
Abstract. The geometrical measure of entanglement of the W
states is introduced and exact analytic expressions are
obtained for it. Based on numerical calculations, the degree
of entanglement is considered for some states of this class
which are used as a quantum channel in problems of quantum
theory of information.
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1. Introduction

Entangled states have speciéc correlation which is of
interest for problems of quantum theory of information.
Such states are used as a quantum channel in processes of
teleportation, dense coding, key distribution, etc. The
quality of a quantum channel and, hence, its potential is
determined érst of all by the degree of correlations or
entanglement. Thus, in the dense coding problem the
capacity of a quantum channel formed by the EPR
(Einstein ë Podolsky ëRosen) pair is directly determined
by the degree of its entanglement, which is equal to the
entropy of one of the particles in the case of a pure two-
particle state. However, if a quantum system is in a mixed
state or consists of more than two particles, the universal
measure of entanglement is unknown because correlations
in a multiparticle system can be various from the physical
point of view.

Despite the absence of the universal measure, there is
need for entanglement criteria. First of all this concerns
experiments where the entangled states are generated which
should be identiéed. To determine most completely the
properties of the found state, all possible criteria should be
used. In this connection the development of criteria and
measures characterising entangled states is an important
problem.

The geometrical measure of entanglement was intro-
duced in [1] and discussed in [2]. However, the authors of
these papers have not obtained convenient analytic results
characterising speciéed states. In this paper, by following
[3], we introduced the geometrical measure of entanglement
for a special class of states ë the so-called W states and
obtained analytic expressions for the measure of entangle-
ment of these states. This set of states is of interest for
quantum information processes, some of them are realised
and studied in experiments, and their properties and
applications and the scheme of their generation are con-
sidered in [4].

2. The W states

Consider the W states for which we introduce below the
measure of entanglement. These states describe multi-
particle two-level systems, including system with one
excited particle, and are reduced to the Dicke states in
particular cases [5].

The three-particle W state has the form

C � p000j000i � p100j100i � p010j010i � p001j001i, (1)

where jp000j2 � jp100j2 � jp010j2 � jp001j2 � 1. A particular
case W � (1=

���
3
p ��j100i � j010i � j001i) is known in the

quantum theory of information as the W state [6]. For
p000 � 0 and the condition p100 � p010 � p001 � 0, the Dicke
states appear with j � 3=2 and m � 1=2, where j and m are
the eigenvalues corresponding to the eigenvectors of two
collective operators J 2 � J 2

1 � J 2
2 � J 2

3 , and operators Jk
(k � 1, 2, 3) satisfy commutation relations for the angular
momentum operators [4]. In this case, the representation in
terms of antisymmetric wave functions is valid:

Z � ���
2
p �

p010jCÿi12j0i3 � p001jCÿi13j0i2
�
, (2)

where Cÿ � �1= ���
2
p ��j01i ÿ j10i�.

Because the measure of entanglement does not change
upon local unitary transformations, along with state (1) a
number of other states can be considered. Thus, by making
the replacement 0! 1, we énd C1 � p011j011i � p101j101i�
p110j110i. This wave function describes the state which is
obtained, for example, after the distribution of two exci-
tations between three two-level particles and can be realised
upon parametric interaction of light in a transparent non-
linear medium. To do this requires three simultaneous
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down-conversion processes, in each of them three classical
pump waves being transformed to photon pairs aÿ b, aÿ c,
and bÿ c. This interaction can be described by the effective
Hamiltonian Heff � i�h(k1a

yb y � k2a
yc y � k3b

yc y ÿ k1abÿ
k2acÿ k3bc), where a, b, and c are the mode annihilation
operators and kx (x � 1, 2, 3) are coupling constants. This
process was considered in [7], and its experimental realisa-
tion is known when the states j0i and j1i are the Fock states
of light.

The W states differ from well-known GHZ (Grin-
berger ëHorne ëZeilinger) states, in particular, from the
typical GHZ state GHZ � (1=

���
2
p

)(j000i � j111i). The
main difference is that the W states cannot be related by
local unitary transformations [6], and, hence, the type of
entanglement in them is different. As an example, we present
in the explicit form the relation between the states GHZ and
W �� (1=

���
2
p

)j011i � (1=2)(j010i � j100i), which is per-
formed by the nonlocal unitary two-particle operator

�1
 V �jGHZiABC � jW �i, (3)

where V � jC�ih11j � j00ih10j � jCÿih01j � j11ih00j and
C� � (j10i � j01i)= ���

2
p

. It is known that the GHZ state
can be used as a quantum channel for the teleportation of
one particle [8] or the unknown entangled state [9]. The
quantum channel formed by W states in the same cases was
studied in papers [10] and [11], respectively.

