
Abstract. Two schemes of measurement-based gates are
considered. The érst scheme uses atomic cluster states
generated by using the proposed cooperative process involving
classical éelds. The second scheme is based on the quantum
correlation of biphotons and allows encoding classical
information by the states of a quantum system.

Keywords: quantum computations, entangled states, quantum-mea-
surement logic gates.

1. Introduction

From the point of view of the successive performance of
operations, the computation process is ordered in time
because we distinguish, for example, the initial and énal
states. The time ordering plays an important role in the
measurement-based models of quantum computers in which
a quantum measurement is used as the basis mechanism.
Indeed, due to the randomness of the quantum measure-
ment outcome, the outcomes of measurements should
determine the measurement platform of the next gate for
determinate operation.

One-particle measurements and cluster states as well as
entangled multiparticle states are the basic elements of one-
way quantum computers (OQCs) proposed in [1, 2]. Based
on OQCs with the help of cluster states prepared from
polarised photons, the quantum search algorithm and
Deutch ë Josza algorithm were experimentally realised
[3, 4]. Due to their properties, cluster states, being the
universal resource for one-way computations [5], are of
interest both for theoretical and experimental studies and
they can be obtained in various physical systems. The
properties of cluster states formed by polarised photons
were experimentally studied in [6]. These states can be
obtained in spin systems, in particular, in the Ising model,
in optical gratings, Josephson junctions, etc. [7 ë 10]. Cluster
states in optical realisations of one-way computers discussed
in [11] can be prepared from the EPR (Einstein ë Podolsky ë

Rosen) pairs with the help of a `fusion' operation based on
the projection measurement [12, 13]. By using the squeezed
light, the cluster states of continuous variables can be
obtained [14] which allow universal calculations [15].

An OQC is based on a quantum-measurement gate
formed by a cluster state. To perform the required oper-
ation, it is necessary érst to write the initial data in the gate
input and then to entangle all qubits and perform the
measurement. This means that the entanglement should be
performed by a controllable physical interaction. A variant
of the controllable generation of graph states, in particular,
cluster states was considered in [16] for a spin XY gate
formed by the optical grating of neutral atoms.

Logic gates for one-way quantum computers can be
considered from the point of view of teleportation. Indeed,
the standard teleportation protocol allows one to transfer
the unknown state from point A to point B, which can be
treated from the point of view of computing as the unit
operation performed by the gate. Teleportation gates were
proposed in [17] for constructing universal fault-tolerant
gates. The possibility of their using in computations was
discussed in [18 ë 20]. Thus, there exist two close models of a
quantum computer based on measurements: the one-way
quantum computer and the teleportation computer. The
relation between them was considered in [21].

In this paper, we discuss two questions which are
important for realisation measurement-based computers.
The érst question concerns the controllable interaction
for preparing cluster states and performing time-ordered
computations. We consider two cooperative processes,
namely, the cooperative absorption and coherence
exchange. They include classical éelds, which are a con-
venient controllable parameter.

The optical absorption of a photon by a pair of atoms
was experimentally observed in a crystal doped with Pr3�

ions [22]. This absorption occurs due to the interference
between the dipole ë dipole interaction and interaction
between light and atoms [23]. We found the effective
interaction Hamiltonians for these two cooperative proc-
esses, which include classical éelds, and schemes of logical
gates based on atomic cluster states.

The second question discussed in the paper concerns the
problem of encoding classical information with the help of
the quantum-system states. This is important because, for
example, any quantum algorithm has the classical input.

As one of the solutions of this problem, we propose a
measurement-based gate realised by using the EPR pair. The
gate has the classical input and quantum output and
transforms classical data to a quantum-system state. Com-
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pared to the OQC gates, our gate can use more complicated
simultaneous measurements and can already perform some
computational tasks. We consider the realisation of such a
gate by using biphotons, which are the basis of quantum
information processes and can be prepared experimentally
[26 ë 29]. Thus, the C-NOT operation was experimentally
demonstrated on biphotons [30].

