
Abstract. The undesirable effect of parametric oscillatory
instability in a LIGO (Laser Interferometer Gravitational-
Wave Observatory) laser gravitational-wave antenna with a
signal-recirculation mirror is analysed in detail. The insta-
bility is manifested in excitation of the Stokes optical mode
and elastic mechanical mode of the mirror. It is shown that, if
the eigenfrequencies of Fabry ëPerot resonators in the inter-
ferometer arms are different, the parametric instability is
quite small due to a small passband band width.

Keywords: quantum measurement theory, LIGO interferometer,
gravitational waves.

1. Introduction

Presently the sensitivity of a LIGO laser gravitational-wave
antenna expressed in terms of the amplitude of the metric
variation is approximately three times worse than its
planned value h ' 1� 10ÿ21 in the 100-Hz frequency
band [1, 2]. After the further improvement of a system
of isolation from noises of different types in mirrors of
4-km optical Fabry ë Perot resonators and increasing the
optical power W of a wave circulating in resonators up to
� 830 kW, it is planned to achieve the sensitivity h '
1� 10ÿ22.

In [3], the undesirable effect of parametric oscillatory
instability in a Fabry ë Perot resonator, which can consid-
erably reduce the sensitivity of the antenna, was analysed.
This effect appears if the optical power Wc of a wave
circulating in the fundamental optical mode exceeds a
certain threshold value under the condition that the fre-
quency difference o0 ÿ o1 between the fundamental optical
mode and the Stokes mode is close to the frequency of om of
the elastic mode of the resonator mirror. The interaction
between these three modes appears due to the pondermotive
pressure of light in optical and Stokes modes and the
parametric action of mechanical vibrations of the mirror
on optical modes. If the light power Wc exceeds the critical
value, the amplitude of mechanical vibrations, as the optical
power in the Stokes mode, increases exponentially. Later, it

was shown in [4] that, if the inêuence of the anti-Stokes
mode at the frequency o1a � o0 � om is taken into account,
the effect of parametric oscillatory instability will be
considerably weakened or even completely excluded.

In [5], a detailed analysis was performed for a power-
recycling mirror LIGO interferometer and it was shown that
the anti-Stokes mode cannot suppress completely the para-
metric oscillatory instability. This effect can be suppressed
by varying the shape of mirrors or introducing the low-noise
damping [6]. It was also proposed [7 ë 9] to reduce the role of
the parametric instability by heating probe masses to change
the radius of curvature of interferometer mirrors and by
controlling the values of detunings and also reducing the
overlap factors for optical and elastic modes. Note that the
parametric instability was recently observed experimentally
[10].

The parametric instability in a signal-recirculation
mirror LIGO interferometer with identical Fabry ë Perot
resonators in its arms was analysed in detail in [11].
However, in practice such resonators have in the general
case different eigenfrequencies because the radii of curvature
of the mirrors in different arms differ from each other by a
few metres (�0:1%). For example, for the Gauss ëHermite
mode frequencies qqmn in a Fabry ë Perot resonator with the
radii of curvature R1 and R2 of mirrors separated by the
distance L, we have [12]

oqmn �
pc
L

�
q� �m� n� 1�f

p

�
, (1)

f � arccos
�� �g1g2�1=2�, g1;2 � 1ÿ L

R1;2

. (2)

Here, q � 0, 1, 2 . . . is the longitudinal coefécient and m and
n are the transverse indices of optical modes; g1 and g2 are
the g-factors; and c is the speed of light. The sign `+ ' in
the expression for f is used for g1 > 0 and g2 > 0, while the
sign ` ë ' corresponds to g1 < 0 and g2 < 0; different signs
(i,e. g1g2 < 0) correspond to an unstable resonator.

For the improved LIGO scheme with

R1;2 � 2076� 3m, L � 4 km, (3)

g1;2 � g ' ÿ0:926� 3� 10ÿ3, f ' 0:385, (4)

the optical mode frequencies will differ from each other by
the value

Dfqmn � �
Doqmn

2p
' ��m� n� 1�100Hz. (5)
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Taking into account that it is planned to obtain the
frequency interval of the sensitivity of the improved LIGO
interferometer scheme between 50 and 500 Hz, while the
damping factor of optical modes in the interferometer is
� 2 sÿ1, this value is quite large. Note here that the
fundamental modes of Fabry ë Perot resonators in the
two arms are tuned to the resonance by a feedback system.
In this case, the frequencies of additional optical modes
playing the role of Stokes modes differ slightly from each
other and Fabry ë Perot resonators in the interferometer
arms are not optically identical, as was assumed in [13].