3. Measure of entanglement

The geometrical measure of entanglement is deéned as the
distance between the W state deéned by (1) and the set of
all three-particle factorised states. Then, the measure of
entanglement or this distance is calculated by solving the
variational problem because the minimal distance to the set
of factorised or nonnentangled states should be found.

The set of nonentangled states has the form

f � j1 
 j2 
 j3, (4)

where jk � ukj0i � zkj1i, and the normalisation condition
is determined by the relation

N
k (jukj2 � jzkj2) � 1, k � 1,

2, 3. We will consider the distance

E�123��C� � minF2O�123� dist�F;C� (5)

as the measure of entanglement of the speciéed state, where
dist�F;C� � (jjFÿCjj2)1=2, O(123) � f. This is the prob-
lem of the search for the minimum of the function
dist 2(F;C) � jjFÿCjj2 � (Cÿ F;Cÿ F) on the set f.
Condition (5) has a simple meaning, being equivalent to the
maximum value of (C;F), which is known in the quantum
theory of information as the édelity showing with which
probability the state F contains the state C, or vice versa.

By using the indeénite Lagrange factors, problem (5) is
reduced to the determination of the stationary point of the
function

Q � 2ÿ �C;j� ÿ �j;C� � l
O
k

ÿjukj2 � jzkj2�ÿ 1 � 0. (6)

The corresponding variational equations lead to the system
of algebraic equations

lu �1 �ju2j2 � jz2j2��ju3j2 � jz3j2� � p �000 � p �010z2u3 � p �001u2z3;

lz �1 �ju2j2 � jz2j2��ju3j2 � jz3j2� � p �100u2u3,

lu �2 �ju1j2 � jz1j2��ju3j2 � jz3j2� � p �000 � p �010z1u3 � p �001u1z3,

lz �2 �ju1j2 � jz1j2��ju3j2 � jz3j2� � p �010u1u3,

lu �3 �ju1j2 � jz1j2��ju2j2 � jz2j2� � p �000 � p �010z2u1 � p �100u2z1,

lz �3 �ju1j2 � jz1j2��ju3j2 � jz3j2� � p �001u2u1.

By using the change of variables ck � zk=uk (k � 1, 2, 3) we
write this system in the form

c1 �
p �100

p000 � p010c
�
2 � p001c

�
3

,

c2 �
p �010

p000 � p010c
�
1 � p001c

�
3

,

c3 �
p �001

p000 � p010c
�
2 � p001c

�
1

.

By solving these equations, we énd the required quantity
E(1; 2; 3)(W ) � �2 �1ÿ Fmax)�1=2, where Fmax is the édelity
maximum

j�C;j�j � p000 � j p100jr1 � j p010jr2 � j p001jr3��1� r 2
1 ��1� r 2

2 ��1� r 2
3 �
�1=2 . (7)

Here, the quantities r1;2;3 are related by the equation

j p100jZ�r1� � j p010jZ�r2� � j p001jZ�r3�, (8)

where Z(x) � x� 1=x. For one of the unknowns, we can
write the closed equation

p000 � �T�r1�, (9)

where

T�r� � j p100j
r
ÿ j p010jZÿ1

� j p100j
j p010j

Z�r�
�

ÿj p001jZÿ1
� j p100j
j p001j

Z�r�
�
.

Equation (9) is obtained by assuming that p000 is real and
p000 5 0, j p100j5 j p010j, j p001j.

As an example, we consider the following case. Let us
assume that all coefécients are real and introduce the
parametrisation p100 � q cos y, p010 � q sin y cosj, p001 �
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q sin y sinj, and q � (1ÿ p 2
000)

1=2, where q, y, and j are
spherical coordinates. Figure 1 shows the measure of
entanglement of the W state for different values of p000.
It has the characteristic four-peak shape with the dip down
to zero at the surface centre. One can see that, the measure
of entanglement E(1; 2; 3)(W ) decreases with increasing p000.
This is explained by the fact that the weight of the state j000i
increases and the state as a whole proves to be close to this
factorised state. The peaks of E(1; 2; 3)(W ) are formed due
to the presence of the EPR pair C� � (1=

���
2
p

)(j01i � j10i),

which is maximally entangled in itself. Thus, by rewriting
(1), taking into account the accepted parametrisation, we
énd, for example, that C � (1ÿ q 2)1=2j000i�
q sin yj0i1( cosjj01i � q sinjj10i� � q cos yj100i. It follows
from this that for cosj � sinj, the EPR pairs appear. The
dip at the surface centre appears because for y � j � p our
state will be not entangled: �(1ÿ q 2)1=2j0i � qj1i�j00i.
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Figure 1. Geometrical measure of entanglement of theW state for p000 �
0:2 (a), 0.4 (b), and 0.6 (c).
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