
Abstract. The nonlinear dynamics of a class A four-
frequency ring gas laser with elliptic nonorthogonal states of
counterpropagating waves is studied based on a developed and
experimentally tested model taking explicitly into account the
dependence of the backscattering coefécient of counter-
propagating waves on polarisation characteristics. It is shown
that the instability of phase characteristics of the generated
éeld cause the switching of the intensities, polarisation states,
and phase differences of counterpropagating waves in the self-
oscillation regime, the shift of the intensity switching over
detuning caused by the phase shift of the wave due to nonzero
ellipticity, the spontaneous phase symmetry breaking accom-
panied by the appearance of deterministic and noise-induced
chaos, the multistability of attractors with different top-
ologies, and symmetric and asymmetric chaotic, as well as
stochastic oscillations.

Keywords: polarisation of light, linear coupling, ring laser, multi-
mode lasing, spontaneous break of the phase symmetry, symmetric
and asymmetric chaos, noise-induced complicated oscillations.

1. Introduction

The application of class A four-frequency ring gas lasers
(FRGLs) in gyroscopes (see, for example, [1 ë 3]) attracts
persistent interest in the study of the role of various
physical mechanisms in the formation of a generated éeld
and in the development of new methods for controlling
radiation parameters of these lasers. The FRGL model
based on the matrix method and used in this paper allows
one to study the inêuence of polarisation effects on the
operation parameters of laser gyros. Aside from conven-
tional technical applications, an anisotropic-cavity FRGL is
an excellent physical model for studying general properties
inherent in multiparameter high-dimensional nonlinear
systems.

So far the studies of FRGLs were mainly restricted to
the stationary lasing regimes (see, for example, [4 ë 6]), while
backscattering was taken into account only for counter-
propagating waves with coincident linear polarisation states

[5]. The features of the nonlinear dynamics in such systems
were experimentally found comparatively recently [7, 8]. In
this paper, the equation are derived which describe the
operation of FRGLs taking into account backscattering for
arbitrary polarisation states of counterpropagating waves
and conditions for the development of regular, chaotic, and
stochastic lasing regimes are determined in the case of the
elliptic nonorthogonal polarisation states of these waves.

In anisotropic-cavity lasers with the adiabatic exclusion
of populations and polarisability of the medium (class A
lasers), the two physical mechanisms are known which give
rise, in the absence of any external time-dependent action, to
self-oscillation lasing regimes: these are a linear coupling of
counterpropagating waves, producing the phase instability,
and the competition between the anisotropy of the nonlinear
active medium and the cavity anisotropy, resulting in the
polarisation instability.

The linear coupling of generated waves appearing due to
their backscattering by inhomogeneities of the medium and
cavity involves the phase characteristic of radiation to the
laser éeld formation and creates prerequisites for the
appearance of effects caused by the phase instability, which
can be also observed in lasers with a scalar éeld (see, for
example, [9 ë 12]). The undamped periodic oscillations of
polarisation characteristics of light appear when the cavity
and medium anisotropies are comparable and the polar-
isation eigenstates of the medium and cavity strongly differ
from each other (in this case, the equations for intensities,
azimuths, and ellipticities are independent of the laser wave
phases [13]). The polarisation instability was observed
experimentally at different transitions in linear He ëNe
[14 ë 17] and He ëXe lasers, and was described theoretically
in [17, 18].

At present, despite the appearance of a number of papers
in which the linear coupling in class B anisotropic lasers is
taken into account (see, for example, [19, 20]), the properties
of the vector éeld in laser systems caused by the instability
of the phase characteristics of generated waves have not
been adequately investigated.

Among important and virtually undeveloped problems
of the modern dynamics of laser systems is the development
of theoretical methods to describe anisotropic lasers with a
linear coupling in the case of multimode oscillation. Also,
the mechanisms of the appearance of complicated (chaotic
and stochastic) lasing regimes in nonlinear systems with
symmetry, which are promising for applications in optical
data processing and communication systems, have not been
suféciently explored. The study of the nonlinear dynamics in
FRGLs with linearly coupled elliptically polarised counter-
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propagating waves performed in this paper can be useful for
solving all the above-mentioned problems of laser physics
and can form the basis for understanding the properties of
the nonlinear dynamics of various high-dimensional coupled
physical systems.

2. The mathematical model

The linear coupling of counterpropagating waves in ring
lasers caused by backscattering from inhomogeneities in the
active medium and laser cavity, due to which the electro-
magnetic éeld in each of the propagation directions
represents a superposition of these waves, is one the of
the basic mechanisms of formation of the electromagnetic
éeld in lasers with various active media. Backscattering of
light in laser gyros at small rotation velocities leads to the
equality of the frequencies of counterpropagating waves
and the absence of a beat signal, i.e. the synchronisation
effect or frequency locking (see, for example, [21, 22]).

Due to a variety of factors leading to backscattering (see,
for example, [23 ë 27]), the contribution of each of them to
the laser éeld formation cannot be taken into account. At
present this effect is described by two methods. The érst one
is based on the assumption [28, 29] that all the ordered
inhomogeneities can be represented by a single anisotropic
reêector in the general case located inside the cavity with the
effective coupling coefécients between counterpropagating
waves. In this case, it is necessary to take into account the
boundary conditions on the reêector. The second method
describes the inêuence of backscattering with the help of an
external anisotropic mirror (see, for example, [30]).

The use of the Jones vector and matrix formalism
[31 ë 33] in the theory of gas lasers [34 ë 38] allows one to
take into account, within the framework of the érst method,
backscattering of waves with arbitrary polarisation states.
Note that the matrix method was also used to solve one of
the fundamental problems of the physics of anisotropic laser
systems, namely, to take into account the equal inêuence of
the anisotropy of the medium and the anisotropy of the laser
cavity on the formation of polarisation of generated
radiation and to describe experimental regimes with the
azimuth and ellipticity periodically varying in time [17].

Figure 1 shows the scheme of an anisotropic-cavity
FRGL and the conéguration of the electromagnetic éeld
on a reêector. The cavity contains reêector ( 1 ) ë an optical
inhomogeneity described by the complex reêection (r�) and
transmission (t�) coefécients, which are different for
counterpropagating waves in the general case and can
depend, due to the possible presence of the diffusion
component of scattered radiation and diffraction effects,
on the polarisation states of generated waves.

The electromagnetic éeld in a single-mode FRGL* is
described by the superposition of four travelling waves with
the Jones vectors having the form [39, 34]

E i
j �

�
I i
j �t�

cosh 2b i
j �t�

�1=2 cos z ij �t�
sin z ij �t�

 !
�

� exp�i�C i
j �t� ÿ o i

j t��; j � 1; 2; i � �; (1)

where I � jE j2 is the intensity; C is the phase; o=2p is the
lasing frequency (in hertz); z � g� ib; g is the azimuth;
x � tanh b is the ellipticity of an electromagnetic wave;
indices 1 and 2 correspond to unidirectional waves, and � ë
to counterpropagating waves.