In this paper, we analysed the parametric instability in
the improved LIGO interferometer scheme with optically
different arms. It is shown that a small mismatch of the
interferometer arms causes the shift of the normal modes of
the complete interferometer, however, the probability of
parametric instability only slightly differs from that in the
case of optically identical arms. On the one hand, this results
in the possibility of developing parametric instability in the
interferometer at low optical power (a few watts) and a
small mismatch D � o0 ÿ oS ÿ om, and on the other, the
probability of parametric oscillatory instability proves to be
extremely small due to a small damping factor of optical
modes (a few hertz).

2. Signal-recirculation mirror LIGO
interferometer with optically different
Fabry ëPerot interferometers in arms

Figure 1 shows a LIGO interferometer with signal- and
power-recycling mirrors (SR and PR mirrors, respectively).

Let us neglect optical losses and noise in mirror
suspensions and assume that the eigenfrequencies o1 and
o2 of Stokes modes in the Fabry ë Perot resonators in the
interferometer arms slightly differ from the average fre-
quency oS � (o1 � o2)=2 by the mismatch d � (o1 ÿ o2)=2
of the interferometer arms, i.e. o1;2 � oS � d. We assume
also for simplicity that the damping factors and trans-
missions of the input mirrors are the same: g1 � g2 � g and
T1 � T2 � T. The distances between the input mirrors of

Fabry ë Perot resonators and a beamsplitter and between the
beamsplitter and SR and PR mirrors are suféciently small
(about several metres), so that we assume that the phase
incursions of light waves circulating between these mirrors
are constant and frequency-independent. The interferometer
is pumped through the port F5.

Let us introduce the average and small êuctuation
amplitudes of light éelds. For example, the amplitude in
the érst Fabry ë Perot resonator is written in the form
F1in �f0 � f1in, where the averaged éeld f0 corresponds
to the fundamental mode at frequency o0, and the êuctua-
tion éeld f1in corresponds to the Stokes mode with the
average frequency oS. The detailed calculations of this
conéguration of the interferometer are presented in [13]:

f1in�O� �t1 f1�O� �N1f0

t12ikz
�
1 �Dÿ O�
i
����
T
p , (6)

e1�O� � r1 f1�O� ÿN1f0t12ikz
�
1 �Dÿ O�, (7)

t1 �
2ig����

T
p �gÿ i�Oÿ d �� , r1 �

g� i�Oÿ d �
gÿ i�Oÿ d � ,

(8)

D � o0 ÿ oS ÿ om, oS �
o1 � o2

2
, d � o1 ÿ o2

2
,

f2in�O� �t2 f2�O� �N2f0

t22ikz
�
2 �Dÿ O�
i
����
T
p , (9)

e2�O� � r2 f2�O� ÿN2f0 t22ikz
�
2 �Dÿ O�, (10)

t2 �
2ig����

T
p �gÿ i�O� d �� , r2 �

g� i�O� d �
gÿ i�O� d � ,

z1;2�O� � x1;2�O� ÿ y1;2�O�, g � cT

4L
, (11)

E1 � R1F1, E2 � R2F2, R1;2 � r1;2�O � 0�.

Here, f1in, e1, f2in, and e2 are the êuctuation components of
the éelds F1in, E1, F2in, and E2; N1;2 are the dimensionless
overlap factors of optical and elastic modes; k � oS=c is the
wave vector of the optical Stokes mode; x1;2 and y1;2 are
mechanical displacements of the mirrors of Fabry ë Perot
resonators [13]; and D is the mismatch of modes in the case
of parametric instability. Expressions (6) ë (11) are written
in the frequency representation for the case of the slowly
varying amplitude of mechanical displacements �z1(t) �
z1(t) exp (ÿ iomt)� z �1 (t) exp (iomt).

