet, the
thick wavy line describes the propagation of the pulse in the
negative direction after repeated switching on the éeld. The
retarded photon Green function corresponding to this wavy
line satisées the equation similar to (2), but with other initial
conditions (see details, for example, in [17]).

To calculate the susceptibility tensor of the atomic
ensemble under nonstationary EIT conditions and, hence,
to solve the radiation transfer equation of type (2) for
photon correlation functions entering (3), it is necessary to
determine the explicit form of the atomic Green functions of
excited states. This problem also can be solved by using the
diagrammatic technique.

In the zero order of expansion in the probe éeld, the
multilevel system shown in Fig. 1b decomposes into a set of
two-level subsystems coupled by the control éeld. Consider
one of such subsystems. The index n of the Green function
corresponds to one of the Zeeman sublevels of the excited
state jni � jF 0; ni. We denote the lower state of the
subsystem under study by jm 0i � jF;m 0i.

The diagrammatic technique gives the graphic equations

for the atomic Green functions in the resonance approx-
imation. Here, the wavy lines correspond to the external
control éeld. The terms containing such lines describe the
formation of the high-frequency (optical) coherence of an
atom and related variations in the population of different
atomic states. The medium is optically transparent for the
control éeld, and therefore this éeld is assumed speciéed in
the calculation. The thin solid lines correspond to the Green
functions of free atoms. The spontaneous decay of the
excited state is described by the second term in the érst
equation of system (4).

System (4) in the analytic form is reduced to two
equations
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Here, Em 0 and En are the energies of the ground jm 0i and
excited jni states coupled by the control éeld (see Fig. 1); g
is the spontaneous decay rate of the jni state; (dm)nm 0 are the
matrix elements of the dipole moment operator of an atom;
E ���m (r; t) and E �ÿ�m (r; t) are the positive- and negative-
frequency components of the control classical éeld. We
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assume that the éeld amplitude changes instantly at the
moment t1 from E0 to zero, and the repeated inénitely rapid
switching on occurs at the moment t2. The éeld is assumed
monochromatic in the intervals t < t1 and t2 < t. On the
one hand, such a formulation of the problem means that
the consideration is performed beyond the scope of the
usual adiabatic approximation. However, as follows from
analysis performed below, probe radiation losses related to
transient processes are small in the case under study and
can be neglected. On the other hand, the instant change in
the parameters of the control éled allows us to detect
reliably the instant of the probe-pulse stopping and to
obtain a number of results analytically.

Note that the control éeld after switching on can
considerably differ from the éeld that acted at the initial
stage. It can have the different frequency, amplitude,
propagation direction, etc. To avoid the encumbering of
calculations by insigniécant details, we will assume that the
only parameter that can be changed after repeated switching
on is the propagation direction kc ! k 0c. Let us divide the
time domain into three intervals: 1) t < t1, 2) t1 < t < t2, and
3) t2 < t. Let us introduce instead of G

�ÿÿ�
m 0n (r; t; t0) a new

unknown function G
0 �ÿÿ�
m 0n (r; t; t0): G

�ÿÿ�
m 0n (r; t; t0� �

G
0 �ÿÿ�
m 0n (r; t; t0� exp (ioct); where oc is the control éeld fre-

quency. By substituting this expression into (5), we obtain in
each time interval a system of two equations with constant
coefécients. The general solution of this system can be
found analytically for arbitrary initial conditions. Solutions
in different regions should be sewed at the boundaries of the
corresponding time intervals. Taking into account that the
Green function has two time arguments t and t0 and t5 t0,
we obtain six different solutions depending on the intervals
(1, 2 or 3) to which times t and t0 belong. Let us denote
different solutions by two additional indices i and j:
G
�ÿÿ�
ij;nn (t; t0), where i, j � 1, 2, 3 depending on the values

of t and t0.
We present the two most important solutions as an

example. One of them, G
�ÿÿ�
11;nn (r; t; t0) corresponds to the

situation when t0 < t1 and t < t1. This solution allows us to
énd the susceptibility tensor at the érst stage of the probe-
pulse evolution during its propagation in the medium before
switching off the control éeld:

