
Abstract. The possibility of generating correlated three-
photon states of light (triphotons) during spontaneous para-
metric down-conversion of light in a cubic medium in a
resonator is analysed. It is shown that the number of photons
per mode of the three-photon éeld is proportional to the
square of the resonator énesse and the number of longitudinal
resonator modes satisfying the triple resonance condition.

Keywords: spontaneous parametric down-conversion, nonclassical
light, biphoton, triphoton, resonator.

1. Introduction

The development of nonclassical light sources [1] is one of
the main directions in evolution of modern quantum optics.
In particular, of great interest is the generation of three-
photon entangled states (triphotons), which can be used
both for fundamental studies related to the veriécation of
the fundamentals of quantum mechanics and as the main
resource in many-sided quantum communication systems
[2]. However, the most obvious method of generating three-
photon states ë the direct or cascade parametric process
requires very high average pump powers or high non-
linearity coefécients. The authors of paper [3] proposed to
generate three- and four-photon states due a random
overlap of two pairs of photons upon two-photon para-
metric scattering in the case of pulse pumping. The pump
pulse should be considerably shorter than the inverse width
of the spectrum separated at the input to a measuring
system. However, the rate of four-photon coincidences in
this generation method is of the order of 10ÿ2 ÿ 10ÿ1 sÿ1

(see experimental papers [4 ë 8]), and therefore the search
for analysis of other schemes for generating three-, four-
photon, etc. states is still of current interest. A possible
solution can be the generation of triphotons during
spontaneous parametric down-conversion (SPDC) in a
resonator. This process is well studied in the case of
two-photon SPDC because we are dealing in fact with an

optical parametric oscillator (OPO) operating considerably
lower the threshold. It is known that the generation rate of
biphotons in the resonator increases proportionally to the
square of the resonator énesse and the width of the two-
photon éeld spectrum can be reduced to the resonator
passband width [9]. These properties can be used to develop
efécient sources of two-photon [10, 11] and single-photon
[12] light states with the spectral width comparable to the
absorption linewidth in resonance media. The latter
circumstance makes such sources especially attractive for
recording and reproducing quantum states of light in
quantum memory devices. However, in the case of three-
photon SPDC, the generation rate of photons in a certain
mode is proportional to the integrated brightness of
vacuum êuctuations corresponding to all possible two-
photon processes resulting in the creation of a third photon
in this mode [13]. Therefore, the presence of a resonator
should not only increase the rate of three-photon SPDC but
also decrease it due to the narrowing of the spectrum of
vacuum êuctuations producing the down conversion of
pump photons. The aim of this paper is to elucidate how
much the triphoton creation rate can be increased during
SPDC in a resonator and to estimate the outlook for using
this phenomenon for the development of nonclassical light
sources.

2. Field state vector and intensity

Entangled (in polarisation) three-photon states can be
obtained by using an OPO with two identical negative
uniaxial crystals, which are characterised by the cubic
nonlinearity w �3�, are cut at the type I phase-matching angle
and are oriented so that their optical axes are turned
through 908 with respect to each other around the phase-
matching axis (Fig. 1). The type I phase matching (eoo
phase matching) means that the polarisation of the pump
éeld in each crystal should correspond to that of the
extraordinary wave, while polarisations of created photons
should be the same as that of the ordinary wave. If the
pump wave is polarised at 458 to optical axes, the creation
of three photons in a crystal, in which the ordinary wave is,
for example, polarised horizontally (H), and in the other
crystal, where the ordinary wave is polarised vertically (V),
occurs with the same probability amplitude. As a result, the
entangled éeld state of the type jci � 1��

2
p (VVV�HHH)

appears. Such a scheme with quadratically nonlinear crys-
tals, both without a resonator [14 ë 16] and with it [10, 11],
was successfully used to generate entangled two-photon
states. Let us assume that the resonator is confocal, both its

A.A. Kalachev E.K. Zavoiskii Kazan Physical-Technical Institute,
Kazan Scientiéc Center, Russian Academy of Sciences, ul. Sibirskii trakt
10/7, 420029 Kazan, Russia; e-mail: kalachev@kfti.knc.ru;
Yu.Z. Fattakhova Kazan Sate University, ul. Kremlevskaya 18, 420008
Kazan, Rusia; e-mail: ulia_ff@mail.ru

Received 7 July 2007
Kvantovaya Elektronika 37 (12) 1087 ë 1090 (2007)
Translated by M.N. Sapozhnikov