Let us write in the vector form the equations for
stationary regime of lasing in the FRGL, which represent
the conditions of reproducibility of the éeld vector after a
round trip of light in the cavity (from the initial to énal
point). By starting from the point P� in the direction �,
under the condition of the continuity of the tangential
component of the electric éeld strength vector on the
boundary of the effective reêector, we obtain

M̂�Ŝ�1 E
�
3 � l�1 E

�
1 ; E �3 � t�1 E

�
1 � rÿ1 E

ÿ
1

� a�t�2 E �2 � rÿ2 E
ÿ
2 �; (2)

M̂�Ŝ�2 E
�
4 � l�2 E

�
2 ; E �4 � a�t�1 E �1 � rÿ1 E

ÿ
1 �

� t�2 E
�
2 � rÿ2 E

ÿ
2 ; (3)

Ŝÿ1 M̂
ÿE ÿ3 � l�1 E

ÿ
1 ; E ÿ3 � tÿ1 E

ÿ
1 � r�1 E

�
1

� a�tÿ2 E ÿ2 � r�2 E
�
2 �; (4)

Ŝÿ2 M̂
ÿE ÿ4 � lÿ2 E

ÿ
2 ; E ÿ4 � tÿ2 E

ÿ
2 � r�2 E

�
2

� a�tÿ1 E ÿ1 � r�1 E
�
1 �; (5)

*In the FRGL under study, an electromagnetic éeld is formed with one
longitudinal and one transverse mode indices. The appearance of phase
anisotropy in the cavity removes the degeneracy of this mode, thereby
producing conditions for the existence above the threshold of four
travelling waves with different intensities, frequencies, and polarisation
states.
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Figure 1. Scheme of an anisotropic-cavity ring gas laser with linear
coupling (a) and the electromagnetic éeld conéguration on a reêector
element (b): ( 1 ) reêector element; ( 2 ) active medium; ( 3 ) mirrors; ( 4 )
anisotropic elements; H is the longitudinal magnetic éeld strength in the
medium.
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where Ŝ�1 and Ŝ�2 are the Jones matrices of the active
medium for waves 1� and 2�, respectively; l i

j are the
eigenvalues of Jones matrices Q̂�1;2 � M̂�Ŝ�1;2 and
Q̂ÿ1;2 � Ŝÿ1;2M̂

ÿ; M̂� are the cavity matrices for directions
�; r�1 , t�1 (r�2 , t�2 ) are the complex reêection and
transmission coefécients, respectively, for counterpropagat-
ing waves belonging to the same eigenfrequency o1c (o2c) of
the cavity; and a is a parameter describing the linear
coupling of counterpropagating waves belonging to differ-
ent eigenfrequencies of the cavity.

The absolute values of parameters r�1;2, t
�
1;2 satisfy the

condition jr�1;2j2 � jt�1;2j2 4 1, and the phases f�1;2 � arg r�1;2
of the equivalent reêection coefécients upon scattering by
the inhomogeneities of the permittivity and conductivity are
related by the expressions (f�1;2 � fÿ1;2)=2 � mp (m is an
integer) in the case of the conservative coupling or by
(f�1;2 � fÿ1;2)=2 � (1=2�m)p in the case of the nonconser-
vative (dissipative) coupling, which is realised, as a rule, in
experiments. In particular cases for r � 1, t � 0 and r � 0,
t � 1 lasing equations (5) describe an ideal linear and an
ideal ring lasers, respectively. In intermediate cases, the
system has the properties both of linear and ring lasers.

The equations of nonstationary operation of a FRGL in
the vector representation can be written in the form [40]

d

dt 0

E�1
Eÿ1
E�2
Eÿ2

0BB@
1CCA

�
M̂�Ŝ�1 t

�
1 M̂�Ŝ�1 r

ÿ
1 M̂�Ŝ�1 at

�
2 M̂�Ŝ�1 ar

ÿ
2

Ŝÿ1 M̂
ÿr1� Ŝÿ1 M̂

ÿtÿ1 Ŝÿ1 M̂
ÿar�2 Ŝÿ1 M̂ÿat�2

M̂�Ŝ�2 at
�
1 M̂�Ŝ�2 arÿ1 M̂�Ŝ�2 t�2 M̂�Ŝ�2 rÿ2

Ŝÿ2 M̂ÿar�1 Ŝÿ2 M̂
ÿatÿ1 Ŝÿ2 M̂

ÿr�2 Ŝÿ2 M̂
ÿtÿ2

0BB@
1CCA

�
E�1
Eÿ1
E�2
Eÿ2

0BB@
1CCAÿ

E�1
Eÿ1
E�2
Eÿ2

0BB@
1CCA; (6)

where t 0 ÿ tc=L is the number of round trips of light in the
cavity for the time t; c is the speed of light; and L is the
cavity length.

The Jones matrix of a nonlinear homogeneous* active
medium of the laser is deéned as

Ŝj � exp

�
ÿiol

c

����
êj

q �
� exp

�
ÿ i

ol
c
�1� 2pw�j

�
; (7)

where l is the medium length; o=c is the wave number; ê
and ŵ are the two-dimensional projections of the permit-
tivity and susceptibility tensors on the light propagation
direction.

The Jones matrix of the active medium of a FRGL for
the wave 1� in the presence of a longitudinal magnetic éeld
has the form [34, 38]

Ŝ�1 � exp

�
ÿiol

ĉ
�1� 2pŵ�1 �

�
� exp h�1 exp Ĥ

�
1 ; (8)

where

ÿ 2piŵ�1
ol
c
� k0l

�
�W �
1 Î � 0 ÿiDW �

1

iDW �
1 0

� �

ÿ Îc�
0

1 I
0�
1 ÿ ic�

00
1 I

0�
1

0 ÿ1
1 0

� �
ÿ
X

j�1;i�ÿ
j�2;i��

a�i1j I
0i
j ÿ a�1kI

0�
1k

ÿ
X

j�1;i�ÿ
j�2;i��

b�i1j = cosh 2b
i
j

~b�i1j = cosh 2b
i
j ÿ id�i1j

~b�i1j = cosh 2b
i
j � id�i1j ÿb�i1j = cosh 2b

i
j

 !
I
0i
j

ÿ b�1k= cosh 2bk ~b�1k= cosh 2bk ÿ id�1k
~b�1k= cosh 2bk � id�1k ÿb�1k= cosh 2bk

� �
I
0�
1k

�
; (9)

I
0�
1;2 � I �1;2 jdabj2=3�h2gagb are the dimensionless intensities of
the waves 1�; 2�; I �1;2 � jE �1;2j2; k0 � 2p3=2Njdabj2o=3�hcKu is
the linear gain at the line centre; jdabj is the reduced matrix
element of the dipole transition moment; ga;b are the
relaxation constants of the lower and upper levels,
respectively; N is the population difference density; I

0�
1k �

(I
0ÿ
1 I

0�
2 I

0ÿ
2 =I

0�
1 )1=2; W(x� D; y) �U(x� D; y)� iV(x� D; y)

is the complex error function; �W
�
1;2 � �U

�
1;2 � i �V

�
1;2 �

�W(x�1;2 ÿ D; y)�W(x�1;2 � D; y)�=2; DW �
1;2 � �W(x �1;2 ÿ D; y)

ÿW(x �1;2 � D; y)�=2; x �1;2 � D � (o �1;2 ÿ o0 � gmBH)=Ku is
the detuning of the laser frequency o�1;2 from the contour
centre o0; x

0 � xKu=2p (in hertz); D � gmBH=Ku; g is the
Lande factor; mB is the Bohr magneton; H is the longi-
tudinal magnetic éeld strength in the medium; Ku � DoD=2
� ��������

ln 2
p

; DoD is the Doppler contour width; y � gab=Ku;
and gab is the homogeneous linewidth. The nonlinear self-
action coefécients c

0�
1 ; c

00�
1 , the coefécients a�ÿ11 (b; ~b; d ),

a��12 (b; ~b; d ) of interaction of the wave 1� with unidirec-
tional and counterpropagating travelling waves, and the
coefécients a�1k; b

�
1k;

�b�1k; d
�
1k, of combinational interaction

contributing to the polarisability of the medium at the
frequency o�1 for a single-isotopic gas in the Doppler limit
and the approximation of relaxation constants ga; gb; gab are
presented in Appendix. For arbitrary broadening, the
equiisotopic composition, and taking into account the
orienation and alignment constants, they can be obtained
based on the results of papers [34, 37, 38]. The expression
for the tensor ŵÿ1 can be obtained from (9) by making the
� $ ÿ index replacement, and for the tensor ŵ�2 ë from ŵ�1
by making the 1$ 2 replacement.