2. General scheme of a gate based
on the projection measurement

Logic gates in the models of a one-way quantum computer
and a teleportation computer have the same structure,
which is determined by fundamental physical principles.
These are a change in the quantum state with the help of
the projection measurement and the deterministic operation
performed by recover operators.

Let the observable A of some system in the state jCini be
measured. Let jaki (k � 1, 2 . . . ) be the eigenvectors of A. If
the outcome j is obtained, the input state is projected to jaji.
Let us assume that there exits the unitary operator
UG :UGjCini � jaji; then a gate appears which performed
the operation UG. But this gate is not deterministic because
the undesirable outcome m 6� j exists, which appears with
the probability jhCinjamij2. Let us introduce the unitary
operator R(m) correcting all the undesirable outcomes
R(m)jami � jaji; then, the gate will always perform the
operation UG. This requires a set of retrieval operators R
(byproduct operators in the literature on one-way quantum
computers).

Operations performed by the gate can be realised by
using either one-particle measurements (as in the model of a
one-way computer) or with the help of simultaneous mea-
surements in the entangled basis (as in the model based on
teleportation). However, these two methods do not differ
signiécantly because they both use the entanglement.
Indeed, the measurement of the state C in the entangled
basis means that we entangle particles in the state C before
the measurement by using the appropriate unitary operation
and then perform one-particle measurements. As an exam-
ple, we consider below both types of measurements.

3. Cluster states

Cluster states (CSs) can be generated by the interaction
Hamiltonian V � 1

4

P
a;b ga;b(t)(1ÿZa)(1ÿ Zb), where Za �

sza is the Pauli operator of a particle. Let the initial state n
be superimposed, j�in � (1=

���
2
p

)n 
a (j0i � j1i)a, and then

CS � T exp

�
ÿ i

�h

� t

0

dt 0V�t 0�
�
j�in

� 
a;b�Cÿ Z�abj�in, (1)

where T is the time-ordered operator; here, we assumed that

exp

�
ÿ i

�h

� t

0

dt 0gab�t 0�
�
ÿ 1 � ÿ2

and introduced the conditional phase shift operator Cÿ Z,
which is determined by the relation jxyi ! (ÿ1)xyjxyi (x,
y � 0, 1). The operator Cÿ Z transforms the superposition
j�i2 to the entangled state fab � (Cÿ Z)j�i2 which up to
the local unitary transformation is equal to the Bell state.
For ga;b � gda;a�1 and n � 2, 3, 4, cluster states have the
form

F2 �
1���
2
p �j0;ÿi � j1;�i�,

F3 �
���
2
p �j�; 0;ÿi ÿ jÿ; 1;�i�, (2)

F4 �
1

2
�j0;ÿ; 0;ÿi� j1;�; 0;ÿi ÿ j0;�; 1;�i ÿ j1;ÿ; 1;�i�,

where j�i � (1=
���
2
p

) (j0i � j1i). The speciéc feature of
cluster states is revealed only for n � 4 because two- and
three-particle CSs are unitary-equivalent to the Bell and
GHZ (Grinberger ëHorne ëZeilinger) states.

For our purposes, the following observation is impor-
tant. By using the relation HaZaHa � Xa (Ha is the
Hadamard transformation, Xa � sxa is the Pauli operator),
we énd that the CS can be represented as

CS � TG exp

�
ÿ i

�h

� t

0

dt 0V1�t 0�
�
j0i, (3)

where

G � exp

�
ÿ i

�h

� t

0

dt 0
1

4

X
ab

gab�t 0��1ÿ Za ÿ Zb�
�

a Ha,

and the Hamiltonian V1 is deéned by the relation

V1 �
1

4

X
ab

gab�t��Xa 
 Xb�. (4)

This equation means that, up to the local unitary trans-
formation EG, the required CSs can be generated by the
new Hamiltonian V1 from the initial states j0i � 
aj0ia.
The found Hamiltonian V1 describes the paired interaction
between particles and can appear aside from the Ising
model in various three- and four-particle processes includ-
ing classical éelds.