PACSnumbers: 42.50.Dv; 42.65.Lm
DOI:10.1070/QE2007v037n12ABEH013671

Generation of triphotons upon spontaneous parametric
down-conversion in a resonator

A.A. Kalachev, Yu.Z. Fattakhova

487/403 ë KAI ë 29/ii-08 ë SVERKA ë 4 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 37 (12) 1087 ë 1090 (2007) ß2007 Kvantovaya Elektronika and Turpion Ltd



mirrors are transparent at the pump frequency and have a
high reêectance at the frequencies of scattered waves. Thus,
the OPO under study is a three-resonator one. We assume
for simplicity that the angular divergence of the funda-
mental transverse resonator mode, determined by the waist
size, coincides with the divergence of the SPDC radiation in
each crystal in the absence of the resonator. In other words,
the resonator does not produce the angular selection of
modes. We also assume that a nonlinear medium occupies
the entire volume of the resonator and the interaction
region of the éeld modes is characterised by the Fresnel
number, which is much greater than unity. Then, calcu-
lations can be performed in the standard approximation of
an inénitely broad medium, which leads to the angular
correction of photons created within one transverse
resonator mode.

By considering spontaneous parametric scattering, it is
reasonable to assume that the probability of the three-
photon decay during the photon lifetime in the resonator is
small (the pump level is considerably lower than the
generation threshold). Then, the interaction Hamiltonian
can be written in the form

Ĥ � e0w
�3� X

s�H;V

�
d3rE ���p �r; t�Ê �ÿ�s �r; t�

� Ê �ÿ�s �r; t�Ê �ÿ�s �r; t�+H.c., (1)

where e0 is the permittivity of vacuum; E ���p (r; t) �
E0 exp�i(kprÿ opt)� is the éeld of the classical pump
wave with the amplitude E0; op and kp are the pump
frequency and wave vector;

Ê �ÿ�s �r; t� � ÿi
�
d 3kE�k�a�s �k� expfÿi�krÿ o�k�t�g (2)

are the éeld operators corresponding to the modes of
scattered light with the frequency o and wave vector k;
a�s (k) is the photon creation operator in a mode with
frequency o(k);

E�k� � M�k�
�2p�3=2n�k�

�
�ho�k�
2e0

�1=2
; jkj � o�k�n�k�

c
; (3)

n(k) is the refractive index of the medium for the ordinary
wave; c is the speed of light in vacuum; the factors

M�k� �
�

cg=�Lnav�k��
�o�k� ÿ �o�k��2 � g 2

�1=2

(4)

take into account the relation between the éeld operators in
the resonator with the éeld operators outside the resonator
[17]; g is the decay rate of the éeld amplitude in the
resonator, which is assumed the same for all the modes; L is
the distance between mirrors; nav(k) is the average value of
the refractive index for waves with the H and V polar-
isations in the presence of two crossed crystals of the same
thickness; �o(k) is the frequency of the longitudinal
resonator mode, nearest to the mode frequency o(k).
Expression (3) is written in the approximation of the equal
phase and group speeds of light in the medium [18], and
expression (4) is valid for a resonator with the énesse much
greater than unity, which is assumed below.

Taking (2) into account, Hamiltonian (1) takes the form

Ĥ � ie0w
�3� X

s�H;V

� � �
d3k 0d3k 00d3k 000E0E�k 0�

�E�k 00�E�k 000�a�s �k 0�a�s �k 00�a�s �k 000�

�
�
d3r exp�i�kp ÿ k 0 ÿ k 00 ÿ k 000�r�

� expfi�ÿop � o�k 0� � o�k 00� � o�k 000��tg+H.c., (5)

and we obtain in the érst order of the perturbation theory
the éeld state vector

jci � jvaci ÿ i

�h

�1
ÿ1

dtĤjvaci

� jvaci �
X
s�H;V

� � �
d3k 0d3k 00d3k 000f�k 0; k 00; k 000�

� a�s �k 0�a�s �k 00�a�s �k 000�jvaci; (6)

where jvaci is the vacuum state;

f�k 0; k 00; k 000� � e0w
�3�

�h
E0E�k 0�E�k 00�E�k 000�

�VD�kp ÿ k 0 ÿ k 00 ÿ k 000�

� 2pd�o�k 0� � o�k 00� � o�k 000� ÿ op�; (7)

D�k� � 1

V

�
V

d 3r exp�ikr�;
and V is the medium volume.

