
Abstract. The quantum key distribution protocol BB84
combined with the repetition protocol for error correction is
analysed from the point of view of its security against
individual eavesdropping relying on quantum memory. It is
shown that the mere knowledge of the error-correcting
protocol changes the optimal attack and provides the
eavesdropper with additional information on the distributed
key.
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In the last decade the criteria for unconditional security
have been found for many quantum cryptography proto-
cols, which provided their security from attacks of any type
[1 ë 3]. However, the criteria for security against the simplest
and, therefore, most easily realised class of attacks ë
individual attacks, still attract considerable interest. This is
explained by the fact that the security against such attacks
is achieved at the much higher rate of key generation than
the unconditional security.

The analysis of the security against individual attacks
was based so far on the implicit assumption that the
eavesdropper (Eve) performing a quantum measurement,
which is a part of any eavesdropping process, does not
obtain any advantage from the knowledge of the error-
correcting protocol (ECP) applied by legitimate users (Alice
and Bob) to generate identical keys [3, 4]. We show that
generally this is not the case and a priori knowledge of ECP
allows Eve to increase her information on the key even upon
the individual attack.

We illustrate this by considering the simplest protocol of
the quantum key distribution BB84 with the simplest ECP ë
the triple repetition protocol. Any quantum key distribution
protocol consists of two stages: the data transmission and
their classical processing. The data are transmitted by
sending two-level systems (qubits) along a quantum channel.
In commercial quantum cryptography devices, single pho-
tons are used as qubits and an optical ébre is used as the
quantum channel. Recall the order of the quantum data
transmission in the BB84 protocol [5]. One of the users

(Alice) generates two random uniformly distributed bits, a
and r. Depending on the result, she prepares a qubit in one
of the four quantum states (j0i, j1i, j�0i and j�1i). The two
érst and two last states are orthogonal in pairs, and the
relation between the pairs of states is described by the
expressions

j�0i � 1���
2
p �j0i � j1i�; (1)

j�1i � 1���
2
p �j0i ÿ j1i�: (2)

The states j0i and j�0i correspond to a � 0, and the states
j1i and j�1i ë to a � 1. For r � 0, Alice uses the basis
fj0i; j1ig and for r � 1 ë the basis fj�0i; j�1ig. The created
state is transmitted along the quantum channel to another
user (Bob), who generates a random bit r 0 and, depending
on its value, adjusts the device for measuring the qubit state
in the basis fj0i; j1ig for r 0 � 0 or the basis fj�0i; j�1ig for
r 0 � 1. Bob obtains the value of the bit b equal to 0 if the
measurement gives j0i or j�0i, and the bit value equal to 1 if
the measurement gives j1i ËÎË j�1i. It is obvious that in the
absence of transmission and measurement errors, bits a and
b should coincide each time when bits r and r 0 coincide.

This procedure is repeated 2n� 2d times, where n and d
are natural numbers and 15 d5 n. As a result, the so-called
raw data sequences are produced: sequences of bits a for
Alice and bits b for Bob. Then, the classical processing of
the raw sequences begins, which is coordinated by trans-
mission along a classical channel (for example, a local
network), which is not secure from the passive eavesdrop-
ping.

The érst stage of classical processing ë the basis
reconciliation, involves the disclosure of the sequence of
bits r and r 0, which Alice and Bob send to each other along
the classical transmission channel. After that both sides
retain only the bits of the raw sequence corresponding to the
coincidence of r and r 0. The number of such bits will be
n� d (asymptotically in the limit of large n) and they will
form the so-called sifted sequences.

At the second stage ë the error estimate, Alice generates
a random set of d numbers from 1 to n� d and transmits
this set to Bob together with the values of bits of the sifted
sequence, having the corresponding numbers. Bob énds the
values of bits with the corresponding numbers in his sifted
sequence and compares these values with the values of
Alice's bits. Based on this comparison, Bob calculated the
fraction Q of noncoinciding bits in a random sampling of
length d. This fraction is accepted by both sides as the
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estimate of the bit error rate in the quantum transmission
channel. The bits involved in the random sampling are
removed from sifted sequences, which acquire as a result the
length n of bits.