G
�ÿÿ�
11; nn�r; t; t0� �

1

2
exp ÿiD1 ÿ g=2ÿ G� ��

� tÿ t0� �=2�T1�tÿ t0�. (6)

A similar solution G
�ÿÿ�
33;nn (r; t; t0) will determine the prop-

agation of the reconstructed pulse at the énal stage.
The second important solution G

�ÿÿ�
31;nn (r; t; t0) corre-

sponds to the situation when t0 < t1 and t > t2. This
solution describes the evolution of the excited state begin-
ning in interval 1 and terminating by emission of a photon
to the probe-éeld mode in interval 3 after repeated switching
on the control éeld. The contribution caused by G

�ÿÿ�
31; nn(t; t0)

is responsible for the stopping and `storage' of light in the
medium:

G �ÿÿ�31;nn �r; t; t0� �
1

4
exp ÿiD1 ÿ g=2ÿ G� � tÿ t2 � t1 ÿ t0� �=2� �

�
�
exp ÿg t2 ÿ t1� �=2� �T1�t1 ÿ t0�T1�tÿ t2�ÿ

ÿ exp�ÿiD1�t2 ÿ t1� � i�k 0c ÿ kc�r�

� Oj j 2
G 2

T2�t1 ÿ t0�T2�tÿ t2�
�
. (7)

Here, D1 is the detuning of the control éeld from the
resonance (see Fig. 1b); O is the corresponding Rabi
frequency; and G � ��iD1 ÿ g=2�2 ÿ jOj2�1=2. Note that
because the matrix elements of the atomic dipole moment
operators are different, the different m 0! n transitions have
different Rabi frequencies. In the calculations presented
below, we will éx the value of O for the m 0 � fF � 2,
M � ÿ1g! n � fF 0 � 1;M 0 � 0g transition. The excited-
state energy in (7) is set equal to zero for simplicity
(En � 0). The auxiliary functions T1(t) and T2(t) are
deéned by the expressions

T1�t� � 1� exp�Gt� � �g=2ÿ iD1�
G

�1ÿ exp�Gt��,

T2�t� � 1ÿ exp�Gt�.
Unlike the stationary control éeld, when functions
G �ÿÿ�nn (r; t; t0) depend on the difference tÿ t0 of the time
arguments, the Green functions in the case under study
depend on each of these arguments. Moreover, the second
term in braces in (7) substantially depends on the direction
of the wave vectors of the control éeld at the initial (kc) and
énal (k 0c) evolution stages. One can easily see that upon the
calculation of the polarisation operator in (1) or (2) in the
case of k 0c � ÿkc, this term will be nonzero if the initial
probe and scattered photons are counterpropagating. This
circumstance reêects the fact of momentum preservation
upon scattering. In addition, the second term does not
decay at the interval t1 < t < t2, which is explained by the
fact that we neglected in calculations the relaxation of the
hyperéne atomic coherence of the system in the ground
state. The érst term decreases in this interval at the rate
determined by the spontaneous relaxation of the excited
state, and therefore its inêuence can be neglected for
t2 ÿ t1 4 gÿ1.

Other atomic correlation functions can be found sim-
ilarly. The knowledge of these functions allows one to énd
the susceptibility tensor of the atomic ensemble in the
analytic form. By omitting the details of the calculation
and corresponding cumbersome expressions, we consider
below the basic results.

3. Results of calculations

Before proceeding to the analysis of lidar probing under
EIT conditions, i.e. to the analysis of the formation of the
reconstructed inverted pulse, we consider a simpler case of
reconstructing the probe pulse without a change in its
propagation direction. Such a case is realised if the wave
vector of the control éled does change its direction during
observation (k 0c � kc). In this case, the main attention will
be devoted to the role of transient processes taking place
upon instant switching on and off the control éled and
considered beyond the scope of the adiabatic approxima-
tion, which is commonly used in the EIT theory.