Let us denote the amplitudes of light waves on the
beamsplitter by F3, E3 and F4, E4 (Fig. 1). We assume that
the beamsplitter transmission is Tbs � 1=2 and the phase
appearing due the wave circulation between the second
Fabry ë Perot resonator and beamsplitter satisées the rela-
tion exp (if2) � 1, and between the érst Fabry ë Perot
resonator and beamsplitter ë exp (if1) � i. For simplicity,
we introduce the plane i (Fig. 1) in which the phase
incursion up to the beamsplitter is such that exp (if1) � i
and the phase incursion up to the input mirror of the érst
Fabry ë Perot resonator is 2p. Then, the amplitudes F1 and
E1 of éelds on the input mirror of the érst Fabry ë Perot

x2

y2

y1 x1

E1

E2

E1in

E2in

F1

F2

F1in

F2in

T1

FP1

FP2

E4

E5 E3

E6

F4

F5 F3

F6

BS

i

Tpr

PR mirror

T2

Tsr SR mirror

Figure 1. Improved scheme of a LIGO interferometer: FP1 and FP2:
érst and second Fabry ëPerot resonators in the interferometer arms; BS:
beamsplitter; Tpr, Tsr: transmission coefécients of PR and SR mirrors.
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resonator (and in the plane i), the amplitudes F2 and E2 on
the input mirror of the second Fabry ë Perot resonator, and
the amplitudes F3, E3, F4, and E4 on the beamsplitter will be
related by the expressions

F1 �
ÿF3 ÿ iF4���

2
p , F2 �

1���
2
p �ÿF3 � iF4�, (12)

F3 �
ÿF1 ÿ F2���

2
p , F4 �

i���
2
p �F1 ÿ F2�, (13)

E3 �
ÿE1 ÿ E2���

2
p , E4 �

i�ÿE1 � E2����
2
p . (14)

For the PR mirror, we have

F3 exp�ÿifpr� � iT
1=2
pr F5 ÿ �1ÿ Tpr�1=2E3 exp�ifpr�, (15)

E5 � iT
1=2
pr E3 exp�ifpr� ÿ �1ÿ Tpr�1=2F5, (16)

fpr � �oS � Dpr � O� lpr
c
, (17)

where Tpr is the transmission coefécient of the PR mirror
and Dpr is the detuning of a resonator formed by the
beamsplitter and PR mirror. Let us also assume that this
resonator is in the resonance and exp (ifpr) � i, while fpr is
independent of the frequency O because of a small size of
the resonator (lpr 5L). Therefore,

F3 � �1ÿ Tpr�1=2E3 ÿ T
1=2
pr F5, (18)

E5 � ÿT 1=2
pr E3 ÿ �1ÿ Tpr�1=2F5. (19)

For the SR mirror, we write similarly

F4 exp�ÿif� � iT
1=2
sr F6 ÿ �1ÿ Tsr�1=2E4 exp�if�, (20)

E6 � iT
1=2
sr E4 exp�if� ÿ �1ÿ Tsr�1=2F6, (21)

where Tsr is transmission coefécient of the SR mirror. Let
us assume that a resonator formed by the beamsplitter and
SR mirror is not in the resonance and f � (oS � O)lsr=c is
an arbitrary phase incursion, but f is also independent of
frequency O due to a small size of the resonator (lsr 5L).

By substituting (13) and (14) into the system of equa-
tions (18), (20) and taking into account (6), (7), (9), (10), we
obtain expressions for the light éelds f1in and f2in

f1in�g� ÿ i�Oÿ d �� � f2in�g� ÿ i�O� d �� �z�,

f1in�Gÿ ÿ i�Oÿ d �� ÿ f2in�Gÿ ÿ i�O� d �� � zÿ,

(22)

z1 �
icN1f0kz

�
1

L
, z2 �

icN1f0kz
�
2

L
,

g� � g
1ÿ �1ÿ Tpr�1=2
1� �1ÿ Tpr�1=2

, z� � z1 �z2,

Gÿ � gÿ ÿ id � g
1ÿ exp�2if��1ÿ Tsr�1=2
1� exp�2if��1ÿ Tsr�1=2

. (23)

Here, d is the detuning of the asymmetric mode, which
depends on the position of the SR mirror, and g� and Gÿ
have a simple physical meaning. In the case of an
interferometer with optically identical arms (for d! 0),
Gÿ ! g and g� and gÿ are the damping factors of the
symmetric (� F1 � F2) and antisymmetric (� F1 ÿ F2)
modes [11]. By summing and subtracting these equations,
we obtain

f1in�g� ÿ i�Oÿ d �� � f2ingÿ �z1, (24)

f1ingÿ � f2in �g� ÿ i�O� d �� �z2, (25)

g� �
g� � Gÿ

2
� g� � gÿ � id

2
. (26)

By adding now mechanical equations with the ponder-
motive light pressure force, we énd

_z1 � gmz1 � 2q f1in�t� exp�iDt�, (27)

_z2 � gmz2 � 2q f2in�t� exp�iDt�, (28)

2q � 2oSjN1j2jf0j2
mcmomL

, m � 1

V

�
ju�r�j2dV, (29)

where gm is the damping factor of an elastic mode of the
mirror; m is the mirror mass; V is the mirror volume; and
u(r) is the deformation vector of the elastic mode.