4. Cooperative processes

Consider the interaction between atoms a, b and the two
modes of an electromagnetic éeld with frequencies satisfy-
ing the relations

oa � ob � O1, (5)

oa ÿ ob � O2, (6)

where or is the transition frequency in the atom r � a, b
and Op is the frequency of the mode p � 1, 2. These
equations considered from the point of view of the law of
conservation of energy have a simple meaning. Thus,
Eqn (5) means that the energy of the absorbed photon is
spent to excite the érst and second atoms from the lower to
upper level. This is the case of cooperative absorption or
emission, when two atoms absorb or emit one photon in
cooperation. Interaction (6) is known in problems of atomic
collisions in gases as radiative scattering or coherence
exchange [24, 25].

Note that these cooperative processes have a close
analogue, namely, well-known three-photon parametric
processes in a transparent medium with the quadratic
nonlinearity, where photon frequencies are related by the
expression o1 � o2 � o3. Thus, the pump photon decom-
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poses in frequency-division processes into two photons ë a
signal photon and an idler photon, o3 ! o1 � o2, and
instead of them a pair of excited atoms appears in coope-
rative process (5). The parametric frequency conversion
process o1 ÿ o3 � o2 is analogous to cooperative coherence
exchange process (6). Along with parametric three-photon
processes, cooperative processes can be of interest for
problems of the quantum theory of information.

Modes with frequencies O1 and O2 in cooperative
processes (5) and (6) can be considered classically as the
waves with the given amplitude. In this case, the effective
interaction Hamiltonian found in Appendix has the form
v � i�hk( f y ÿ f ). This Hamiltonian describes cooperative
absorption by atoms a and b if f � s10(a)s10(b), and the
coherence exchange process if f � s10(a)s01(b), where sxy(r) �
jxirhyj is the one-atom operator related to the atom r � a, b;
x, y � 0, 1. The coupling constant k depends on the
amplitude of a classical éeld, which we assume the given
parameter.

By using the algebra f, f y, which looks like the algebra of
one-atom operators, f 2 � f y2 � 0, f yff y � f y (except the
relation f yf� ff y 6� 1), we can énd the evolution operator

U � exp�ÿi�hÿ1vt� � 1� � f yf� ff y�

��cos tkÿ 1� � � f y ÿ f � sin tk. (7)

Analysis of the evolution of two atoms determined by
expression (7) shows that

(i) during cooperative absorption and coherence
exchange, the entangled states (

���
2
p

) (j00i � j11i) and
(
���
2
p

) (j01i � j10i� can be generated from the initial states
j00i and j01i of atoms and

(ii) the a
 b! b
 a swapping operation can be realised
based on the coherence exchange.

Let us assume that conditions (5) and (6) are satiséed
simultaneously and modes at frequencies O1 and O2 are
classical. Then, the effective Hamiltonian of the form #ab �
hab(Xa 
 Xb) appears which describes the interaction bet-
ween atoms a and b, where the coupling constant hab is
determined by the amplitudes of classical éelds. The clas-
sical modes are the convenient control parameter. By using
#ab as the operation fusing two atoms, we can obtain,
according to (1), various cluster states.

Consider, for example, the generation of the state F4.
Let us take four atoms (a, b, c, d ) with transition frequencies
os (s � a, b, c, d ) and two classical modes at frequencies O1

and O2. Let the atoms be located at various spatial points.
Then, if three atoms have the same transition frequencies
ob � oc � od 6� oa and resonance conditions (5) and (6) are
satiséed, we can prepare, for example, the cluster 2D state
(Fig. 1a). For this purpose, fusing operators of the form
#ab � #ac � #ad are used. If the pairs of atoms have the same
frequencies, oa � oc and ob � od, by using the fusing
operators #ab � #bc � #cd, we can prepare a linear cluster
state (Fig. 1b). The `box' state (Fig. 1c) can be obtained
with the help of operators of the form #ab � #bc � #cd � #da.

