
Abstract. The evolution of complex composite quantum
systems which can be reduced to systems with a small
dimensionality of the Hilbert space (of the qutrit, ququart
type, etc.) is considered. In the case of the interaction of an
ensemble of two-level atoms with light, the conditions are
found under which a qutrit is produced from the light and
atomic states. The properties and possible applications of a
qutrit based of the Fock states of light in which two photons
are distributed among three modes are discussed. It is shown
that this state has the nonclassical photon statistics, is
entangled and can be used as a quantum channel for the
teleportation, dense coding, and key distribution.

Keywords: multiparticle systems, entangled states, quantum com-
munications.

1. Introduction

A qutrit as a system with three states composed from a few
particles is well known in quantum optics. It can be formed,
for example, by two biphotons composed from polarised
photons. Such a state was observed experimentally [1] and
is of interest for the key distribution problem in quantum
cryptography [2]. The basic element in the quantum
information theory is a qubit ë a quantum system with
two states. However, the use of the higher-dimensionality
systems such as a qutrit, a ququart, etc. can extend the
possibilities for solving the problems of quantum informa-
tion transfer [3]. This determines interest in studying the
methods of generation and properties of high-dimensional
quantum-system states [4].

A state of a qutrit can be entangled, which is required for
solving quantum communication problems such as tele-
portation, dense coding, and quantum key distribution.
That is why the properties, the methods of generation,
and applications of qutrits are of interest both from the
theoretical and practical points of view and are being

extensively studied. In particular, the characteristics or
degrees of entanglement of three-level systems were dis-
cussed in [5], and the geometric measure for three-particle
pure states was introduced in [6]. The generation and
reconstruction (tomography) of the qutrit state based on
the experimental characteristics of biphoton éelds were
performed in a number of papers [7]. The quantum protocol
of the key distribution for three-level systems was studied in
[8], and the entanglement exchange in the multiparticle state
of multilevel systems was investigated in [9]. The application
of the entangled state of two qutrits in the calculation
Grover algorithm was proposed in [10]. The important
speciéc features of the preservation of the state of a
multiparticle qutrit system upon collective interaction
were discussed in [11].

In this paper, we study some types of the interaction of
two and three systems resulting in the qutrit formation. The
reduction of a multicomponent system to a three-level
system is based physically on the integral of motion
describing the preservation of a total number of excitations.
As a result, in the cases when the number of excitations is
small, the excitation energy is transferred due to interaction
from one system to another and a small number of states are
involved in the evolution. We consider several physical
models, in particular, the interaction of a mode with an
ensemble of two-level atoms and the interaction of three
modes in a nonlinear medium. In the latter case, a qutrit can
appear which consists of the Fock light states in which two
photons are distributed among three modes. This state has
the sub-Poisson photon statistics, is squeezed and entangled.
The protocols of teleportation, dense coding, and key
distribution are presented in which the found qutrit can
be used as a quantum channel.

2. Qutrit formed by two systems

Consider the formation of a qutrit (three-level system)
during the interaction of systems ¡ and £ with a large
number of degrees of freedom, which can have different
physical nature. The reduction is possible due to the
integral of motion preserving the total number e of
excitations. In the case of e � 2, the two systems can
form a qutrit because one excitation can be distributed
between two systems, for example, in the following three
ways: fyg � j2; 0i, j1; 1i, |0; 2i. In this case, the physical
realisation of a qutrit depends on the nature of systems
under study. We will consider below the two types of
interaction: (i) the interaction of the two modes of an
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electromagnetic éeld and (ii) the interaction of one mode
with an ensemble of two-level atoms.

Let the systems A and B be two modes of an electro-
magnetic éeld which are mixed on a nonabsorbing
beamsplitter. This interaction is described by the Hamil-
tonian

H1 � i�hg�aybÿ aby�, (1)

where �h is Planck's constant; g is the coupling constant;
ay; a and by; b are the creation and annihilation operators
for the érst and second modes. The problem has the
integral corresponding to the preservation of a total
number of photons in modes aya� byb � const, which
gives simple solutions for operators: a(t) � ca� sb,
b(t) � ÿsa� cb, where c; s � cos y, sin y; y � gt; and t is
time. The quantities c and s can be considered as the
transmission and reêection coefécients of the beamsplitter,
respectively.