Because the system of equations (24), (25) describes
coupled oscillators, it is reasonable to introduce normal
modes with the complex amplitudes x, Z and eigenvalues l1,
l2, respectively. By rewriting the system of equations (24),
(25) and equations (27), (28) in the time representation [13]

�1� K 2��qt ÿ l1�x � zx exp�ÿiDt�, (30)

_zx � gmzx � 2q�1� K 2�x�t� exp�iDt�, (31)

�1� K 2��qt ÿ l2�Z � zZ exp�ÿiDt�, (32)

_zZ � gmzZ � 2q�1� K 2�Z�t� exp�iDt�, (33)

x � f1in ÿ K f2in
1� K 2

, Z � K f1in � f2in
1� K 2

, (34)

zx �z1 ÿ Kz2, zZ � Kz1 �z2, (35)

l1;2 � ÿg� �
ÿ
g 2
ÿ ÿ d 2

�1=2
, K �

ÿ
g 2
ÿ ÿ d 2

�1=2 � id

gÿ
, (36)

we obtain, as in the case of two optically identical Fabry ë
Perot resonators in the interferometer arms, two independ-
ent pairs of equations. In the limit d! 0, the mode x is
transformed to the antisymmetric mode [i.e. x! ( f1inÿ
f2in)=2, zx !z1 ÿz2], while the mode Z is transformed to
the symmetric mode [i.e. Z! ( f1in � f2in)=2, zZ ! z1�z2].

For the most probable case, we have the rigorous
condition jg� ÿ gÿj5 d (damping factors g� lie in the
interval between 1 and 10 sÿ1, while the detuning d,
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depending on the position of the SR mirror, is approx-
imately equal to 103 sÿ1) and can use the following
approximations for mode eigenvalues (36):

l1;2 '
�
ÿ g� � gÿ

2
� d�g� ÿ gÿ�

2D

�
� i

�
d
2
�D

�
, (37)

K ' 2�d�D�
d

, D �
�
d 2 �

�
d
2

�2 �1=2
. (38)

In the case of identical mirrors having the same mass and
identical elastic eigenfrequencies, we can analyse independ-
ently two pairs of equations (30), (31) and (32), (33). For
example, by using substitutions x � x exp (ltÿ iDt) and
zx � zx exp (lt) in the system of equation (30) and (31),
we obtain the characteristic equation

2q � �lÿ iDÿ l1��l� gm�. (39)

Because it is known [13] that

gm 5 g�, gÿ , (40)

we will seek the root of the characteristic equation close to
the damping factor of the elastic mode: jlj � gm. Therefore,
by using (40), we rewrite the characteristic equation (39) by
assuming that l � 0 in all parentheses containing g�, gÿ (or
l1):

l ' ÿgm ÿ
2q

iD� l1
. (41)

The condition of parametric instability corresponds to the
situation when Rel < 0, which gives

2q

gm
Re

� ÿ1
l1 � iD

�
5 1. (42)

In the case of different mirrors, for which the eigen-
frequencies of elastic modes do not coincide, we consider the
displacement of only one mirror, for example, the displace-
ment x1 of the end mirror in the érst Fabry ë Perot
resonator and introduce the quantity x1 � icN1f0kx

�
1=L.

In this case, Eqns (27), (28), (30), and (32) can be written in
the form

�1� K 2��qt ÿ l1�x � x1 exp�ÿiDt�, (43)

�1� K 2��qt ÿ l2�Z � Kx1 exp�ÿiDt�, (44)

_x1 � gmx1 � q�x�t� � KZ�t�� exp�iDt�. (45)

By solving Eqns (27) ë (45), we should take into account
that the effective light pressure force should be half as much
because it acts only on one mirror. By assuming that
x � x exp (ltÿ iDt), Z � Z exp (ltÿ iDt), and x1 � x1�
exp (lt), we obtain the characteristic equation in the
form similar to that for optically identical Fabry ë Perot
resonators (d � 0) [11]:

l� gm �
q

1� K 2

�
1

lÿ iDÿ l1
� K 2

lÿ iDÿ l2

�
. (46)

By using (40), we énd the condition of parametric
instability in the form

q

gm
Re

�
1

1� K 2

� ÿ1
iD� l1

� ÿK 2

iD� l2

��
5 1. (47)

Note that we used in all calculations the following values
of damping factors: (see Appendix C in [13]): the damping
factor for elastic modes gm ' 6� (10ÿ4 ÿ 10ÿ2) sÿ1; the
damping coefécients for symmetric and antisymmetric
modes g� ' 1:5 sÿ1 and gÿ5 2 sÿ1, respectively; and the
damping coefécient for a Fabry ë Perot resonator
g ' 100 sÿ1.