The four-particle states presented above are equivalent
to (1) up to the local unitary transformation G and can be
used to construct various logic gates, which will be unitary-
equivalent to the original gates proposed for one-way
computers. Consider, for example, the C-NOT gate which
can be realised based on the 2D state shown in Fig. 1a.

Recall how the original C-NOT gate operates [1]. Qubit

4 in this gate is controlling, qubit 2 is the target input, and
qubit 3 is its output. First qubits 2 and 3 are prepared in the
superposition state j�i. The input state is written in qubits 1
and 4 and then the cluster state S�jai1 
 j�i2 
 j�i3 
 jbi4�
is prepared, where, according to (1) and (3),

S � exp

��
ip
4

�
�3ÿ Z1 ÿ 3Z2 � Z3 � Z4�

�

4

a�1 Ha

� exp

��
ip
4

�
�X1X2 � X2X3 � X2X4�

�

4

a�1 Ha. (8)

Then, the measurement of the observable X of qubits 1 and
2 is performed, which leads to the C-NOT operation
between qubits 3 and 4. This process can be described in the
following way:

S�jai1 
 j�i2 
 j�i3 
 jbi4

�
X
x1; x2

jx1i1 
 jx2i2R34�Cÿ X�43jabi34, (9)

where jxki is the eigenvector of the operator Xk (k � 1, 2);
R34 is the recover operator depending on the Pauli
operators of the observables X, Z of qubits 3, 4 [1].

By using Eqn (9), we consider what will occur in our
case when the cluster state required for the realisation of the
C-NOT gate is generated by the Hamiltonian V1 instead of
V. Accurate to the insigniécant phase factor exp (i3p=4), we
have

exp

��
ip
4

�
�X1X2 � X2X3 � X2X4�

��ja 0i1 
 j0i2 
 j0i3

jb 0i4

� �X
u1 ; u2

ju1i1 
 ju2i2R 034�Cÿ X�34ja 0b 0i34, (10)

where juki � Hk exp (iykZk�jxki (k � 1, 2); y1 � p=4 and
y2 � 3p=4 are the eigenvectors of new observables U1 �
U2 � Y; R 0 � H3H4 exp�(ip=4)(Z3 � Z4)�R34H3H4 is the
new recover operator. Equation (10) means that the
operation C-NOT appears between qubits 3 and 4. To
perform this operation, the following procedure is needed.
First qubits 2 and 3 are prepared in the j0i state, which is
the eigenvector of the observable Z. The input data are
written in qubits 1 and 4 and then all qubits are entangled
by using the operation exp�(ip=4)(X1X2 � X2X3 � X2X4)�,
which is generated by the Hamiltonian V1. Then, the
observables Y of qubits 1 and 2 are measured, and up to the

33
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Figure 1. Four-atom cluster states: 2D state, which can be prepared if
one atom has the transition frequency oa and three other atoms have the
transition frequency ob; this state is used to realise the C-NOT operation
on qubits 3 and 4, where 4 is the controlling qubit, and the input state of
the controlling qubit is teleported from qubit 1 to qubit 3 (a), the linear
cluster state (b), and the `box' state (c).
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unitary transformation R 034 the operation C-NOT appears
between qubits 3 and 4, where qubit 4 is a target, while the
state of the controlling qubit is teleported from qubit 1 to
qubit 3. Note that, due to the classical modes in the
interaction Hamiltonian generating the cluster state, we
have the controllable preparation of the entangled state and
the time-ordered gate operation.

To perform the required operation in the gate, it is
necessary to write the initial data in its input. If these data
are encoded by the quantum-system states, they can be
written by using, for example, the swapping operation. This
operation can be physically realised with the help of the
considered cooperative coherence exchange process and is
described by the Hamiltonian u � i�hk( f y ÿ f ), where f �
s10(a)s01(b), which leads to the a
 b! b
 a swapping
operation. Thus, any output state of the quantum register
can be written in the input of another quantum register.
However, the input data can be classical, as for example, for
any quantum algorithm. One of the possible solutions of
this problem can be obtained by using gates based on the
EPR pairs.