The evolution of a set of the Fock states fyg � j1; 1i,
j2; 0i, j0; 2i is described by the expressions

j1; 1i ! ���
2
p

cs�j2; 0i ÿ j0; 2i� � �c 2 ÿ s 2�j1; 1i,

j0; 2i ! s 2j2; 0i � c 2j0; 2i � ���
2
p

csj1; 1i, (2)

j2; 0i ! c 2j2; 0i � s 2j0; 2i ÿ ���
2
p

csj1; 1i:

This means that after the propagation of modes through the
beamsplitter, a qutrit appears which is indifferent to the
interaction under study.

Consider the second example in which the system A is a
mode of an electromagnetic éeld, while the system B is an
ensemble of N two-level atoms. Their interaction is
described by the Hamiltonian

H2 � i�hg�aS10 ÿ ayS01�; (3)

where S10 �
P

a s10(a) is the collective atomic operator and
sxy � jxiahyj (x; y � 0; 1) is the operator of an atom with the
number a, the lower and upper states 0 and 1, respectively.

The integral of motion of the system describes the
preservation of a total number of excitations I � ayaÿ
Xz, where Xz � (1=2)

P
a (j0iah0j ÿ j1iah1j). The interaction

between atoms and the éeld leads to the qutrit formation.
Consider, for example, atoms in the ground state assuming
that the initial state of the éeld is the two-photon Fock state.
Then, the initial excitation (the energy of two photons) will
be periodically redistributed between the atomic ensemble
and light, and three states will be involved in this process. In
this case, the Dicke states jh;N i will appear in the atomic
ensemble which describe an ensemble of N two-level atoms
in which h4N atoms are excited,

jh;N i �
X
z

Pzj11; 12; :::; 1h; 0h�1; :::; 0i � Sh
10j0; :::; 0i=h!; (4)

where Pz is one of the C
N
h � N !=�h!(Nÿ h)!� distinguishable

permutations of particles. States (4) are normalised by the
condition hh;Njh;N i � CN

h . In our case, h � 2, and the
introduced states are a particular case of the Dicke state
with j � m � N=2, where j and m are the eigenvalues
corresponding to the two eigenvectors of collective ope-

rators J 2 � J 2
x � J 2

y � J 2
z and Jz. Because j � N=2, these

states are symmetric with respect to the permutation of
particles. A particular case with N � 3 is known in the
quantum information theory as the W state: W � (1=

���
3
p

)�
(j100i � j010i � j001i).

In the case considered here, a qutrit is formed by the set
of states

j1; 1i � j1i 
 j1;N i= ����
N
p

;

j2; 0i � j2i 
 j0;N i;

j0; 2i � j0i 
 j2;N i=
�������
CN

2

q
;

which are transformed to themselves due to the interaction:

j1; 1i ! cos yj1; 1i � y
1���������������

2Nÿ 1
p �

������������
Nÿ 1
p

j0; 2i ÿ
����
N
p
j2; 0i�;

j2; 0i ! 1

2Nÿ 1
f
����������������������
�2Nÿ 1�N

p
sin y j1; 1i �

��������������������
N�Nÿ 1�

p
��1ÿ cos y� � �N�1� cos y� ÿ 1�j2; 0ig;

(5)

j0; 2i ! 1

2Nÿ 1
fÿ

����������������������������������
�Nÿ 1��2Nÿ 1�

p
sin yj1; 1i

� �N� �Nÿ 1� cos y �j0; 2i � ��������������������
N�Nÿ 1�p

��1ÿ cos y�j2; 0ig:

Here, y � gt
���������������������
2�2Nÿ 1�p

. In the limit of a large number of
atoms (N4 1), the structure of the states of the produced
qutrit is determined by expression (2), where y �
gt! gt

����
N
p

. Such analogy between the light and atomic
states is caused by the fact that the commutation relations
for atomic operators S01 and S10 in the limit N4 1 are
reduced to boson relations and the Hamiltonian H2 is
reduced to H1.