Let us assume that the pump wave vector kp is directed
along the z axis coinciding with the resonator axis and
denote the longitudinal and transverse components of the
wave vectors k 0, k 00 and k 000 of the scattered light mode by
k 0z, k

00
z , k

000
z and k 0?, k

00
? , k

000
? , respectively. In the limit of an

inénitely broad nonlinear medium (the Fresnel number for
the mode interaction region is much greater than unity), we
have

VD�k� �
�
V

d3r exp�ikr� � Lsinc
kzL

2

� �
�2p�2d�k?�; (8)

where sinc x � (sin x)=x. Thus, taking (8) into account,
expression (7) contains two delta functions, one of which
imposes the restriction on the frequencies: op � o(k 0)�

Nonlinear

crystalsop

x

y

z

M1 M2

op=3

op

Figure 1. Scheme of an OPO: M1 and M2 are resonator mirrors; op is
the pump radiation frequency. Triphotons are generated at frequencies
close to op=3 and come out through semitransparent mirror M1.
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o(k 00)� o(k 000) (frequency matching) and the other ë on the
transverse components of wave vectors: k 0? � k 00? � k 000? � 0
(phase matching). Taking into account the above assump-
tions, the expression for the state vector takes the form

jci � jvaci � e0w
�3��2p�3LE0n

3=2

c3=2�h

�
� �

d3k 0?d
3k 00?

� �
do 0do 00 E�o 0�E�o 00�E�op ÿ o 0 ÿ o 00�

� sinc

��
kp ÿ k 0z�o 0� ÿ k 00z �o 00� ÿ k 000z �op ÿ o 0 ÿ o 00�

�
L

2

�

�
X
s�H;V

a�s �o 0; k 0?�a�s �o 00; k 00? �

� a�s �op ÿ o 0 ÿ o 00;ÿk 0? ÿ k 00? �jvaci; (9)

where n � n(op=3):
In the approximation of almost degenerate SPDC at

frequencies close to o0 � op=3, it is convenient to make the
change of variables o 0 � o0 � O 0 and o 00 � o0 � O 00, at
which o 000 � o0 ÿ O 0 ÿ O 00 due to the frequency matching.
Because kz � kÿ 1

2 k
2
?=k for small scattering angles, by

expanding the modulus of the wave vectors into a series
in powers of O, we obtain with the accuracy to the second
order that

kp ÿ k 0z ÿ k 00z ÿ k 000z �
1

2

k 0?
2 � k 00?

2 � �k 0? � k 00? �2
k0

ÿ D 00

2
�O 0 2 � O 00 2 � �O 0 � O 00�2�; (10)

where k0 � k(o0),

D 00 � d2k 0

do 2

����
o�o0

� d2k 00

do 2

����
o�o0

and it is taken into account that kp � 3k0 if the pump wave
propagates at the phase-matching angle to the optical axis
of the crystal. As a result, the expression for the state vector
takes the form

jci � jvaci � e0w
�3��2p�3LE0n

3=2

c 3=2�h

� �
d 3k 0?d

3k 00?

�
� �

dO 0dO 00E�o0 � O 0�E�o0 � O 00�E�o0 ÿ O 0 ÿ O 00�

� sinc

��
1

2

k 0 2? � k 00?
2 � �k 0? � k 00? �2
k0

ÿ D 00

2
�O 0 2 � O 00 2 � �O 0 � O 00�2�

�
L

2

�

�
X
s�H;V

a�s �o0 � O 0; k 0?�a�s �o0 � O 00; k 00? �

� a�s �o0 ÿ O 0 ÿ O 00;ÿk 0? ÿ k 00? �jvaci: (11)

By using this expression, we énd the average number of
photons

N�o0 � O; k?� � hcja�s �o0 � O; k?�as�o0 � O; k?�jc
(where as is the annihilation operator of a photon in a
mode) generated in a éeld mode, which is characterised by
the transverse wave vector k? and the detuning frequency
O � oÿ o0:

N�o0 � O; k?� �
�
e0w
�3��2p�3LE0

c3=2�h

�2
nÿ3

�2p�9
�
d 3k 0?