We will derive equations of motion (lasing is also
possible) for the 1� wave in the scalar form by using the
equation

M̂
�
E �jM � l�jME �jM; j � 1; 2 (10)

for determining the polarisation ë frequency characteristics
of the cavity modes by neglecting backscattering. By
transposing this equation, we multiply it from the right
by the matrix

0 ÿ1
1 0

� �
;

and then multiply the obtained equality from the left by he
nonstationary equation for the wave 1� following from the
system of vector equations (6). Hereafter, the subscript M is
assigned to the eigenvalues and eigenvectors of the cavity
matrix. Then, taking into account the relations

*A nonlinear medium can be considered homogeneous only approxima-
tely if the parameters of radiation propagating in it remain invariable and
equal to the parameters of radiation incident on themedium,which is valid
in the approximation of the third-order éeld perturbation theory.
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~̂
M

0 ÿ1
1 0

� �
M̂ � 0 ÿ1

1 0

� �
detM̂;

exp�h�1 � Ĥ �
1 � ln l1M� � 1� h�1 � ln l�1M � Ĥ �

1 ; (11)

detM̂ � � l�1Ml�2M;

we represent equations of the lasing of the wave 1� in the
form

cot�z�1 ÿ z�2M�
dz�1
dt 0
� d

dt 0

�
ln

����������������
I �1

cosh b�1

s
� iC�1

�

� h�1 � ln l�1M � rÿ1
sin�z�2M ÿ zÿ1 �
sin�z�2M ÿ z�1 �

���������������������������
I ÿ1 = cosh 2b

ÿ
1

p
e iC

ÿ
1���������������������������

I �1 = cosh 2b
�
1

q
e iC

�
1

� at �2
sin�z�2M ÿ z�2 �
sin�z�2M ÿ z�1 �

���������������������������
I �2 = cosh 2b�2

q
e iC

�
2���������������������������

I �1 = cosh 2b�1
q

e iC
�
1

��cos z�2M; sin z�2M� 0 ÿ1
1 0

� �
Ĥ �

1
cos z�1
sin z�1

� �

�
h
sin�z�2M ÿ z�1 �

����������������������������
I �1 = cosh 2b

�
1

q
e iC

�
1

iÿ1
. (12)

Equations (12) are written by assuming that the reêec-
tion and transmission coefécients for counterpropagating
waves belonging to one cavity eigenvalue satisfy the
conditions jtj � 1, jrj5 1, and the inverse scattering from
one cavity mode to another is small (jaj5 1), so that only
the terms of the érst-order smallness in r and a are taken
into account in (12). The equations of lasing for the wave 1ÿ

are obtained from (12) by the � $ ÿ index replacement,
and equations for the waves 2� (2ÿ) are obtained from
equation for the waves 1� (1ÿ) by the 1$ 2 replacement.

In a strongly anisotropic-cavity gas laser, where the
relaxation times of polarisation characteristics are much
shorter than the relaxation times of the intensities and
phases of generated waves, the time dependence of polar-
isation states can be neglected (dz=dt 0 � 0), by assuming
that they are constant and equal to polarisation parameters
speciéed by the cavity: z1;2 � z1M;2M. As follows from (12),
this allows one to neglect the inêuence of backscattering
from one mode to another. In addition, expression (12) for a
strongly anisotropic-cavity gas laser contains the phase
difference of counterpropagating waves belonging to one
cavity mode, which allows one to write equations for these
variables, thereby reducing the dimensionality of the system.

Taking into account the explicit form of expressions for
h�1 and Ĥ �

1 , determined by (8) and (9), assuming that t � 1
and introducing the notation of experimentally measured
quantities, we write the equations of lasing of the FRGL in
the énal form [41]

dI �1
dt
�
�
P �1
P
ÿRe

�
y ��11 I �1 � y ��11 I �1 � y ��12 I �2

� y ��12 I �2 � y �1kI1k ÿ R�1

������
I �1
I �1

s
e�iC1

�
ÿ

ÿ Im

�
DW �

1

P
cot�z�1 ÿ z�2M�

��
2I �1 ; (13)

dC1

dt
� Re

�
DW �

1

P
cot�z�1 ÿ z�2M� ÿ

DW ÿ
1

P
cot�zÿ1 ÿ zÿ2M�

�

�DO1 ÿ DO10 �
V �1 ÿ V ÿ1

P
ÿ Im

�
y��11 I �1 � y�ÿ11 I ÿ1

� y��12 I �2 � y�ÿ12 I ÿ2 � y�1kI
�
1k ÿ yÿÿ11 I ÿ1 ÿ yÿ�11 I �1 ÿ yÿÿ12 I ÿ2

ÿ y�ÿ12 I ÿ2 ÿ yÿ1kI
ÿ
1k � Rÿ1

������
I ÿ1
I �1

s
eÿiC1 ÿ R�1

������
I�1
Iÿ1

s
e�iC1

�
: (14)

Equations for I �2 and C2 are obtained from expressions
(13) and (14) by the 1$ 2 replacement. Here, I �1;2 � I

0�
1;2 =P

are the dimensionless intensity of generated waves; C1;2 are
the phase differences of counterpropagating waves belong-
ing to one eigenvalue of the cavity matrix (C1 � C�1 ÿCÿ1 ,
C2 � C�2 ÿCÿ2 ); DO1;2 is the frequency difference of
counterpropagating waves (DO1 � O�1 ÿ Oÿ1 , DO2 � O�2 ÿ
Oÿ2 ); O � oL=(ct0); DO10;20 is the frequency difference
speciéed by the cavity (DO10 � O�1c ÿ Oÿ1c, DO20 � O�2cÿ
Oÿ2c); t � t 0t0; t0 � k0lP; P �1;2 � �U

�
1;2 ÿ 1=Z �1;2; P � �U jx�0ÿ

(1=Z�1 � 1=Zÿ1 � 1=Z�2 �1=Zÿ2 )=4; and Z1;2 is the pump
excess over the threshold at the line centre.

The self-saturation and cross-saturation coefécients have
the form

y��11 � c 0�1 � ic 00�1 cot�z�1 ÿ z�2M�; (15)

y��11 � a��11 ÿ
b��11 sin�z�1 � z�2M� ÿ ~b��11 sin�z�1 � z�2M�

cosh 2b�1 sin�z�1 ÿ z�2M�

� id ��11 cot�z�1 ÿ z�2M�: (16)

Expressions for y��12 can be obtained from expressions for
y��11 by the formal 1� ! 2� index replacement at the
parameters a, b, d, and cosh b, and for y��12 ë by the
1� ! 2� replacement; the quantities y�1k describing the
combination interaction are obtained from expressions for
y��11 by the 1� ! k, cosh bk � cosh b�2 replacement.
Expressions for y��22 , y��22 , y��21 , y��21 , y�2k follow from
expression for y��11 , y��11 , y��12 , y��12 , y�1k after the 1$ 2
replacement.