The third stage of classical data processing involves the
error correction. For this purpose, the sides exchange some
information along the classical transmission channel. The
error correction process can be either one-sided, when only
Alice sends information to Bob (or vice versa), or two-sided,
when the interactive information exchange occurs. We will
restrict our consideration here to one-sided ECPs, which are
simplest for analysis.

According to the Shannon theorem of the standard
theory of information [6], the number of bits, which Alice
should send to correct Qn errors in the Bob's sifted key of
length n, is asymptotically equal to nh2(Q), where

h2�x� � ÿx log2 xÿ �1ÿ x� log2�1ÿ x� (3)

is the binary Boltzmann H function. The number of
transmitted bits in a particular ECP will be somewhat
larger. After the ECP execution, the users obtain identical
(with a high probability) corrected sequences of length n of
bits. The ECP should be developed taking into account that
all the data being transmitted reach the eavesdropper Eve,
which can passively intercept the classical channel. Thus,
some information Iec on the corrected key reaching Eve is
related to each ECP. This information is `summed' by Eve
with the information Iqt obtained during eavesdropping in
the quantum channel at the quantum transmission stage.
This summation is not a simple arithmetic operation
because the information Iqt can be quantum rather than
classical, which is possible for Eve having the quantum
memory.

The last stage of the classical data processing is the
privacy ampliécation procedure. This procedure involves
the mapping by hashing of the corrected sequence of length
n on the énal sequence of length m4 n, which can be
already used as the cryptographic key [7]. The length m of
this key is given by the special theory in which the upper
limit of the classical information Iqt�ec on the corrected
sequence of Alice and Bob, which is accessible to Eve, is
used as the input parameter.

If Eve has no quantum memory capable of storing the
quantum information during the time between the quantum
transfer and classical data processing, the expression for the
length of the secret key is especially simple. In this case, the
information of Eve on the sifted sequence Iqt of Alice is
simply a number (mutual information according to Shan-
non), which is estimated by simulating the eavesdropping
process. For the error rate Q, the information of Bob on the
sifted sequence of Alice is IB � n�1ÿ h2(Q)�. It follows from
the Csiszar ëKorner theorem [8] that there exits the codes
which asymptotically provide the obtainment of

m � IB ÿ Iqt (4)

bits of the key, Eve's information about this key asymptoti-
cally tending to zero. These codes combine in fact the error-
correcting codes and the privacy ampliécation procedure.

There also exists the possibility of another eavesdrop-
ping strategy lying beyond the scope of applicability of the
Csiszar ëKorner theorem, which is provided by the presence
of a suféciently durable quantum memory of Eve. In this

paper, we consider how information on the ECP allows Eve
to sum eféciently the quantum (Iqt) and classical (Iec)
information. Note that the usefulness of the quantum
memory for eavesdropping is well-known and has been
studied in detail from the information-theoretical point of
view [9]. However, this approach does not consider, érst,
particular information eavesdropping protocols and, sec-
ond, assumes that Eve has not only the quantum memory
but also in fact a quantum computer providing collective
measurements of many qubits. In this paper, we considered
the case when Eve has the quantum memory but not a
quantum computer, which is sufécient for the individual
attack. The efécient use of information obtained at the
error-correcting stage with such a limited arsenal of inter-
ception means has not been considered so far. Such an
approach seems all the more reasonable because progress in
the éeld of quantum memory is strongly ahead of that in the
éeld of quantum computers. In addition, this approach is
based on the constructive description of the eavesdropping
process rather than merely proves its possibility.

To illustrate the eavesdropping principle, we consider
one of the simplest ECPs ë the triple repetition protocol,
which operates in the following way. Alice divides randomly
the zeroes of her sifted sequence into blocks containing three
bits each. She performs the same procedure with ones. All
the blocks are arranged randomly. Alice communicates to
Bob the bit numbers in each triplet and writes their values as
bits of her corrected sequence. Bob selects from his sifted
sequence the bits with corresponding numbers, selects the
value that is represented by the majority in the triplet and
writes it into his corrected sequence. For a low error rate,
the corrected sequences of Alice and Bob will be almost
identical. The difference can appear only in cases when one
or all three bits in one block contain errors, which gives the
error probability

QB � 3�1ÿQ�Q 2 �Q 3 (5)

in the corrected sequence. For the typical error rate in the
sifted sequence equal to 10ÿ2, the error rate in the corrected
sequence will be of the order of 10ÿ4. If such an error rate is
unsatisfactory, another ECP can be used after the triple
repetition protocol to achieve the required error rate.