5. Biphoton-based gates

An EPR pair can be prepared in different ways, in
particular, by using cooperative processes (5) or (6).
However, we consider here the optical realisation of this
pair based on biphotons. For this purpose, a biphoton in
the maximally entangled state of the type jbi �
(1=

���
2
p

)(j00i � j11i) is required, where the vectors j0i and
j1i are the eigenvectors of the Pauli operator sz � Z �
j0ih0j ÿ j1ih1j. The logic states j0i and j1i can be associated
with physical states, for example, with horizontally and
vertically polarised photons or with the Fock states of light
jni, where n � 0, 1. If a biphoton is in the jbi state, a strict
correlation takes place between the result of measurement
for one of the photons, for example, the idler photon and
the state of the remaining signal photon. This fact proves to
be important for our scheme. By considering the measure-
ment of the observable Z, we énd that due to the outcome
n � 0, 1, the signal photon is projected to the jni state. In
other words, the measurement of the observable Z
 1
projects the signal photon to one of the eigenvalues of the
operator 1
 Z. Let us introduce instead of Z another
observable A � SZS y with the eigenvectors having the
form jAni � Sjni, where S is the unitary operator. Then, the
following observation is valid. The measurement of the
observable A
 1 performed over the biphoton projects the
remaining photon to the jBni state, which is one of the
eigenvectors of the observable 1
 B, where B � KZK y and
K � (S y)T.

This can be easily proved. By introducing a new basis
jAni, we énd

jbi � 1���
2
p

X
nn 0
jAn 0 ihAn 0 jnijni

� 1���
2
p

X
n 0
jAn 0 ijBn 0 i � �S
 K�jbi, (11)

where jBn 0 i�
P

nhAn 0 jnijni� Kjn 0i. Let us rewrite Eqn (11)
in the form (S
 1)jbi � (1
 K y)jbi, which means that any
rotation S of the idler photon leads to the rotation K of the

signal photon, and vice versa. The operator S is determined
from the correlation of K.

Consider a gate consisting of a biphoton, the scheme for
measuring the observable Z, and the recover operator R. Let
us introduce the recover operator R(n, s)jni � jsi, where n,
s � 0, 1, which we represent in the form R(n, s) � X n�s,
where X � j0ih1j � j1ih0j. Then, the biphoton state will take
the form

jbi � 1���
2
p

X
n�0;1
jni 
 R�n; s�jsi. (12)

The gate operates as follows. The idler photon is measured
in the basis of the observable Z. If the outcome n � 0, 1 is
obtained, it follows from (12) that the signal photon is
projected to the R(n, s)jsi state. Then, according to this
result, the signal photon is subjected to the unitary
operation R y(n, s) and its state will be jsi. The introduced
binary variable s can be treated as the external classical
signal. Therefore, our gate transforms classical information
to the quantum state:

UG :s! jsi.

Such a transformation can be of interest because, for
example, any quantum algorithm has the classical input
and, therefore, begins with the transformation of classical
information to the quantum-system states.

Equation (11) allows us to introduce a gate with a
measurement platform more complicated than Z. Thus,
by measuring the observable A � SZS y, we énd that

jbi � �S
 K� � 1���
2
p
X
n

jAniR 0�n; s�Kjsi, (13)

where R 0(n, s) � KR(n, s)K y. This equation means that the
gate, including the measurement of the observable A and
the reconstructing operator R 0(n, s), performs the operation
s! K jsi. Thus, we can perform various operations and
obtain various states at the output. Let us show, for
example, that our gates can operate with the superposition
and entangled states, which are the main resource of any
quantum computation. To generate a superposition, we
assume that S � K � H, where H is the Hadamard
transformation. Then, the required scheme will include a
biphoton, the measurement X � HZH, and the recover
operator R 0 � HXn�sH � Zn�s. Such a gate performs the
transformation s! (1=