The backscattering coefécients depend on the polar-
isation of generated waves:

R�1 �
r�1
t0

�������������������
cosh 2b�1
cosh 2b�1

s
sin�z�2M ÿ z�1 �
sin�z�2M ÿ z�1 �

;

(17)

R�2 �
r�2
t0

�������������������
cosh 2b�2
cosh 2b�2

s
sin�z�1M ÿ z�2 �
sin�z�1M ÿ z�2 �

:

Equations (13) and (14) are valid for the third-order éeld
perturbation theory upon the adiabatic elimination of the
dynamics of variables of the medium, for a longitudinal
magnetic éeld applied to the medium, and for the cavity
anisotropy of an arbitrary type greatly exceeding the
medium anisotropy (a strongly anisotropic-cavity laser).
So far backscattering has been taken into account only
for counterpropagating waves with coinciding linear polar-
isation states (see, for example, [5]). Unlike previous FRGL
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models (see, for example, [4 ë 6]), this model also takes into
account the deformation of the polarisation states of
generated waves [42, 36] during their propagation in the
active medium. In the case of the linear phase anisotropy of
the cavity, all the lasing regimes observed in experiments [7]
were obtained in [41] based on equations (13) and (14).

The main advantage of the model proposed in the paper
is the explicit dependences of the backscattering coefécients
on the polarisation states of generated waves, which allow
one to study the inêuence of polarisation on the width of the
frequency synchronisation zone of a laser gyro. It follows
from (17) that the coefécients R�1;2 achieve maximum values
in the case of linearly polarised counterpropagating waves
and vanish in the case of circularly polarised waves. The
nonzero width of the synchronisation zone in the case of
circular polarisation can be caused by the depolarisation of
radiation upon backscattering.

Consider a particular case of the generation of ellipti-
cally polarised waves, which are produced by placing a
linear phase plate and an optical rotator into the FRGL
cavity. The Jones matrices of such a cavity for counter-
propagating waves (�) have the form

M̂� � e ic 0
0 eÿic

� �
cosf ÿ sinf
sinf cosf

� �
; M̂ÿ � ~̂

M�; (18)

where c and f are the linear and circular phase anisotropy
and tilde means transposition. The eigenvalues of matrices
M̂� and the frequency difference of unidirectional and
counterpropagating waves are determined by the expres-
sions

l�1M;2M � cos 2c cos 2f� �cos 2 2c cos 2 2fÿ 1�1=2;
(19)

o�c1 ÿ o�c2 � 2 arccos�cos 2c cos 2f�c=L;
and the polarisation states of cavity modes are described by
the expressions [36]

g�1M � 1=2 arctanfÿ tanfg; sinh 2b�1M � ÿ sinf cotc;

g�1M ÿ g�2M � p=2; x�2M � ÿx�1M; (20)

gÿ1M;2M � g�1M;2M; xÿ1M;2M � ÿx�1M;2M:

It follows from (20) that the unidirectional waves are
polarised orthogonally, while the counterpropagating waves
belonging to the same eigenvalues of the cavity matrix are
polarised nonorthogonally, their azimuths being the same
and ellipticities having the opposite signs.

3. Self-oscillation lasing regimes

The four-frequency ring gas laser considered here has many
experimentally controlled parameters. Therefore, by inte-
grating numerically equations (13) and (14), we will
determine érst the region of values for the linear and
circular phase anisotropy of the cavity in which self-
oscillations regimes of lasing of elliptically polarised waves
are possible. This region is shown in Fig. 2. One can see
from the diagram that, self-oscillations in this system can
occur if the ellipticity is not too large: 04x < 0:2. The

diagram was calculated for l � 1:15 mm, c=L � 417 MHz,
Ku=2p � 480 MHz, Z�1 � Z�2 � 1:3, y � 0:178, y1 � ga=2Ku
� 0:014, and y2 � gb=2Ku � 0:0215, for the initial con-
ditions I �1;2jt�0 � 0, and C1;2jt�0 � 0, and dissipative
coupling �f�1;2 � fÿ1;2�=2 � p=2, as well as for x � 0 and
r�1 =�cosh 2b1t0� � r�2 =�cosh 2b1t0� � r � 0:001. We used in
calculations the nonlinear interaction coefécients c, a, b,
and d for single-isotope gas in the Doppler limit in the
approximation of three relaxation constants by neglecting
the combination interaction.

Consider now the inêuence of the amplitude of the
backscattering coefécient and detuning of the lasing fre-
quency from the gain line centre on the FRGL dynamics for
different values of the linear and circular phase anisotropy
from the self-oscillation region. For c � 0:005 rad,
f � 0:0015 rad, which specify, according to (20), the pola-
risation ë frequency characteristics of the cavity modes
g�1M � ÿ7:5� 10ÿ4 rad, x�1M � ÿ0:146 and (oc1ÿ oc2)=2p
� 1:38 MHz, Fig. 3 presents the diagram of attractors
(stable solutions of lasing equations) in the plane (r, x),
calculated for the zero initial conditions I �1;2jt�0 � 0 and
C1;2jt�0 � 0.

Note that, because the polarisation states of counter-
propagating waves forming a standing wave are different,
lasing regimes 2 and 3 in Fig. 3 can be only conditionally
called standing-wave regimes because the counterpropagat-
ing components in the standing wave have the same
polarisation.

Figure 4 shows periodic oscillations of the intensities I�1 ,
I�2 and phase differences C1;2 for r � 0:001 for I �1;2jt�0 � 0
and C1;2jt�0 � 0 and different detunings from the line
centre.

For the chosen cavity parameters, the FGRL dynamics
with elliptically polarised waves demonstrates properties
that are similar to those observed experimentally [7] and
described theoretically [41] for linearly polarised waves. In
both systems, the same lasing regimes exist: in the self-
oscillation regime, the intensities I �1 (I �2 ) of counterpropa-
gating waves belonging to the same eigenvalue of the cavity
matrix, and the intensities I �1 , I �2 (Iÿ1 , I

ÿ
2 ) of unidirectional

waves oscillate out of phase, while the intensities I �1 , Iÿ2 (Iÿ1 ,
I �2 ) of counterpropagating waves belonging to different
eigenvalues of the cavity matrix oscillate in phase; the
transition through the line centre is accompanied by the
switching of intensities and polarisation states of counter-
propagating and unidirectional waves.

j
�
rad

0 0.02 0.04 0.06 c
�
rad

0.004

0.002

0.006

0.008

0.010

Figure 2. Self-oscillation region (grey) for x � 0, r�1;2 � 0:001.
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Figure 5 illustrates the behaviour of phase character-
istics in the detuning region near the line centre, where the

intensity switching takes place. One can see from Fig. 5a
that the average values of the phase difference are constant
( �C1 � ÿ p=2, �C2 � �p=2) and do not change after passing
through the line centre, experiencing jumps by 2p away from
it. The instantaneous values of the phase difference change
continuously (Fig. 5b) in the narrow detuning region (a few
tens of kilohertz) near the point x 0 � ÿ125 kHz rather than
at the line centre. A similar behaviour of phase variables was
found in the theoretical study [43] of the dynamics of a
scalar éeld class B laser.