The squares of moduli of coefécients at the wave
functions determine the probabilities of the corresponding
states and depend on the duration of interaction, which can
be interrupted at any moment, thereby producing one of the
qutrit states. Consider, for example, the last equation in (5)
in which the probabilities of the states in the superposition
in the limit N4 1 are

Prob�j0; 2i� � �1� cos y�2=4;

Prob�j1; 1i� � sin y 2=2,

Prob�j2; 0i� � �1ÿ cos y�2=4:

It follows from this that after switching on the interaction,
the system passes to the superposition of three states with
statistical weights periodically changing in time. This means
that the three states j1; 1i, j2; 0i and j0; 2i will be
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simultaneously recorded and stored in the system. The two
of them, j0; 2i or j2; 0i, can be reproduced by switching off
the interaction. Indeed, if y � p, then Prob(j2; 0i� � 1, and
if y � 2p, then Prob(j0; 2i� � 1. Other qutrit states can be
formed in the same way. Thus, it follows from the érst
equation in (5) that a maximally entangled Einstein ë
Podolsky ëRozen (EPR) pair appears from the j1; 1i state
at y � p=2. This pair consists of two photons and an atomic
ensemble with two excited atoms:

jEPRi �
��

1=
��������
CN

2

q �
j0i 
 j2;N i ÿ j2i 
 j0;N i

�
=
���
2
p

.

3. Qutrit formed by three systems

The three interacting systems A, B and C also can form a
qutrit. In this case, many different possibilities appear.
Consider, in particular, the case with the number of
excitations e � 1 and 2. For e � 2, the states fyg �
j1; 1; 0i, j1; 0; 1i, j0; 1; 1i are possible. We will discuss the
realisation of such a qutrit based on three electromagnetic-
éeld modes. This case is nontrivial because for e � 2, a
wider set of possible states fyg � j1; 1; 0i, j1; 0; 1i, j0; 1; 1i,
j2; 0; 0i, j0; 2; 0i, and j0; 0; 2i appears for photons.

In this example, the two modes a and b of the electro-
magnetic éeld play the role of systems A and B, while the
system C is formed by an ensemble of N three-level atoms of
the L-conéguration with the 0! 2! 1 transitions. We
represent the interaction of modes and atoms in the form

H3 � i�hg�aS20 ÿ ayS02� � i�hg�bS21 ÿ byS12�; (6)

where Sxy (x; y � 0; 1; 2) are the collective atomic operators
(see above) and the interaction constants g are assumed the
same for simplicity. In this case, a qutrit is formed from the
states with one excitation, when fyg � j0; 0; 1i, j1; 0; 0i,
j0; 1; 1i, where j0; 0; 1i � j0i 
 j0i
S20j0;N i= ����

N
p

; j1; 0; 0i �
j1i 
 j0i 
 j0;N i; |0; 1; 1i � j0i 
 j1i
 S10j0;N i= ����

N
p

: Thus,
by considering the evolution of the initial state j1; 0; 0i, we
énd

j1; 0; 0i ! 1

N� 1
��1�N cos y�j1; 0; 0i

ÿ ����
N
p �1ÿ cos y�j0; 1; 1i � sin y

��������������������
N�N� 1�p j0; 0; 1i�;

where y � ������������
N� 1
p

gt.
Consider the state of light in which two excitations are

distributed among three modes a, b, and c in such a way that
only one excitation corresponds to each of the modes:

Z � Aj110i � B j101i � C j011i, (7)

where jAj2 � jBj2 � jCj2 � 1 and the states of light are the
Fock states. For the atomic system consisting of three two-
level atoms, such a state looks trivial and can appear upon
absorption of two photons by atoms. This is not the case
for the Fock states of light because one mode can contain
two photons, for example, j200i. This means that Z cannot
be obtained by the determinate method with the help of
linear optical elements like beamsplitters. However, such a
state can be obtained upon three-photon interaction in
nonlinear media. Thus, by considering the simultaneous

process of nondegenerate down conversion, in which three
classical pump waves are transformed to photon pairs
aÿ b, aÿ c and bÿ c, we énd the effective Hamiltonian

Heff � i�h�k1ayby � k2a
ycy � k3b

ycy ÿ k1abÿ k2acÿ k3bc�; (8)

where a, b, and c are the annihilation operators for the
corresponding modes and kx (x � 1; 2; 3) are the interaction
constants. Such a process was considered in [12] for the
resonator scheme in which light éelds were described by
using continuous variables.

For the initial vacuum state of modes in the linear
approximation in the interaction, we have

Z0 � mjvaci � E�Aj110i � Bj101i � Cj011i�abc; (9)

where m; E are assumed real and it is also assumed that the
normalisation condition m2 � E2 � 1, and EA � k1t, EB �
k2t, EC � k3t. Unlike the state Z, the state Z 0 contains the
vacuum state, which plays no role in a number of cases.
Moreover, it can be excluded by postselection.