The properties of radiation transmitted forward were
analysed by solving numerically Eqn (2). It was found that
the parameters of the reconstructed pulse depended most
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strongly on the total optical thickness of the medium.
Therefore, we will distinguish the cases under study by
the optical thickness not modiéed by EIT effects. The
optical thickness of a spherically symmetric atomic cloud
of a Gaussian shape for radiation propagating through its
centre is b0 � (2p)1=2s 0n0r0, where s

0 is the absorption cross
section (in the absence of EIT); n0 is the concentration of
atoms at the cloud centre; r0 is the dispersion of the
corresponding Gaussian distribution (we will call it the
cloud radius for brevity).

Different curves in Fig. 2 correspond to different optical
thicknesses of clouds for the same instants of switching off
the control éled t1 � 200gÿ1 and its subsequent switching on
t2 � 500gÿ1. At small thicknesses, a part of the probe pulse
has already propagated through the cloud by the instant t1,
another part is in the cloud, and a part of the pulse has not
entered yet into the cloud. The part of the pulse localised in
the cloud produces the long-lived hyperéne coherence of the
ground atomic state and will be reconstructed after repeated
switching on the control éeld. The part of probe radiation
that had no time to enter the medium by the instant t1 enters
it when the control éled is already switched off, propagates
through the optically dense medium in which EIT is absent,
and is scattered incoherently to other modes. Because the
probe-pulse duration was set equal to 50gÿ1, this part is

small for t1 � 200gÿ1. As the cloud thickness increases, the
increasing part of the pulse can be retained in the medium.

The instant switching on and off of the control éeld is
accompanied by transient processes, which are illustrated in
Fig. 2b. These transient processes lead to the emission of a
train of short pulses of total duration gÿ1, their number
depending on the optical thickness of the medium. This can
be explained by the fact that the atomic coherence at the
m 0! n transition is formed upon switching on and decays
after switching off the control éled for the time of the order
of the excited-state lifetime. For this time, the conditions of
nonideal EIT are realised in the medium, which are similar
to those in the case of a polychromatic control éeld. A short
probe pulse with a relatively broad spectrum is formed. The
spectral components of this pulse are absorbed differently
during its propagation, a part of them falling into the region
of normal dispersion and the other part ë into the region of
anomalous dispersion. Moreover, a part of components are
located outside the atomic resonance region. This leads to a
strong distortion of the pulse spectrum during propagation
and, hence, to the distortion of the time proéle of the pulse.
The higher is the optical density of the medium, the stronger
are these distortions. The propagation of short pulses with
spectral widths comparable with the EIT bandwidth or
greater was considered in detail, for example, in [6].

Transient processes proceeding after the instant switch-
ing of the control éeld parameters lead to insigniécant losses
of the probe-pulse energy, as illustrated in Fig. 3. This égure
shows two pulses made coincident on the time axis. The érst
pulse propagated through the medium in the stationary EIT
regime without switching off the control éeld, while the
second pulse was stopped by the method described above.
One can see that both these pulses are virtually indistin-
guishable at the scale used (except a small region related to
the transient process, see Fig. 2b). This well agrees with
known results [5, 18, 19], according to which rapid switch-
ing off the control éeld leads to small losses if the control
éeld and the group velocity of the probe pulse before
switching off were small and the probe-éeld spectrum
was in the transparency region.