A speciéc feature of the generation of an electromagnetic
wave with the nonzero ellipticity compared to a linearly
polarised wave is the appearance of the additional phase
shift described by the expression [39, 38]

Cp � arctan�x tan g�: (21)

If the phase differences determined by the polarisation of
cavity modes according to (20) are taken as the initial phase
differences, the type of oscillations will considerably change.
Figure 6 shows periodic oscillations of the intensity and
phase difference of counterpropagating waves for
I�1;2jt�0 � 0; C1jt�0 � 2:2� 10ÿ4 rad, C2jt�0 � ÿ3:13 rad,
other parameters being as in Fig. 4. One can see that self-
oscillations have the same form in a broad detuning range to
the right and left of the centre as at the centre. The intensity
switching occurs at detunings x � �36 MHz symmetric with
respect to the centre. The phase characteristics in the vicinity
of switching points change as it occurs near the centre
(Fig. 5).

The shift of the intensity switching in detuning caused by
the phase shift of the wave, whose value is determined by the
polarisation state of the wave, is the effect of the polar-
isation-phase dynamics. The appearance of the additional
phase difference of generated waves, caused by the different

2 1 3

ÿ96 ÿ48 0 48 oÿ o0
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.
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40

r�104�
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Figure 3. Diagram of attractors (stable solutions of the equations of
lasing of a FRGL) for c � 0:005 rad;f � 0:0015 rad, g�1M � ÿ7:5�
10ÿ4 rad, ÿx�1M � 0:146 and (oc1 ÿ oc2)=2p � 1:38 MHz. Lasing regi-
mes shown in the égure: (1) self-oscillations of the intensity I �1;2 of four
travelling waves and the phase differences C1;2 of counterpropagating
waves; (2) stationary regime of lasing of two counterpropagating waves
1� and 1ÿ with identical intensities and frequencies, and the phase
difference C1 � ÿp=2; (3) stationary single-frequency regime of lasing of
a standing wave formed by two counterpropagating traveling waves 2�

and 2ÿ with the phase difference C2 � p=2; (4) stationary regime of
lasing of four traveling waves with different intensities; (5, 6) stationary
two-frequency regime of lasing of two orthogonal elliptically polarised
counterpropagating waves 1�; 2ÿ and 2�; 1ÿ, respectively, with diffe-
rent frequencies.

I �1 (rel. units)

I �2 (rel. units)

C1;2

�
rad

a b c

I ÿ1 I �1

I �2 I ÿ2

I ÿ2 I �2
I ÿ2 I �2

0

3.0

0

4

8

0

4

8

1.5

4.5

2

6

2

6

10

344.3 349.4 354.5 t
�
ms 344.3 349.4 354.5 t

�
ms344.3 349.4 354.5 t

�
ms

I ÿ1 I �1

I �1 I ÿ1

C1

C2

C1

C2

C1

C2

Figure 4. Self-oscillation lasing regimes for x 0 � ÿ43:2 MHz (a), x 0 � 0 (b) and x 0 � 43:2 MHz (c) for I �1;2jt�0 � C1;2jt�0 � 0 and r � 0:001.
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states of polarisations of these waves, and changing qual-
itatively the type of the system dynamics, was found in the
description of the interference of two quasi-monochromatic
waves [17]. Here, it is pertinent to recall the inêuence of
polarisation on the frequency characteristics of ring gas
lasers in the stationary regime, when the difference in
ellipticities of counterpropagating waves in lasers gives
rise to the difference in their frequencies, i.e. to the polar-
isation nonreciprocity [44, 35].

4. Chaotic and stochastic regimes

An understanding of the importance of chaotic and
stochastic regimes in the functional processes of neural
devices, biological, social, and economic systems, in the
development of new principles of data processing, data
security in optical communication devices, in the develop-

ment of optical computers, etc. has made these regimes be
the object of extensive recent investigations. At present
there exist a number of scenarios of evolution from the
stationary solution to the periodic one and, énally, to the
chaotic solution (see, for example, [45 ë 48]); however, the
picture of the possible ways of the appearance and
manifestations of chaos is far from complete. One of the
problems being extensively studied in the last years is the
appearance of chaos in nonlinear systems with symmetry
(see, for example, [49, 50]). The symmetry of a dynamic
system leads to the bistability and multistability of
attractors with different topologies, resulting in the
appearance of complicated regimes due to the interaction
of chaotic attractors when the trajectory falls into the basin
of attraction of two (or several) such attractors (see, for
example, [47]) or due to the appearance of complex periodic
solutions (with trajectories covering several stationary

a b
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Figure 5. Dependences of the mean phase differences �C1, �C2 (a) and their instantaneous values (b) on detuning.
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states) evolving to a chaotic attractor with a complex
topology upon changing the control parameter. One of the
possible mechanisms of the appearance of complex dynamic
structures is the inêuence of random êuctuations.

4.1 Spontaneous phase symmetry breaking
and the deterministic chaos

The phenomena of the polarisation symmetry breaking and
restoration were described with the help of singular
(symmetric) bifurcations of stationary and periodic solu-
tions in [51]. The consideration of the linear coupling of
counterpropagating waves allows one to discover the effects
of the phase symmetry breaking and restoration. The
spontaneous phase symmetry breaking, deéned as the
passage from the self-oscillation regime with the zero
frequency difference of counterpropagating waves to the
bistable self-oscillation regime with the nonzero frequency
difference of these waves, was discovered in a class A single-
mode two-frequency laser with the coinciding linear
polarisation states of the laser waves [52, 53].

In the absence of a longitudinal magnetic éeld on the
active medium, equations of lasing (13) and (14) are
invariant with respect to the transformations [54]

G � fI �1 ; I �2 ; Iÿ1 ; Iÿ2 ;C1;C2;DFg

! fIÿ1 ; Iÿ2 ; I �1 ; I �2 ; ;DFÿC1; ;DFÿC2; ;DFg; (22)

G � fI �1 ; I �2 ; Iÿ1 ; Iÿ2 ;C1;C2; xg

! fI �2 ; I �1 ; Iÿ2 ; I
ÿ
1 ;ÿC2;ÿC1;ÿxg; (23)

where x � (x�1 � x�2 )=2 � (xÿ1 � xÿ2 )=2; and DF � fÿ1;2ÿ
f�1;2.

Condition (22) reêects the invariance of equations (13)
and (14) with respect to the replacement of propagation
directions under the condition of the constant phase differ-
ence, which for the equal intensities of travelling
counterpropagating waves with identical frequencies repre-
sents the condition of formation of a standing wave, and for
different intensities of these waves, leads to bistability. The
second transformation depends on the detuning parameter,
reêecting the invariance of the system with respect to the
change of the sign of this parameter.

The invariance condition (22) is manifested in the
appearance of periodic lasing regimes with different sym-
metry properties [55]: symmetric S cycles, whose trajectory
in the phase space remains invariable after the trans-
formation G, and asymmetric M cycles, which are always
created in a pair and are transformed to each other by the
transformation GX1(t ) � X2(t). The similarity of the sym-
metry properties of periodic lasing regimes and chiral and
achiral biological macromolecules [56] makes it possible to
use the dynamics of anisotropic laser systems for studying
evolution processes in biology.