Let us now describe the actions of Eve aimed at the
information eavesdropping [4]. Eve attaches the probe four-
level system A in the initial state jwiA to each qubit X
propagating in the quantum channel and performs the
unitary transformation U with both systems:

j0iXjwiA !
������������
1ÿQ

p
j0iXjAiA �

����
Q

p
j1iXjBiA; (6)

j1iXjwiA !
������������
1ÿQ

p
j1iXjC iA �

����
Q

p
j0iXjDiA; (7)

where the states jAiA and jC iA of the four-level probe
belong to one two-dimensional subspace HAC and the states
jBiA and jDiA ë to another two-dimensional subspace HBD,
and HAC?HBD and Q is the error rate introduced by Eve
into the quantum channel. It is assumed traditionally that
all the errors in the quantum channel are related to the
eavesdropping. In addition,

hAjC i � hBjD i � cosj � 1ÿ 2Q: (8)

1106 D.B. Horoshko



It is easy to show that the unitary transformation U
described above can be also written in the form

j�0iXjwiA !
������������
1ÿQ

p
j�0iXjA0iA �

����
Q

p
j�1iXjB 0iA; (9)

j�1iXjwiA !
������������
1ÿQ

p
j�1iXjC 0iA �

����
Q

p
j�0iXjD 0iA; (10)

where the states jA0iA and jC 0iA also belong to one two-
dimensional subspace H 0AC and the states jB 0iA and jD 0iA ë
to another two-dimensional subspace H 0BD, and H 0AC?H 0BD.
In addition,

hA0jC 0i � hB 0jD 0i � cosj � 1ÿ 2Q: (11)

Having performed the interaction, Eve allows the qubit
X to propagate further along the quantum channel and
places the probe system A to the quantum memory. After
Eve performs this procedure with all 2n� 2d qubits, her
quantum memory contains the same number of probe
systems. At the basis reconciliation stage, Eve intercepts
the sequences of bits r and r 0 in the classical channel and
discards all the probe systems for which bits in these
sequences are different. At the error estimate stage, Eve
intercepts the numbers of d bits of the random sampling in
the classical channel and discards the corresponding probe
systems. Then, she applies the unitary transformation V to
each probe system to which the condition r � r 0 � 1
corresponds. This transformation V jZ 0i � jZ i maps the
primed states on the unprimed states, where Z takes the
values A, B, C, and D. Then, each probe system is subjected
to the projective measurement distinguishing the orthogonal
subspaces HAC and HBD. The detection of the subspace
HAC, whose probability is 1ÿQ, means that this bit in the
sequence of Bob is the same as that in the sequence of Alice.
The detection of the subspace HBD, whose probability is Q,
means that this bit in the sequence of Bob is erroneous. In
the latter case, Eve applies to the probe system the unitary
transformation W satisfying the relation W jBi � jAi, W jDi
� jC i. As a result, before the error correction stage, Eve has
the sequence of n systems, each of them being either in the
state jAi or the state jCi corresponding to 0 or 1 in the sifted
sequence of Alice.

The standard approach to the analysis of individual
eavesdropping is based on the assumption that at the instant
of eavesdropping Eve measures her probe systems. It has
been proved [4] that in this case the optimal strategy for Eve
will be the projective measurement of each probe system in
the symmetrically straddling basis, i.e. in the basis consisting
of the orthogonal vectors fjz0i and jz1ig in the subspace
HAC making equal angles g with vectors jAi and jC i
(Fig. 1). Having obtained the result jz0i, Eve writes 0
into her intercepted sequence, and having obtained jz1i,
she writes 1. The error probability q upon determining the
bit value from Fig. 1 and (8) is

q � sin2 g � 1

2

�
1ÿ

�����������������������������
1ÿ �1ÿ 2Q�2

q �
: (12)

At the error correction stage, Eve intercepts the data on
the division of the sifted sequence into blocks and divides
her intercepted sequence into bit triplets in the same way.
Then, like Bob, she selects the value, which is represented by
the majority in the triplet, and writes it into her corrected

sequence. The error probability of Eve in the determination
of the block value is qB � 3(1ÿ q)q 2 � q 3, and her infor-
mation on the corrected sequence (per bit) is