Consider now the parameters of the inverted pulse
formed after switching on the control éeld propagating
in the negative direction of the z axis. The parameters of this
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Figure 2. Time dependences of the intensity of the transmitted left-hand
circularly polarised probe radiation for different optical thicknesses b0 of
the atomic cloud (a). The control éeld is switched on at the instant
t1 � 200gÿ1 (light stopping time), the reconstruction of the probe pulse
begins at the instant t2 � 500gÿ1; O � 0:4g. Figure 2b shows transient
processes at these instants at the extended time scale.
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Figure 3. Comparison of the shapes of the reconstructed probe pulse (1)
and the pulse propagated through the medium without stopping (2). The
optical thickness of the medium is b0 � 100, t1 � 200gÿ1, t2 � 500gÿ1,
O � 0:4g. Pulse ( 2 ) is shifted along the time scale by t2 ÿ t1 � 300gÿ1 for
clearness.
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pulse are found by the direct calculation of diagram (3) by
using Eqn (2). Figure 4 shows the shape of inverted pulses
recorded at the instant t1 � 200gÿ1 in clouds of the
Gaussian shape of different sizes. The concentration and
radius of a cloud are chosen so that the total optical
thickness determined by neglecting EIT effects is b0. The
control éeld was repeatedly switched on at the instant
t2 � 500gÿ1. It is assumed that the transverse size of the
probe beam is considerably smaller than the cloud radius, so
that the transverse inhomogeneity of the cloud was
neglected. One can see from Fig. 4 that the recording
eféciency of the probe Gaussian pulse of a éxed intensity
depends on the pulse polarisation and the cloud size. Thus,
the left-hand circularly polarised pulse at b0 � 20 is not
preserved by the reading instant. The propagation velocity
of the right-hand circularly polarised probe pulse for the
chosen scheme of operating transitions is substantially lower
than that of the left-hand polarised pulse (anisotropy under
the EIT conditions are discussed in details in [7]); therefore,
the former pulse can be more eféciently used for probing
optically thinner media. Note that due to a low velocity of
the right-hand polarised pulse, this pulse does not leave the
cloud by the instant t1 � 200gÿ1 for b0 � 60 and more. As a
result, in particular, the dependences corresponding to
b0 � 60 and 100 in Fig. 4b prove to be indistinguishable.

Figure 5 presents the results of calculation of the
inverted pulse stopped at different instants, i.e. recorded
in different regions of the Gaussian cloud with the optical
thickness b0 � 100. Note that under the EIT conditions,
when the pulse velocity in the medium is inversely propor-
tional to the atomic concentration, the instant t1 of probe-
pulse recording determines uniquely the optical path propa-

gated by the pulse by this moment. The control éeld was
repeatedly switched on at the same instant t2 � 500gÿ1 for
all the curves. The probe-pulse parameters are as in Fig. 2a.
The different shape of these pulses is caused by different
penetration depths into the cloud and, thus, demonstrates
the possibility of probing clouds in layers.

4. Conclusions

We have studied the propagation of light in the atomic
medium under nonstationary EIT conditions. The calcu-
lations have been performed beyond the scope of the
commonly used adiabatic approximation. Transient proc-
esses proceeding after instant switching on and off the
control éeld have been considered. The formation of the
inverted reconstructed probe pulse, i.e. the pulse propagat-
ing oppositely to its propagation direction before a stop,
has been analysed. Based on the analysis performed, the
scheme has been proposed for lidar probing atomic or
molecular clouds, in which the probe pulse penetrates into
the cloud by the speciéed depth, and information on the
state of the latter is obtained from the characteristics of the
inverted pulse.

Calculations have been performed for ensembles of 87Rb
atoms in the atomic trap. However, the potential possibil-
ities of the method are considerably wider. The method can
be used for systems in which the EIT effects and light
stopping are possible. In particular, it can be applied for
detecting impurity atoms for which (unlike the main
component) the condition of EIT appearance is not fulélled,
while the scattering cross section for probe radiation is still
suféciently high. Such impurities can be, for example,
clusters of several closely spaced atoms accidentally formed
in ultracold clouds. The main advantage of the lidar method
over the traditional `transmission' probe method is the
possibility to probe object in layers.
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