���
2
p

)(j0i � (ÿ 1)sj1i).
To generate the entangled state, we can take two

biphotons and the Bell measurement of two idler photons
in the basis of the observable A � SZ
 ZS y, where S �
C12(H
 1), and C12 is the C-NOT operation between idler
photons. The recover operator for this case has the form
R � (Zm�s 
 1)(1
 Xn�p), where bits m, n, and s, p code the
measurement result and a classical external signal. As a
result, the gate performs the operation s, p! (1=

���
2
p

)�
(j0, pi � (ÿ 1)sj1, 1� pi). The above-considered examples
represent schemes for encoding classical information with
the help of the superposition and entangled photon states.

Another example concerns the calculation of the func-
tion

f! Uf : jx; yi ! jx; y
 f �x�i, (14)
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where x, y � 0, 1. This problem can be performed with the
help of two biphotons, the measurement of the observable
A � Uf (Z
 Z )U

y
f , and the recover operator R � Xa 
 Xb,

where a � n� x, b � m� f (n)� y� f (x), while two pairs
of biphotons, n, m and x, y, encode the outcomes of
measurements of the observable A and the classical input
signal. In this case, the gate performs the operation x, y!
jx, y 
 f (y)i.

In the experiment, the biphoton state jbHVi � (1=
���
2
p

)�
(jHHi � jVVi can be prepared. Although such a pure state
appears only after postselection, the generation rate of such
biphotons can be high. Thus, the probability of generation
of one biphoton by a 200-mW femtosecond laser emitting
100-fs pulses at a pulse repetition rate of 100 MHz is 10ÿ4

and the generation rate of biphotons is of the order of
104 sÿ1. Such a rate is of interest for real quantum com-
munications.

The polarisation of the signal and idler photons can be
quite easily changed by using linear optical elements such as
quarter- and half-wave plates, polarisation beamsplitters,
Pockels cell, etc. Such transformations are described by the
unitary operator

D � t � ÿr
r � t

� �
, (15)

where jrj2 � jtj2 � 1. In the general case the transformation
of the operator D preserves invariant only a biphoton in the
antisymmetric Bell state: (D
D)(1=

���
2
p

)(jHVi ÿ jVHi �
(1=

���
2
p

) (jHVi ÿ jVHi). However, in the particular case of
polarisation rotation, which is described by the operator D
with coefécients r � sin a and t � cos a, we obtain Eqn (11):
(D
D)jbHVi � jbHVi.

This means that the biphoton jbHVi can be used in our
gates. In this case, the gate will contain a polarisation
beamsplitter, two detectors, and a Pockels cell. The gate
operates as follows. The polarisation beamsplitter separates
idler photons with the H and V polarisations, which are
incident on detectors DH and DV. One bit of classical
information n is obtained due to the measurement because
only two outcomes exist, when one and only one of the
detectors (DH or DV) detects a photon. There also exists an
external classical signal, whose values s � H, V together
with n arrive at the Pockels cell input. This cell plays the role
of the recover operator R, which rotates the polarisation of
the signal photon and prepares it the jsi; state. By using the
noncollinear generation regime, we can obtain the quantum
register where a biphoton set is obtained by selecting
spatially conjugated pairs.

From the physical point of view, the scheme constructed
according to (12) represents a one-photon source that
generated a photon by using a biphoton in the pure jbi
state. In this case, the main role is played by the correlation
between photons rather than by the entanglement of the
state. This means that such a source can use the mixed
biphoton state B � (1=2) (j00ih�00j � j11ih11j) and the
measurement of the observable Z. The entangled state
can be prepared simpler in experiments, but it has, however,
the classical correlation. This leads to some peculiarities if
the entangled biphoton state is used in logic gates. Thus, for
example, gates cannot transform a classical signal to the
quantum superposition. However, this problem can be
solved differently by preparing érst the one-photon polari-

sation state and then rotating polarisation with the help of
the Pockels cell: jHi, s! (1=