I �s�E � 1ÿ h2�qB�: (13)

The optimality of the standard attack is provided by the
fact that measurements in the straddling basis are optimal
for distinguishing two nonorthogonal pure states. Let us
now assume that Eve preserved her probe systems in the
quantum memory until the error correction stage. Having
intercepted in the classical channel the data on the division
of the sifted sequence into blocks, she divides her probe
systems in the same way. Now each of the blocks of the
three probe systems is either in the state jAijAijAi or the
state jC ijC ijC i. It is known that these two states can be
best distinguished in the class of individual measurements in
the basis making different angles with vectors jAi and jC i
[10]. It is reasonable to assume that the optimal individual
eavesdropping will be related to the same basis.

Consider the projective measurement of the subspace
HAC in the basis fjx0i; jx1ig, for which the relations
hx0jAi � cos a, hx1jC i � cos b are fulélled, and in the
general case a 6� b (Fig. 2). The angle a will be used as a
parameter specifying the basis, and b � p=2ÿ jÿ a. Eve
subjects all the three probe systems in the block to the
above-described measurement. Having obtained the result
jx0i or jx1i, Eve writes 0 or 1 into her intercepted sequence.

g

j
g

jz1i
jC i

jAi

jz0i
Figure 1. Measurement basis used to distinguish the states jAi and jC i
upon the standard individual attack against the BB84 protocol.

a
j

jx1i

jC i

jAi

jx0i

Figure 2. Measurement basis used to distinguish the states jAi and jC i
upon the individual attack (optimised taking into account the error-
correcting protocol) against the protocol BB84.
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The probability of the correct determination of the value 0 is
p0 � cos2 a. The error probability of determining 1 is q1 �
cos2 (a� j). Then, Eve assigns the value 0 to a bit of the
corrected sequence only in the case when all the three bits in
the block are zero. Otherwise, the value 1 is assigned to this
bit. Thus, the probability of correct determination of the bit
value upon the interception of the Alice's block containing
three zeroes is p 3

0 , while the error probability upon the
interception of a block containing three unities is q 3

1 .
Correspondingly, the information of Eve on the corrected
sequence is

I aE � 1ÿ �h2� p 3
0 � � h2�q 3

1 ��=2 : (14)

The maximum value of this expression for the angle a
varying from 0 to p=4ÿ j=2

I
�m�
E � max

a
I a
E (15)

can be easily calculated numerically. This is the maximum
information that Eve can obtain about the corrected
sequence for the optimal choice of the measurement
basis corresponding to an angle am. Figure 3 presents the
dependences of I �m�E on Q together with the information I

�s�
E

of Eve for the standard attack and the information
IB � 1ÿ h2(QB) of Bob on the corrected sequence of
Alice. One can clearly see that the eavesdropping taking
the ECP into account is more informative.

Note that to perform an attack optimised taking the
ECP into account, there is no need for Eve to retain the
probe systems until the error correction stage if she knew the
ECP already at the quantum transmission stage. Immedi-
ately after the basis reconciliation stage, she can measure her
systems in the basis corresponding to the angle am and
postpone the determination of the block values until the
error correction stage. Thus, the optimisation uses not the
correcting information itself but only the knowledge of the
speciéc choice of the ECP. This gives the method for
security against the attack. In quantum key distribution
systems, we can recommend the ECP coding with the help of
a special short key. For example, before the beginning of a
quantum transmission, the N-fold repetition protocol can be

agreed, while the value of N will be communicated only at
the error correction stage. As a result, because different
values of N correspond to different angles am of the optimal
measurement, Eve will not be able to optimise her measure-
ment without using a more durable quantum memory.

Thus, we have shown that during the attack on a
quantum cryptography line, the eavesdropper knowing
the error-correcting protocol chosen by the user can
optimise his attack to increase the amount of intercepted
information. This possibility has been demonstrated by the
example of the attack of the simplest class ë the individual
attack, and it has been shown that this attack does not
require additional resources of the quantum memory
compared to the standard individual attack. The further
consideration of individual eavesdropping taking into
account the ECP based on the Shannon calculations of
information is presented in [11].
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Figure 3. Dependences of the amount I of intercepted information on the
corrected key on the error rate Q in the sifted key upon the individual
attack against the protocol BB84 with the triple repetition error-
correcting code.
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