Figure 7 presents the diagram of attractors calculated in
the plane (r; x) for c � 0:08 rad, f � 0:07 rad, g�1M �
ÿ0:0035 rad, x�1M � ÿ0:0435, (o�1c ÿ o�2c)=2p � 21:3 MHz,
and the zero initial conditions. According to (23), in region 2
of stationary standing wave generation, for x < 0, the
standing wave is formed by the counterpropagating trav-
elling waves 1�; 1ÿ with the phase difference C1 � ÿp=2,
and for x > 0 ë by the waves 2� and 2ÿ with the phase

difference C2 � p=2. Figures 8a, b illustrate the behaviour of
the average phase differences �C1 and �C2 for r � 0:001 and the
zero initial conditions during the successive passing thorough
regions 2! 1! 3! 1! 3! 1! 2 from left to right
(Fig. 7).

One can see that these quantities change in the self-
oscillation region due to jumps in the instantaneous phase
differences by 2p, which do not change the intensity. The
behaviour of the instantaneous intensities and phase differ-
ences is shown in Figs 8c, d. Depending on the detection
conditions, for which a énite time interval was chosen, the
average phase difference can change both continuously and
jump-wise.

The transition from the regime 4 of lasing of four
travelling waves to the regime 3 of lasing of two standing
waves (both to the right and left of the line centre) is
accompanied by the pitchfork bifurcation of the stationary
solution. According to (22), for the speciéed value of the
parameter F, the choice of one of the two possible solutions
of the travelling wave type will be completely determined by
êuctuations of the initial conditions, which suggest that the
spontaneous phase symmetry breaking (restoration) takes
place at the bifurcation point.

At the boundary of region 4, with increasing jxj and
constant r an asymmetric limit cycle appears due to the
supercritical Hopf bifurcation from the stationary solution
corresponding to the generation of four travelling waves. As
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Figure 7. Diagram of attractors for c � 0:08 rad;f � 0:07 rad, g�1M �
ÿ0:003 rad, x�1M � ÿ0:0435 and (o�1c ÿ o�2c)=2p � 21:3 MHz. Lasing
regimes shown in the égure: ( 1 ) self-oscillation regime corresponding
to the symmetric limit cycle with out-of-phase oscillations of the
intensities of counterpropagating waves with elliptic nonorthogonal
polarisation states; ( 2 ) single-frequency stationary regime of lasing of a
standing wave formed by two counterpropagating travelling waves with
elliptical nonorthogonal polarisation states; ( 3 ) stationary regime of
lasing of two standing waves with different intensities; ( 4 ) stationary
regime of lasing of four travelling waves with different intensities; ( 5 )
asymmetric limit cycle and deterministic chaos; ( 6 ) stationary regime of
lasing of two travelling waves with different intensities and frequencies
(1�; 2ÿ to the left of the centre and 2�; 1ÿ to the right of the centre); ( 7 )
asymmetric limit cycle of the second kind with the intensity oscillation
and phase-difference rotation; lasing regimes caused by the sensitivity of
the system to the action of random noise are shown by crosses.
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jxj is further increased in hatched region 5 (Fig. 7), depend-
ing on the value of the backscattering coefécient the M cycle
behaves differently. Figure 9 illustrates the evolution of the
phase trajectories and time realisations for I �1 and of the
power spectra with increasing detuning x for r � 0:0005,
beginning with the moment of appearance of the asymmetric
limit cycle and ending by the appearance of the symmetric
cycle (from top to bottom in Fig. 9). The numerical
calculations were performed by using a suféciently small
step over the parameter. One can see that érst, for
x 0 � ÿ36 MHz, the M cycle with the period T appears,
which experiences two doubling-period bifurcations at
x 0 � ÿ37:2 and ÿ38:2 MHz. Then, for x 0 � ÿ38:9 MHz,
the asymmetric double-band strange attractor is realised
(see, for example, [45]) followed by a reverse period of
doubling bifurcation cascade: the 4T cycle for x 0 �
ÿ 39:94 MHz and the 2T cycle for x 0 � ÿ39:96 MHz.
Finally, for x 0 � ÿ39:97 MHz, due to the pitchfork bifur-
cation of the periodic solution, the stable symmetric S cycle
appears, i.e. the phase symmetry is restored (when the
parameter is changed in the opposite direction, the phase
symmetry is broken).

In region 1 (Fig. 7), the intensities and phase differences
oscillate periodically with respect to the stationary solution
corresponding to the regime of lasing of two standing waves.
Therefore, we can assert that the spontaneous phase

symmetry breaking in the FRGL under study, which is
described by the pitchfork bifurcation, takes place both for
the periodic and stationary solution in passing from the
generation of travelling waves to the generation of standing
waves.

The pitchfork bifurcation of the periodic solution
accompanied by the appearance of chaos due to the
Feugenbaum sequence was observed in a radio engineering
system [57]; in laser and optical systems, it is found for the
érst time.

In region 5, where the deterministic chaos exists, depend-
ing on the initial conditions, attractors with different
topologies can exist simultaneously (multistability). Thus,
at the point x 0 � ÿ39:84 MHz, r � 0:0005 for the zero
initial conditions, the symmetric limit cycle is observed;
when moving with a small step over the detuning parameter,
the asymmetric strange attractor (similar to that presented
in Fig. 9) is observed, while for the initial conditions
I �1 jt�0 � 2:58; Iÿ1 jt�0 � 10:28; I �2 jt�0 � 4:098; Iÿ2 jt�0 � 2:68;
C1jt�0 � 0:947 rad, and C2jt�0 � ÿ1:58 rad, chaos can
appear due to the bistability of asymmetric strange attrac-
tors: the system falls into tha basin of attraction of both
attractors and is alternatively on one or the other. Figure 10
presents the phase projections, time realisations, and power
spectra characterising the topology of such an asymmetric
attractor. The experimental realisation of one of the possible
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regimes of lasing in the multistability region will depend on
the properties of the FGGL under study and the scan rate of
a measuring system during detuning.

4.2 Complicated noise-induced oscillations

Complicated noise-induced oscillations were observed in
lasers with different active media: a gas laser [58], a
semiconductor injection laser [59], and a vertical-cavity

surface-emitting laser [60]. The inêuence of the rate of
passing through a bifurcation point upon the symmetry
breaking and the possibility of the predictable choice of one
of the bistable solutions were studied theoretically in
[61, 62].

The operation regimes of the FRGL sensitive to random
perturbations appear at small backscattering coefécients in
region 7 in the diagram of attractors (Fig. 7). Here, near the
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boundary with the stationary regime of lasing of travelling
waves for x 0 � ÿ45:84 MHz, an asymmetric limit cycle of
the second kind is observed with the rotation of the phase
difference C2 and oscillations of the wave intensity Iÿ2 near
zero, which makes the system sensitive to random êuctua-
tions, of different physical origins.

We will study the inêuence of random êuctuations by
analysing the solutions of lasing equations (13) and (14) [63]
written in the Langevin form with the additive inclusion of a
random perturbation (see, for example, [64]); this is admis-
sible under the condition that the intensity of random
perturbations is low and is independent of variables and
time.