���
2
p

)(jHi � (ÿ 1)s jVi).
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Appendix

The effective Hamiltonians for cooperative processes can be
obtained in the second order of the perturbation theory in
the interaction. Consider the interaction operator in the
form H � Vd �W, where Vd � ÿ

P
a daE(ra) is the Ham-

iltonian of interaction between atoms and the éeld in the
dipole approximation;

W �
X
a 6�c

�da; dc�R 2 ÿ 3�da;R)(dc;R�
R 5

is the dipole ë dipole interaction Hamiltonian. In the second
order over H, the evolution operator

T exp

�
ÿ i

�h

� t

0

dt 0H�t 0�
�

has two terms of the form

P �
�
ÿ i

�h

�2 � t

t0

dt2

� t2

t0

dt1�Vd�t2�W�t1� �W�t2�Vd�t1��, (A1)

containing multiparticle processes deéned in (5) and (6). Let
us introduce the interaction picture da(t) � aa

mn exp (io
a
mnt),

where aa
mn � dmnajmiahnj; dmna is the matrix element of the

m$ n transition in the atom a; o a
mn � (Ema ÿ Ena)=�h is the

transition frequency; E(ra, t) �
P

q uq(ra)e
a
q exp (ÿ iOqt), q �

�k; eaq � uk(ra); uÿk(r) � u �k (r) is the set of orthogonal
functions; Oÿk � ÿOk; ck, cÿk � c

y
k are the creation and

annihilation operators of a photon with the wave vector k;
�ck; c ym� � dkm; and summation over k is summation over
polarisation. Then, ther dipole ë dipole interaction Hamil-
tonian takes the form

W�t� �
X
a 6�c

X
mnpr

a a
mna

c
pr exp�io a

mnt� io b
prt�mac,

where mac is the coupling constant.
Let the frequencies satisfy the condition

o a
ps � o c

rz � Oq. (A2)

Then, by using the value of the integral� t

0

dt2

� t2

0

dt1 exp�iyt2 � ixt1� �
t

ix

for x� y � 0, we obtain P � (ÿ i=�h)t#1, where the effective
Hamiltonian #1 has the form

#1 � ÿ
i

�h

X
b; a 6�c; q

X
mnpsrz

ÿ
ab
mn 
 aa

ps 
 ac
rz 
 e bq

�
mac

�
�

1

o a
ps � o c

rz
� 1

o b
mn � Oq

�
d
ÿ
o b

mn � o a
ps � o c

rz � Oq

�
. (A3)
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This Hamiltonian describes the interaction of three atoms
(a, b, c) and one mode (eq). It can be reduced by setting
a � b. Then, we obtain the effective Hamiltonian #2
describing already the interaction of two atoms and the
electromagnetic éeld mode:

#2 �
X
a 6�c; q

X
m; s; r; z

f acq
msrz

ÿjmiahsj 
 jrichzj 
 eaq
�

� d
ÿ
o a

ms � o c
rz ÿ Oq

�
, (A4)

where the coupling constant is

f acq
msrz � ÿ

i

�h

X
n

dmna dnsa drzc mac

�
�

1

o a
ns � o c

rz

� 1

o a
mn � Oq

�
. (A5)

Under resonance conditions (5) and (6), we can treat atoms
as two-level systems with upper level 1 and lower level 0.
Let o r

10 � or be the transition frequency in the atom (r � a,
b). Then, the effective Hamiltonian describing the cooper-
ative absorption and coherence exchange for atoms a and b
has the form

Vab1 � i�hÿ1k1
ÿ
s10�a�s10�b�c1 ÿ s01�a�s01�b�c y1

�
,

(A6)

Vab2 � i�hÿ1k2
ÿ
s10�a�s01�b�c2 ÿ s01�a�s10�b�c y2

�
,

where sxy(r) � jxirhyj; x, y � 0, 1; r � a, b; and cm, c
y
1 are

the photon annihilation and creation operators at frequency
Om (m � 1, 2).
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