Note also that the conditions of parametric instability
for the improved LIGO interferometer scheme with opti-
cally different arms exactly correspond to the instability
conditions obtained earlier [11] for an interferometer with
identical arms (d � 0). Indeed, conditions (42) and (47) will
transform to Eqns (2.16) and (2.30) in [11] if we assume that

l1 ! ÿgÿ � id, l2 ! ÿg�. (48)

The dependence of the eigenvalues l1;2 of normal modes
on the arm mismatch d gives complete information on the
probability of appearance of parametric instability com-
pared to the case of optically identical arms. Curves in
Fig. 2 illustrate qualitatively this dependence. One can see
that the real parts of l1;2 (with the opposite sign), which are
damping factors for the normal resonator modes, weakly
change over the entire range of the arm mismatch d.
Therefore, a strong dependence of the parametric instability
D on the mode mismatch is also preserved in the improved
LIGO interferometer scheme with optically different arms
(47), i.e. parametric instability can be observed if the value
of D is relatively small: jD� Im(l1;2)j < g�, gÿ ' 2 sÿ1.

One the one hand, in the case of parametric resonance
(the total mismatch is small), the parametric instability in a
SR mirror interferometer appears for relatively low optical
power. For example, if jD� Im(l1)j5 g�, gÿ and
jD� Im(l2)j4 g�, gÿ [i.e. the second term in (47) is negli-
gible small], the parametric oscillatory instability takes place
even when the power of a wave circulating in the interfer-

gÿ

g�

ÿRe l2

ÿRe l1;2

ÿRe l1

d

d

Im l1;2
Im l1

Im l2

d

Figure 2. Qualitative dependences of the real and imaginary parts of the
eigenvalues of normal modes on the mismatch d of the LIGO interfero-
meter arms.
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ometer arms is low (Wc ' 5 W) (for om � 105 sÿ1,
gm � 6� 10ÿ4 sÿ1, jN1j2=m ' 1) [13].

On the other hand, in the case of large mode mismatches
jD� Im(l1)j > g�, gÿ, the parametric instability can appear
only at high optical powers [Wc � jD� Im(l1)j2)]. For
example, if the mismatch is about 1 kHz [i.e. jD�
Im(l1)j ' 6� 103], by using parameters from [13], we obtain
that the parametric instability occurs at Wc ' 108 W.

One can see from the lower curve in Fig. 2 that the
mismatch d of interferometer arms can strongly change the
frequencies of the normal modes of the LIGO interferom-
eter. At the same time, the mismatch does not change the
density of optical modes in Fabry ë Perot resonators and,
hence, the probability of appearance of parametric insta-
bility.

3. Conclusions

We have analysed the parametric instability effect in the
improved scheme of a signal-recirculation mirror LIGO
interferometer with optically different arms. The neglect of
this effect can lead to a considerably decrease in the
sensitivity of a gravitational-wave antenna. The conditions
of parametric instability have been obtained both in the
case when all the mirrors have the same mass and identical
elastic eigenfrequencies and in the case when these
frequencies are different.

The calculations performed in the paper have shown
that, although the mismatch d of the LIGO interferometer
arms changes the frequencies of the normal modes of the
interferometer, the probability of the appearance of para-
metric instability is almost the same as that in the LIGO
interferometer with optically identical arms. In addition, the
parametric instability in this interferometer is relatively
small because of a small width of the interferometer
passband.

Note also that a direct experiment is the most efécient
method for eliminating parametric instability. To observe
the parametric instability in experiments with a SR mirror
interferometer, we can change the mismatch d of a SR
mirror resonator and the mismatch d of interferometer
arms. The methods for changing the mismatch d by varying
the position of the SR mirror and the arm mismatch d by
varying the radius of curvature of mirrors due to nonuni-
form heating were proposed in papers [7 ë 9, 11]. These
methods allow one to study in detail a relatively broad
frequency interval for énding parametric instabilities.
Together with calculations of the elastic eigenmodes of
mirrors, these methods give very important information on
the possibility of excluding parametric instability in the
LIGO interferometer.
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