We will consider the physical properties of the qutrit
formed by three modes taking into account the contribution
of vacuum, by paying a special attention to the case E5 1,
which allows us to perform analysis taking into the
possibility of the realisation of the qutrit. Without any
calculations, we can point out that the state Z 0 has two
essentially quantum features. First, it is formed from the
Fock states of modes, which can lead to the sub-Poisson
statistics of photons. This statistics can be characterised by
the Mandel parameter x describing the difference of the
variance of the number of photons from the Poisson
distribution with the help of the relation h(Dn)2 �
hn2i ÿ hni2 � hni(1� x). Second, because the state of the
entire éeld is pure and is described by the wave function, it
has coherence.

State (9) has the following statistical properties:
(i) The photon statistics in each mode is sub-Poisson

with the parameter xx � ÿhnxi; where x � a; b; c. Thus,
xa � ÿhnai � ÿ�jAj2 � jBj2�E 2, and for E5 1, the deviation
from the Poisson level is small.

(ii) The simultaneous photon counting rate and the
random coincidence rate for each mode pair are equal to
hnanbi � E 2jAj2 and hnaihnbi � E 4(jA2 � jBCj2), respectively.
This means that for E5 1, the photon bunching appears
because hnanbi > hnaihnbi. Due to the presence of only two
photons in state (9), the combined counting rate for three
photons is naturally zero and hnanbnci � 0.

(iii) The difference intensity of the mode pair has the
sub-Poisson statistics. By considering the operators of the
difference and sum of the number of photons nÿ � na ÿ nb
and n� � na � nb we énd the Mandel parameters for the
variance nÿ and n�. For E5 1 the corresponding expressions
take the form

xÿ � ÿ
2jAj2

2jAj2 � jBj2 � jCj2 ;
(10)

x� �
2jAj2

2jAj2 � jBj2 � jCj2 :

For A � B � C, the parameter xÿ � ÿ1=2 and variance are
smaller by half than those for the Poisson distribution,
which is caused by the quantum intermode pair photon
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correlation. Unlike the difference intensity, the sum-
intensity statistics is super-Poisson.

The coherence of state (9) (which formally corresponds
to the presence of nondiagonal elements of the density
matrix) leads to the appearance of the phase-sensitive
properties of this state, among which the squeezed states
of light are of particular interest. The state Z 0 has the
following properties:

(i) Any pair of modes can be found in the squeezed state.
Let modes a and b be mixed on a nonabsorbing beamsplitter
which performs the transformation of type (1). Then, the
variance h(DX )2i of the quadrature operator X�y� �
d y exp (iy)�H:c. on one of the beamsplitter outputs, where
d � ca� sb, will be equal to 1� 2E 2(jAj2 � jcB� sCj2)�
mE2cs(Aeÿ2iy � c:c), where y is the reference wave phase.
For c � s, B � C, argAÿ 2y � p and E5 m the squeezed
state of light appears because h(DX )2i � 1ÿ 2EmjAj�1ÿ
�E=m�jAj� < 1. It is obvious that, if the mode is squeezed,
it cannot have the sub-Poisson photon statistics due to the
uncertainty relation. In conditions under study, the mode d
(or the pair a, b) has the Mandel parameter xd � jAj2 ÿ E 2,
which cannot be negative in the case of squeezing, when
�E=m�jAj < 1:

(ii) The state Z 0 can be squeezed and can have the sub-
Poisson photon statistics. Let the modes a and b be mixed
on a beamsplitter and the modes d and r be obtained. Then,
the state d can be squeezed and the statistics of the difference
number of phonons in the r and c modes can be sub-
Poisson.

The state Z 0 has another important property. It is
entangled because it cannot be represented as a product
of the wave functions of individual modes. This property
will be manifested, for example, depending on the result of
the interference of modes a and b during the projection
measurement of the third mode c. Let the modes a and b be
mixed on a beamsplitter having a detector Dd located at one
of its outputs, which detects the number of photons in the
mode d. Let the mode c be detected with a detector Dc,
which performs measurements in the j0ic; j1ic basis. The
results of these measurements appear with the probabilities
Prob(0) � m 2 � E 2jAj2 and Prob(1) � E 2�jBj2 � jCj2�. In this
case, the wave function of the initial state Z 0 is projected to
the following states Z 0 ! �mjvaci � EAj110i)= ����������������

Prob(0)
p

and
Z 0 ! �Bj101i � Cj011i)= ����������������

Prob(1)
p

. The results of inter-
ference of the modes a and b in these two cases are
substantially different. If the detector Dc gave the result
0, the average number of photons, or the light intensity on
the detector Dd, will be

hd yd i0 �
E 2jAj2

m 2 � E 2jAj2 / E 2: (11)

If the result 1 is detected, then

hd yd i1 �
jcB� sCj2

2�jBj2 � jCj2� 4 2: (12)

One can easily see that for E5 1, the light intensity for the
result 1 proves to be considerably higher.

Being entangled, the state of the qutrit composed of
three modes can be used as a quantum channel for various
problems of the quantum information theory. Below, we
will discuss protocols for the ideal case of the state Z. This
state can be used in these problems in accordance with two

observations. Thus, the state Z is related to the W state
Aj001i � Bj010i � Cj001i by the local unitary operation.
This means that the properties of both states are identical
from the information point of view, and both these states
can be used to solve the same problems. A particular case is
the asymmetric state W � � (1=

���
2
p

)j011i � (1=2)(j110i�
j101i), which can be related to the tree-particle Green-
berg ëHorne ëZeilinger (GHZ) state

GHZ � 1=
���
2
p �j000i � j111i� (13)

with the help of the two-particle unitary but nonlocal
operation V

�1
 V�jGHZ iABC � jW �i; (14)

where V � jC�ih11j � j00ih10j � jCÿih01j � j11ih00j;C� �
(j10i � j01i)= ���

2
p

. The GHZ state can be used as a quantum
channel for the teleportation of one particle [13] and the
unknown entangled state [14]. The quantum channel
formed by the W states in these cases was studied in
papers [15 ë 17], respectively.

Consider the teleportation of the unknown purely
entangles state of the form

jAi � �aj01i � bj10i�12; (15)

where jaj2 � jbj2 � 1. This process involves éve particles
with the initial state jAi12 
 jOiABC, the particles from the
channel O being shared with the sender A and two receivers
B and C, spatially separated. If the sender A wants to
transmit state (15) to receivers B and C, it is necessary to
perform the measurement on three particles 1, 2, and A in a
certain basis fFxg. Thus, when the GHZ channel (13) is
used, the measurement basis has the form

fFx : p�1 
 F�2A; p
�
1 
C�2Ag; (16)

where F� � (j00i � j11i)= ���
2
p

; p� � �j0i � exp (iy�j1i�= ���
2
p

.
The performed measurement projects all the particles with
the same probability Prob(Fx) � 1=8 to one of the eight
states jFxi12A 
 jBCxiBC, where jBCxiBC is the state of
particles of receivers. The probability of each measurement
is independent of the properties of the initial state jAi12
determined by its coefécients. This means that the problem
can be solved because there exists a set fUxg of recovering
unitary operators, which act independently on particles B
and C ( Ux � Bx 
 Cx) by reconstructing the unknown
state. The equation describing teleportation by using such a
channel has the form

jAi12 
 jGHZ iABC �
X
x

jFxi12A
��������������������
Prob�Fx�

p
��Bx 
 Cx�jAiBC; (17)

where the operators Bx and Cx are determined by the
known Pauli operators. For example, if the outcome
corresponding to the basis function F0 � p� 
 F� is
obtained, these operators are deéned as B0 � sx and
C0 � 1. The change of the channel with the help of relation
(14) leads to the change in the equation
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jAi12 
 �1
 V �jGHZiABC

�
X
x

jFxi12A
��������������������
Prob�Fx�

p
V�Bx 
 Cx�jAiBC; (18)

which means the modiécation of the recover operators and
their new set. Moreover, while upon using the GHZ-state
quantum channel the recover operators were local and
acted independently on their particles B and C, now the
recover operators are nonlocal and cannot be represented
as a direct product of operators acting on the correspond-
ing subsystems. It is this circumstance that is the speciéc
feature of the use of the W-state channel.

Another protocol of the quantum information theory, in
which state (14) can be used, is the dense coding protocol.
The corresponding scheme provides the increase in the
classical capacity of the quantum channel. It contains a
coder and a measurement scheme. The encoder performs
coding of classical information by acting on a quantum
state, which is described by a unitary operator. The
measurement scheme is used to obtain information from
the transmitted state. In the case of two independent qubits,
each of them is measured in two independent bases, and as a
result, the capacity of the channel is equal to unity. The
property of the entanglement of a two-particle state of the
EPR pair type makes it possible to considerably increase the
capacity. Indeed, because particles in this case have the
quantum correlation, the classical information is encoded by
acting only on one of the particles in the pair. The
information is obtained from the transmitted state by
performing the measurement in the Bell basis. As a result,
the capacity of the quantum channel achieves the value
equal to two. If the three-particle GHZ channel or the W
state is used, information is encoded by acting only on two
subsystems of the channel, while the measurement is
performed in the three-particle basis determined by using
eight distinguishable states. As a result, the capacity of such
a channel has the intermediate value equal to 3/2.

Consider now this protocol for the three-particle case in
more detail. Let us assume that there exists the GHZ-state
quantum channel of type (13). To transmit three bits of
classical information 000, 001,111, a coder encodes them by
using eight distinguishable states of the three-particle
system. These states can be obtained by the action of a
set of local unitary operators Ux � Bx 
 Cx on the particles
B and C in channel (13)

jDxiABC � 1l
 Bx 
 CxjGHZiABC: (19)

As a result, a set of all functions is formed, each of them
corresponding to a certain three-particle classical informa-
tion bit. For example, the 000 bit is encoded by the state
jD000iABC � 1l
 1l
 1ljGHZiABC. The subsequent measure-
ment of the channel state in the three-particle entangled
basis allows one to identify and distinguish each of the
transmitted states and, by comparing the result with one or
another bit, to obtain information. The use of the W state
of type (14) as a resource leads to a change in the form of
the states encoding three bits of classical information.
Because (13) and (14) are coupled by the nonlocal two-
particle operator V, the new states can be obtained by the
nonlocal transformation of generators Ux:

jD 0
xiABC � �1l
 V ��1l
 Bx 
 Cx��1l
 V �yjW iABC: (20)

Of course, to realise the protocol, it is also necessary, to
change adequately the measurement basis.

Symmetric state (7) in which the probability amplitudes
of the basis functions have the same value A � B �
C � 1=

���
3
p

, can be used to solve the problem of the quantum
key distribution. Let this state be shared among the three
parties A, B, and C. The observer A performs the measure-
ment with his particle in the channel in the basis j0iA; j1iA.
The outcomes obtained in such a measurement lead,
according to the projection postulate, to two different states
of particles of parties B and C. Let us assume that the
outcome of measuring performed by A corresponds to the
j1iA state, then the state in the B and C hands will be the
entangled (1=

���
2
p

)(j10i � j01i)BC state of the EPR pair. On
the contrary, the measuring outcome j0iA corresponds to the
presence of the independent j11iBC state in the B and C
hands. The correlated state is very important in this
protocol and means that some action can be performed
only in the case if all the participants are interested in it.
Note that A uses the measurement procedure corresponding
to its basis states in a random way. In this case, the
quantum-correlated state appears with the probability 2/
3, while the independent state appears with the probability
1/3, which is determined by the form (7) of the used
symmetric qutrit state.

4. Conclusions

We have considered one of the features of the behaviour
of a complex physical system when only a small part of the
quantum states from its Hilbert space is involved in the
evolution process. In this case, the behaviour of the system
can be described with the help of a simple system with a
small number of levels of the qutrit type. We have shown
that such behaviour is determined by the integrals of motion
describing the preservation of the total number of excita-
tions in the system. As examples we considered a qutrit
formed by mixing two light modes in the Fock state on a
beamsplitter and a qutrit formed due to the interaction of
ensembles of two-level atoms and the electromagnetic éeld
in the Fock state. These two examples correspond to the
case when one excitation is distributed among the three
degrees of freedom. Based on the three-photon parametric
interaction in a transparent nonlinear medium, we consid-
ered another case ë the appearance of the light state upon
the distribution of two excitations among three modes.
From the point of view of quantum statistics, such a state of
bosons looks nontrivial because no more than one excitation
corresponds to each mode in it. This stage of light proves to
be entangled, which makes possible to use it as a quantum
channel for the teleportation, dense coding, and quantum
key distribution.
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