�
�
dO 0

�h�o0 � O 0�
2e0

�h�o0 � O�
2e0

�h�o0 ÿ O 0 ÿ O�
2e0

�
�

cg=�Lnav�o0��
f 2�o0 � O 0� � g 2

��
cg=�Lnav�o0��

f 2�o0 � O� � g 2

�

�
�

cg=�Lnav�o0��
f 2�o0 ÿ O 0 ÿ O� � g 2

�

� sinc 2
��

1

2

�
k 0 2? � k 2

? � �k 0? � k?�2
k0

�

ÿD 00

2
�O 0 2 � O 2 � �O 0 � O�2�

�
L

2

�
; (12)

where f (o� � oÿ �o(o); �o(o) is the frequency of the
longitudinal resonator mode nearest to the o. It is clear
that only the éled modes for which the relation j f (o0�
O 0 )j, j f (o0 � O)j, j f (o0 ÿ O 0 ÿ O)j < g is fulélled will
make the contribution to the integral over frequency.
Because the OPO frequency spectrum is non-equidistant
due to the refractive index dispersion, the above relation is
fulélled only for some longitudinal modes forming groups
(clusters) with close frequencies. As a result, the SPDC
spectrum also has the cluster structure, which is typical for
multiresonator OPOs (see, for example, [19]). In the case of
a high énesse, which is considered here, the triple resonance
is possible only within one cluster with the central
frequency o0 (Fig. 2).

2g

DSPDC

pc
noL

pc
neL

O 0;O 00

O 000

0

Figure 2. Typical relations between the width DSPDC of the SPDC
spectrum in the scheme without a resonator, the width 2g of the
resonator mode and frequencies of the longitudinal modes of a confocal
resonator in the case of the frequency-degenerate matching O 0 �
O 00 � O 000 � 0; pc=(ne; oL) are intermode intervals.
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The maximum value N(o0 � O; k?) is achieved in the
degenerate collinear regime, when O � 0 and k? � 0. In this
case, expression (12) can be written in the form

N�o0; 0� �
�
e0w
�3�LE0

�h

�2�
�ho0

4pe0c

�3� 2F

pn

�3
DOSk?m; (13)

where F � pc=�DOLnav(o0)� is the resonator énesse;
DO � 2g is the half-width of the spectral line of the
resonator; Sk? � 0:866p 2k0=L is the area of the region in
the plane of wave vectors perpendicular to kp within which
the function sinc x considerably differs from zero; and m is
the number of longitudinal resonator modes contributing to
SPDC. Because DO � F ÿ1, we obtain that N(o0; 0) � F 2m.

Let us estimate the generation rate of triphotons upon
SPDC in the resonator. By assuming that the absorption
coefécient a of the crystal is 0.01 cmÿ1, the resonator length
is L � 5 mm, and the reêectance of resonator mirrors is
99.9%, we obtain the resonator énesse F � 300. Based on
the estimates made in [9], the number m of longitudinal
modes for such values of F and L should be set equal to 30.
Then, by using the typical values of quantities entering (13),
namely, w�3� � 10ÿ21 m2 Vÿ2, l � 900 nm, nav � n � 1:5,
and the pump radiation intensity 0.1 MW cmÿ2, we obtain
N � 10ÿ15. The photon counting rate w can be found from
the relation [20]

w � N
Zc

l4
DYDlA; (14)

where Z is the quantum eféciency of a detector; Dl, DY and
A are the passband width, angular aperture, and area of the
detector, respectively. By assuming that Z � 0:5, Dl �
0:005 nm, DY � 10ÿ4 sr (the divergence angle of the beam
in the case under study is 18, which corresponds to the waist
diameter of 60 mm), and A � 10ÿ2 cm2, we obtain
w � 10ÿ3 sÿ1. Thus, the triphoton creation rate in the
resonator is an order of magnitude lower than in experi-
ments mentioned in section 1. Note, however, that in this
case we consider photons within the spectral band of width
� 2 GHz, which is three ë four orders of magnitude
narrower than a spectral band obtained upon usual
picosecond SPDC in the scheme without a resonator.

3. Conclusions

The use of SPDC in a resonator is promising for generating
both single and correlated photons within the spectral band
of width of the order of the resonator spectrum width. The
long lifetime of photons in the resonator (up to tens of
nanoseconds) allows the use of nanosecond pump pulses
instead of femtosecond pulses, which can substantially
simplify experiments requiring the time synchronisation of
many photons. However, unlike two-photon SPDC, the
number of photons per mode in the case of three-photon
SPDC proves to be proportional to the number of
longitudinal resonator modes satisfying the triple (or
double) resonance condition. As a result, the triphoton
creation rates required to realise the corresponding experi-
ment can be obtained only under the condition that the
resonator énesse increases simultaneously with increasing
the frequency interval between longitudinal modes, i.e. with
decreasing the resonator length. The eféciency of three-
photon SPDC in the resonator can be further increased by

using a system of identical matched resonators, when the
total length of the medium considerably exceeds the length
of each of the resonators.
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