To determine principal effects caused by low-intensity
êuctuation perturbations, we consider, without specifying
the physical nature of these perturbations, the inêuence of
the delta-correlated (white) noise with the zero mathemat-
ical expectation and very low intensity, which can be
conditionally treated as a weak perturbation of the trajec-
tory of the system in the phase space. The sources of
random êuctuations in the case of the white noise with the
intensity D identical for all variables are deéned as
hx(t)ihx(t 0)i � Dd(tÿ t 0) (see, for example, [64]).

This consideration does not pretend to the mathemati-
cally correct description of the inêuence of random
êuctuations, both external (thermal, etc.) and internal
(spontaneous emission noise), which is rather complicated
in the case of four-wave lasing. Nevertheless, it allows us to
conclude that a mechanism of the development of compli-
cated oscillations can exist in multimode laser systems,
which is based on the stochastisation of the periodic regime

with the oscillations of the intensity of one of the waves near
the threshold.

Let us follow the evolution of the asymmetric limit cycle
of the second kind with the lasing frequency detuning from
the line centre in the presence of noise of intensity D � 10ÿ7.
Figure 11 presents the time realisations and power spectra
for the intensities I�2 for x 0 � ÿ45:84 (a), ÿ47:04 (b),
ÿ47:42 (c) and ÿ48:47 MHz (d). The variable C2 behaves
with respect to noise as I ÿ2 , while I �1 and C1 behave as I �2 .

One can see that érst the presence of noise affects only
I ÿ2 (Fig. 11a), weakly distorting the time dependence and
power spectrum in the high-frequency region of this
variable. Then, the oscillation amplitude I ÿ2 increases due
to nonlinear interaction, resulting in the increase in the
amplitude of the high-frequency (noise) component in the
power spectrum (Fig. 11b). In this case, other variables still
remain insensitive to the perturbations of the system due to
the complication of I ÿ2 oscillations. The estimate of the
Lyapunov dimensionality of this attractor gives ~D � 2:3. As
jxj is increased, the oscillation amplitude I ÿ2 further grows,
so that, by preserving the complicated shape, the amplitude
becomes insensitive to the action of weak noise. The
attractor dimensionality decreases to ~D � 2:01. However,
due to rather large oscillation amplitude of `noisy' variables,
all variables of the system take the complex oscillation shape
(Fig. 11c). And, énally, for x 0 � ÿ48:47 MHz, the motion
of the system becomes periodic with a very large period and
complicated oscillation shape (Fig. 11d). Not performing
quantitative studies of the degree of stochasticity (see, for
example, [60]), we will assign conditionally complicated
oscillations with a fractional dimensionality, existing in
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the region of the system sensitivity to noise, to stochastic
oscillations (Fig. 11b), and oscillations with a fractional

dimensionality in the region insensitive to noise (Fig. 11c) ë
to chaotic oscillations.

Then, for x 0 � ÿ48:5 MHz, a pitchfork bifurcation
occurs, resulting in the merging and disappearance of
two long-period asymmetric limit cycles of the second
kind and in the appearance of a long-period symmetric
limit cycle of the érst kind with the complicated oscillation
shape. Figure 12 illustrates the phase symmetry restoration
(breaking) for three-dimensional projections. Because the
system at the bifurcation point is already insensitive to
noise, we can assert that the choice of one of the asymmetric
limit cycles is completely determined by the values of
variables at the initial instant of time, which corresponds
to the spontaneous phase symmetry breaking.

The evolution of the time realisations of I �1 for
symmetric attractors with increasing detuning is shown in
Fig. 13. Upon moving from top to bottom, for
x 0 � ÿ47:8 MHz (a), a symmetric limit cycle is éxed
with the simpliéed oscillation shape and reduced period.
Then, this cycle loses its stability, and symmetric chaos
appears after the alternation, which exists for x 0 � ÿ49:4
(b), ÿ50:4 (c), ÿ51:4 MHz (d), which is followed by the
stationary regime of lasing of two standing waves with
different intensities.
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C1

�
rad

b

a

c

5 6 7
I�1 (rel. units)

1
2

6800

6840

C1

�
rad

7.5

ÿ6840

ÿ6800

9.0
3
4

Iÿ2 (rel. units)

Iÿ2 (rel. units)

I�1 (rel. units)

C1

�
rad

ÿ20

ÿ10

0

6 8 2
4

Iÿ2 (rel. units)

I�1 (rel. units)
10

Figure 12. Spontaneous phase symmetry breaking (restoration) in three-
dimensional projections for r � 0:00001; M cycles for x 0 � ÿ48:47 (a, b)
and the S cycle for x 0 � ÿ48:5 MHz (c).

12 L.P. Svirina



5. Conclusions

The nonlinear dynamics caused by the instability of phase
characteristics of the éeld generated in a FRGL with
linearly coupled elliptically polarised waves has been
studied by using the developed and experimentally tested
model.

It has been shown the intensities, polarisation states, and
phase differences of generated waves can be switched in the
self-oscillation regime existing in a broad range of control
parameters. The wave phase shift caused by the appearance
of the nonzero ellipticity leads to the shift of the intensity
switching from the detuning region near the gain contour
centre (which is typical for linear polarisation) to the
contour wing.

The symmetry properties of equations of lasing have
been established. It has been shown that the spontaneous
phase symmetry breaking for stationary and periodic
solutions occurs upon transition from the regime of lasing
of travelling waves to that of standing waves, which is
achieved by detuning the lasing frequency from the line

centre. Depending on the value of the backscattering
coefécient in periodic regimes, both the deterministic and
noise-induce chaos can appear in this case. The symmetry of
the system causes the multistability of regular and chaotic
attractors with different topologies.

A new mechanism of the appearance of complicated
(chaotic and stochastic) oscillations in anisotropic lasers
with the linear coupling has been discovered which consists
in the stochastisation of periodic regimes with the intensity
oscillations of one of the waves near the lasing threshold.
Upon detuning in the presence of the delta-correlated white
noise, these regimes give rise to stochastic oscillations and
chaos with different symmetry properties. A FRGL with
elliptically polarised waves can exhibit the following regimes
with the complex dynamic structure: asymmetric chaos
(appearing in the course of three different scenarios: the
period doubling bifurcations cascade of the asymmetric limit
cycle, the interaction of two asymmetric Feugenbaum
attractors, and the stochastisation of the limit cycle of
the second kind), noise-induced stochastic oscillations,
and symmetric chaos appearing through the loss of the
stability of the symmetric limit cycle and alternation.

The results of studying the dynamics of an anisotropic
FGRL with symmetry can be used in informatics for the
development of devices for data coding and protection, in
biology for explaining mechanisms of the appearance of the
chiral and achiral symmetry in nature, as well as for
explaining the formation of dynamic structures in multi-
dimensional coupled systems of different physical nature, in
particular, multimode anisotropic lasers with more complex
active media, which have not been theoretically described so
far.

The FRGL model developed in this paper can be used in
laser gyros for studying the dependence of the synchronisa-
tion zone width on the polarisation state of generated waves
and investigating the polarisation nonreciprocity appearing
due to defects in the manufacturing of cavity elements, the
deformation of polarisation speciéed by the cavity in the
active medium, and due to the depolarisation of back-
scattered radiation. The consideration of a longitudinal
magnetic éeld applied to the medium allows one to study
magnetooptical effects.
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Appendix

The nonlinear interaction coefécients in a FRGL for wave
1 corresponding to wave 1� (2! 1ÿ, 3! 2�, 4! 2ÿ) in
the presence of a longitudinal magnetic éeld in the active
medium in the approximation of three relaxation constants
(y1;2 � ga;b=2Ku, y � g=Ku) and the limiting Doppler
broadening have the form [38]

c 01 �
exp�ÿ�x 2

1 � D 2��
cosh 2b1

�
�
R1

y1 � y2
y

cosh 2�x1D� b1� � C1 � C2

�
; (A1)

c 001 �
exp�ÿ�x 2

1 � D 2��
cosh 2b1

�
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y1 � y2
y
�
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Figure 13. Evolution of the time realisations of the intensity I�1 of
counterpropagating waves for the symmetric solution: the limit cycle (a),
chaos (b ë d) [I�1 (heavy curves), Iÿ1 (thin curves)].
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� sinh 2�x1D� b1� � C1C2

�
; (A2)

C1;2 �
exp��2�x1Dÿ b1��

2�y� D�
�
R2y2 � R3y1

� y1y2

�
R3

y1 � iD
� R2

y2 � iD

��
; (A3)

a12 �
exp�ÿ�x 2

1 � D 2��
cosh 2b1

�A1 cosh 2�x1D� b2� � A2 � A3�; (A4)

A1 �
R1

y� iDx12

�
�y1 � y2� � y1y2

�
�

1

y1 � iDx12
� 1

y2 � iDx12

��
; (A5)

A2;3 �
exp��2�x1Dÿ b2��
2�y� i�Dx12 � D��

�
R3y1 � R2y2 � y1y2

�
�

R3

y1 � i�Dx12 � D� �
R2

y2 � i�Dx12 � D�
��
; (A6)

a13 �
exp�ÿ�x 2

1 � D 2��
cosh 2b3

�
cosh 2�x1Dÿ b3�

y� ix13

��R3y1 � R2y2� �
R1

2
�y1 � y2�

�
exp 2�x1D� b3�
y� i�x13 ÿ D�

� exp�ÿ2�x1D� b3��
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��
; (A7)

b12; ~b12 �
1

2
exp�ÿ�x 2

1 � D 2��y1y2�B10 � B20�; (A8)
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exp��2�x1Dÿ ig2��
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�
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1
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exp��2�x1Dÿ ig3��

y� i�x13 � D�
�

R3

y1 � iD
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y2 � iD

�
; (A10)

d12 �
exp�ÿ�x 2

1 � D 2��
cosh 2b2

�A1 sinh 2�x1D� b2��A2ÿA3�; (A11)

d13 �
exp�ÿ�x 2

1 � D 2��
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�
sinh 2�x1Dÿ b3�

y� ix13

��R3y1 � R2y2� �
R1

2
�y1 � y2�

�
exp 2�x1D� b3�
y� i�x13 ÿ D�

ÿ exp�ÿ2�x1D� b3��
y� i�x13 � D�

��
; (A12)

a1k; d1k �
�
a1
2

y1y2
cosh 2b2

�
1

y1 � iDx12
� 1

y2 � iDx12

�

�
�
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y� i�d1 � D�
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b1k � b0 cos 2C1k; ~b1k � ÿb0 sin 2C1k; (A14)

b0 � a1y1y2
1

y� id1
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y1 � iDx12
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(A15)
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2d1D
Ku 2

;

a1 � N12 exp�2i�Dx13 ÿ Dx24��

� exp�ÿ�d 2
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�����������������������������������
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s
; (A16)

xij � �xi � xj�=2; Dxij � �xixj�=2; d1 � x1 � Dx42: (A17)

The functions of the angular momenta R1;R2;R3 of the
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R3

9
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3
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1
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6
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are expressed in terms of the Wigner 6j symbols L1;2 [65]

L1�k� � k 1 1
j2 j1 j1

� �
; L2�k� � k 1 1

j1 j2 j2

� �
: (A19)

The ratio of the Fourier component of the inverse
population density of the medium to its average value is
[66]

N12 �
� L

0

N�z� exp�ÿ2i�K1 ÿ K2�z�dz
�� L

0

N�z�dz: (A20)
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Expressions for a14, b14, ~b14, and d14 are obtained from
expressions for a13, b13, ~b13, and d13 by the replacement
b3 ! b4, g3 ! g4, x13 ! x14; the upper sign corresponds to
the coefécient a1k and the lower sign ë to the coefécient d1k.
The nonlinear interaction coefécients for wave 2 are
obtained from (A1) ë (A20) by the subscript replacements
1$ 2 and 3$ 4, for wave 3 by the replacement 1$ 3 and
2$ 4, and for wave 4 by the replacement 1$ 4 and 2$ 3.

References
1. Privalov V.E., Fridrikhov S.A. Usp. Fiz. Nauk, 97, 374 (1969).
2. Fedorov B.F., Sheremet'ev A.G., Umnikov V.N. Opticheskii

kvantovyi giroskop (Optical Quantum Gyro) (Moscow:
Mashinostroenie, 1973).

3. Azarova V.V., Golyaev Yu.D., Dmittriev V.G. Kvantovaya
Elektron., 30, 96 (2000) [Quantum Electron., 30, 96 (2000)].

4. Vetkin V.A., Khromykh A.M., in Kvantovaya Elektronika
(Quantum Electronics), 3 (9), 59 (1972).

5. Sokolov V.A., Fradkin E.E. Kvantovaya Elektron., 2, 807 (1975)
[Sov. J. Quantum Electron., 5, 447 (1975)].

6. Nazarenko M.M., Savel'ev I.I., Skulachenko S.S. Kvantovaya
Elektron., 6, 1698 (1979) [Sov. J. Quantum Electron., 9, 1000
(1979)].

7. Yasinskii V.M. Proc. SPIE Int. Soc. Opt. Eng., 2792, 166 (1995).
8. Yasinskii V.M. Kvantovaya Elektron., 23, 1086 (1996) [Quantum

Electron., 26, 1056 (1996)].
9. Klimontovich Yu.L., Landa P.S., Lariontsev E.G. Zh. Eksp. Teor.

Fiz., 52, 1616 (1967).
10. Klimontovich Yu.L. (Ed.) Volnovye i êuktuatsionnye protsessy v

lazerakh (Wave and Fluctuation Processes in Lasers) (Moscow:
Nauka, 1974).

11. Chyba T.H. Phys. Rev. A, 40, 6327 (1989).
12. Chyba T.H. Opt. Commun., 76, 395 (1990).
13. Svirina L.P. Opt. Commun., 111, 380 (1994).
14. Le Floch A., Ropars G., Lenormand J.M., Le Naour R. Phys.

Rev. Lett., 52, 918 (1984).
15. Cotteverte J.C., Bretenaker F., Le Floch A. Opt. Lett., 16, 572

(1991).
16. Puccioni J.P., Lippi J.L., Abraham N.B., Arecchi F.T. Opt.

Commun., 72, 361 (1989).
17. Svirina L.P., Gudelev V.G., Zhurik Yu.P. Phys. Rev. A, 56, 5053

(1997).
18. Svirina L.P. Quantum & Semiclassical Optics, JEOS, part B, 10,

425 (1998).
19. Brunel M., Emile O., Alourni M., Le Floch A., Bretenaker F.

Phys. Rev. A, 59, 831 (1999).
20. Kravtsov N.V., Lariontsev E.G., Naumkin N.I. Kvantovaya

Elektron., 34, 839 (2004) [Quantum Electron., 34, 839 (2004)].
21. