
Abstract. The interaction of a weak gravitational wave with
a Fabry ëPerot cavity is analysed beyond the long-wavelength
approximation in the input-mirror locally Lorentzian frame
of reference taking the light pressure into account. The
generalised expressions are obtained for the coefécient of
pondermotive optical rigidity, the motion law of the moving
mirror of the cavity and the response function of the cavity. It
is shown that the latter is a sum of two phase shifts of a
circulating light wave: the phase incursion after reêection
from the moving mirror and the phase incursion due to the
direct interaction of gravitational and light waves in the
cavity. The possibility of the resonance detection of high-
frequency gravitational waves by using the optical rigidity
effect is considered.

Keywords: gravitational waves, gravitational-wave detectors,
Fabry ëPerot cavity.

1. Introduction

At present the search for gravitational-wave (GW) radia-
tion from astrophysical sources is performed with the help
of ground-based laser Michelson interferometers with arms
of length from a few hundreds of meters (300 m in the
Japanese TAMA-300 antenna and 600 m in the Anglo ë
German GEO-600 antenna) to a few kilometres (3 km in
the Franco ë Italian VIRGO antenna and 4 km in American
LIGO antennas) [1, 2]. Variations of the separation
between the interferometer mirrors caused by gravitational
waves and êuctuations of the different nature limiting the
sensitivity of GW detectors are recorded by the change in
the interference pattern on a photodetector. The GW
radiation from double systems of neutron stars and black
holes, antisymmetric explosions of supernovas, rotating
pulsars, etc., falls in the frequency range of ground-based
interferometers (fGW � 50ÿ 1000 Hz). We will call gravita-
tional waves in this frequency range the low-frequency
waves. They satisfy the relation L5 lGW, where L is the
interferometer arm length, which is called the long-wave-
length approximation.

To amplify the response to low-frequency GW signals,
additional (input) mirrors are placed into the arms of the
Michelson interferometers, transforming them to Fabry ë
Perot cavities. The optical resonance gain can be estimated
by the order of magnitude as t �=t, where t � is the relaxation
time of the cavity and t � L=c is the photon transit time
along the interferometer arm (for LIGO, t � � 1:6� 10ÿ3 s,
t � 1:3� 10ÿ5 s). It was shown that in the operating
frequency range of ground-based interferometers (i.e. in
the long-wavelength approximation), the light pressure on
moving mirrors (probe masses) in the detuned cavity
eféciently transforms free probe masses to linear oscillators
due to the pondermotive optical rigidity effect [3 ë 13],
providing the additional mechanical resonance gain at
some frequencies.

In addition, it has been demonstrated in the literature
that the response to the GW signal in a Fabry ë Perot cavity
is also ampliéed near the frequencies multiple of the free
spectral range of the cavity (for LIGO, fFSR � 37:5k Hz)
[14, 15]. The long-wavelength approximation is violated for
gravitational waves at these frequencies because lGW � 2L
for fGW � fFSR � c=2L. And although the sources of high-
frequency GW radiation ( fGW > 10kHz) are virtually
unknown in modern astrophysics, some string cosmological
models [16 ë 18] predict the existence of the relict gravita-
tional background in the frequency range
fGW � 10ÿ6 ÿ 1010 Hz. Because the search for and recording
of the GW background are planned already with the
Advanced LIGO antenna based on the use of the optical
rigidity, the consideration of the possibility of the resonance
detection of high-frequency waves is of current interest.

In this paper, we calculated and analysed the response of
the Fabry ë Perot cavity to a gravitational wave of an
arbitrary frequency (i.e. beyond the long-wavelength
approximation) taking into account the light pressure on
mirrors, resulting in the effect of pondermotive optical
rigidity. We also analysed the possibility of mechanical
resonance detecting the GW signal near the frequency of the
free spectral range of the cavity.

2. Electromagnetic wave in the gravitational
wave éeld

The gravitational éeld in the general relativity theory is
identiéed with the metric properties of space ë time. The
éeld of a weak plane +-polarised gravitational wave in the
locally Lorentzian frame of reference of a physical body
corresponds to the metric [19]
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Here, h � h(tÿ z=c); jhj5 1 is the GW function; and Greek
indices run through 0, 1, 2, 3 or ct, x, y, z.

The wave equation for the z component of the four-
dimensional potential of the electromagnetic éeld Am �
(0; 0; 0;A) with the applied Coulomb gauge in metric (1)
takes the form [20]
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This equation describes quite accurately the propagation
of a linearly polarised laser beam of radius � 10 cm at a
wavelength of � 1 mm along the x axis in the éeld of a
gravitational wave at the frequency fGW � 102 ÿ 105 Hz
(corresponding to lGW � 103 ÿ 106 m).

The solution of Eqn (2) obtained in [20] by the method
of successive approximations accurate to the terms of the
order of O=o0 has the form
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and k0 � o0=c. The function A� describes a light wave
propagating in the positive direction of the x axis, and the
function Aÿ describes a counterpropagating wave. The
amplitudes A�0 and frequency o0 are obtained from the
initial boundary problem, which is formulated and solved in
the next section.

3. Electromagnetic wave in a Fabry ëPerot
cavity in the gravitational-wave éeld

Consider now a light wave circulating in a Fabry ë Perot
cavity of length L in the gravitational-wave éeld (Fig. 1).
We will call one of the cavity mirrors the input mirror and
the other ë the moving mirror. Let us couple our frame of
reference with the input mirror (in other words, we will use
this mirror as a locally Lorentzian frame of reference) and
assume that it partially transmits optical radiation with the
corresponding amplitude coefécient T5 1, while the
moving mirror reêects 100% of radiation. For simplicity,
we neglect optical losses in both mirrors.

Let a linearly polarised plane light wave Ain(x; t) be
incident on the input mirror. We write it as a sum of a `large'
wave with the amplitude Ain 0 and frequency o0 and a `small'
addition ain(x; t) corresponding to the optical noise (for
simplicity, we consider only classical electromagnetic éelds
and their êuctuations):

Ain�x; t� � Ain 0 exp�ÿi�o0tÿ k0x��

� ain�x; t� exp�ÿi�o0tÿ k0x��+c.c.,
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c
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:

We represent the optical éeld in the cavity as a sum of
two waves propagating in the positive [A�(x; t)] and
negative [Aÿ(x; t)] directions along the x axis and divide
each of the waves into three parts: a `large' component with
the amplitude A�0, a `small' addition corresponding to the
direct interaction of the gravitational and light waves [see
expression (3)], and a `small' unknown function a�(x; t)
describing the optical noise and phase shift of a wave
circulating in the cavity (we will neglect the terms of the
type h� a� � h 2):

A��x; t� � A�0 exp�ÿi�o0t� k0x��
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The wave Aout(x; t) reêected from the cavity includes
both the wave reêected from the input mirror and the wave
emerged from the cavity. The latter contains information on
the GW signal (and noises masking it). We represent the
reêected wave also as a sum of the `large' and `small'
components:

Aout�x; t� � Aout 0 exp�ÿi�o0t� k0x��
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To énd the relation between the optical éelds written
above, we impose the boundary conditions: the continuity
condition for the vector potential on the surfaces of the
input mirror and the condition that the tangential compo-
nent of the electric éeld vector on the surface of the moving
mirror in its intrinsic frame of reference is zero [21]:

Aout�0; t� � RAin�0; t� � TAÿ�0; t�;

x

Ain�x; t� A��x; t�

Aout�x; t� Aÿ�x; t�

R; T R � 1

0 L L� X

Figure 1. Fabry ëPerot cavity with an absolutely reêecting moving
mirror. The left mirror is éxed and has the amplitude transmission
coefécient T. The isolated cavity without pumping has the éxed length L,
the coordinate of the moving mirror is x�t� � L� X�t�; X5L.
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A��0; t� � TAin�0; t� ÿ RAÿ�0; t�;

A��L� X�tÿ t�; tÿ t� � Aÿ�L� X�tÿ t�; tÿ t� � 0:

Here, t � L=c. The solution of this system of equations
obtained by the method of successive approximations [20]
has the form
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T
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(5)
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in the érst approximation.
Here, we introduced the convenient notation for phase

shifts after single reêection according to their physical
meaning:

dCmir�O� � 2k0X�O� exp�iOt�

corresponds to the phase shift of the light wave reêected
from the mirror moving according to the law X � X(t) [or
X(O) in the spectral representation], which will be obtained
below;

dCGW�EMW�O� � i� gÿ�L;O� o0� ÿ g��L;O� o0��

� exp�iOt� � ÿk0Lh�O�
�
1ÿ sinOt

Ot

�
exp�iOt�

describes the phase shift of the light wave (EMW) due to its
direct interaction with the gravitational wave calculated in
the approximation O � oGW 5o0. Note that this effect can
be qualitatively interpreted as the appearance of the
effective refractive index depending on the coordinate
and time.

4. Equation of mirror motion

The equation of mirror motion in the gravitational-wave
éeld (1) taking the light pressure into account has the form
[20]
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where m is the mirror mass; S is the laser-beam cross
section area; and A � A(x; t) is the electromagnetic éeld
potential in the cavity.

It is convenient to solve Eqn (6) in the spectral repre-
sentation by the method of successive approximations. We
are interested only in the érst approximation because the
pressure force in the zero-order approximation is constant
and can be compensated. The right-hand side of this
equation (denoted by F ) can be divided into two terms
according to their physical meaning (by neglecting the
êuctuation component of the force proportional to ain) [20]:

F�O� � Fpm�O� � FGW�EMW�O�;
where

Fpm�O� � ÿK�O�X�O� � ÿK�O�X�O� � 2iOG�O�X�O� (7)

is the pondermotive component of the light pressure force;

FGW�EMW�O� �
1

2
K�O�

�
1ÿ sinOt

Ot

�
Lh�O� (8)

is the correction to the force for the direct interaction of the
gravitational and light waves;

K�O� � 4k0SWFPR exp�2iOt� sin�2o0t�
1ÿ 2R exp�2iOt� cos�2o0t� � R 2 exp�4iOt� (9)

is the optical rigidity coefécient [7, 8, 22];

G�O� � SWFP

c

1ÿ R 2 exp�4iOt�
1ÿ 2R exp�2iOt� cos�2o0t� � R 2 exp�4iOt�

(10)

is the radiative friction coefécient [22]; and WFP � k 2
0 (A�0

�A��0 � Aÿ0A
�
ÿ0)=2p is the energy density of a light wave

circulating in the Fabry ë Perot cavity.
Note that the pondermotive force includes the terms

describing the rigidity K and radiative friction G. The latter
is the relativistic correction and appears taking into account
the terms proportional to _X=c. Both these effects appear
with a time delay (of the order of the relaxation time of the
cavity). The division of the pondermotive force into the
restoring force and friction force is conditional because both
these terms have real and imaginary parts. The quantity
R(K) is usually called the optical rigidity. Because 2iOG �
(O=o0)K, the friction G in most cases is masked by the
imaginary part of the rigidity and can be omitted below. The
only exclusion is the case of the optical resonance
o0t � pn; n � 0; 1; 2; :::, for which K � 0. In the detuned
cavity, depending on the choice of the operating point in the
resonance curve, the following cases are possible [3, 4]:
either R�K�O�� > 0 and I�K�O�� < 0, or R�K�O�� < 0 and
I�K�O�� > 0. These inequalities reêect the fact that the
appearance of the pondermotive rigidity can be accompa-
nied by the development of instability.
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5. Law of mirror motion and the cavity response

The solution of Eqn (6) in the spectral representation,
taking expressions (7) ë (10) into account, has the form

X�O� � 1

2

Lh�O�
mO 2 ÿK�O�

�
mO 2 ÿK�O�

�
1ÿ sinOt

Ot

��
; (11)

and the corresponding response of the detector (5) (we
neglect the term proportional to ain and describing
êuctuations of the optical éeld) is

aout�O� o0� � ÿAin0

� T 2 exp�2io0t�
�1ÿ R exp�2io0t��f1ÿ R exp�2i�O� o0�t�g

� mO 2

mO 2 ÿK�O� ik0Lh�O�
sinOt
Ot

exp�iOt�: (12)

In most cases, the replacement K�O� ! K�O� can be made
in expressions (11) and (12).

It follows directly from the expressions obtained above
that the interaction of gravitational waves at frequencies
O � oGW � noFSR (oFSR � pc=L is the free spectral range
of the cavity) with the cavity can be accompanied by the
parametric excitation of additional optical modes.

6. Response of the detuned cavity near
the FSR frequency

Let us analyse the response function of the cavity near the
FSR frequency by introducing the notation D � Oÿ oFSR,
jDj5oFSR is the detuning from the FSR frequency, d is the
detuning from the selected operation mode of the cavity
(i.e. o0 � pn0=t� d; n0 is éxed), g � (1ÿR)=(2t) is the half-
width of the resonance curve, EFP is the total electro-
magnetic-éeld energy in the cavity. The expressions for the
optical rigidity coefécient (9) and cavity response function
(12) take the form

K�D� � 2o0EFP
L 2

d

d 2 � �gÿ iD� 2 ;

aout�oFSR � D� o0� � ÿAin 0

g=t
gÿ id

1

gÿ i�d� D�

� mo 2
FSR

mo 2
FSR ÿ K�D�

D
oFSR

ik0Lh�oFSR � D�:

The condition of the resonance detecting regime is the
equality mo 2

FSR ÿR�K�D�� � 0. The ratio R�K(D)�=(mo 2
FSR)

can be estimated by the order of magnitude as � 10ÿ4 [20]
for the following values of parameters planned in Advanced
LIGO detectors: L � 4 km, o0=2p � 3� 1014 Hz, d=2p �
100 Hz, g=2p � 1 Hz (narrowband operation regime),
EFP � 20 J, m � 40 kg and oFSR=2p � 37:5 kHz. Therefore,
to obtain the mechanical resonance gain upon detection of
high-frequency gravitational waves with fGW � 30 kHz, it is
necessary to increase the circulating optical power and
reduce the mirror mass and the width of the resonance
curve. Note that even when the equality mo 2

FSRÿ
R�K�D�� � 0 is fulélled, the resonance gain will be limited
by the value mo 2

FSR=I�K�D��.

7. Conclusions

We have analysed the interaction of a weak plane +-pola-
rised gravitational wave with a Fabry ë Perot cavity in the
input-mirror locally Lorentzian frame of reference taking
the light pressure force into account beyond the framework
of the long-wavelength approximation. We have obtained
the generalised expressions for the optical rigidity coefé-
cient, the law of mirror motion, and the cavity response to
gravitational waves at arbitrary frequencies, including high-
frequency waves predicted by some cosmological models.
Based on these expressions, we have considered the
possibility of the resonance detection of high-frequency
gravitational waves and have shown that to obtain the
mechanical resonance gain, it is necessary to increase the
optical power circulating in the cavity and reduce the probe
masses and the width of the resonance curve.
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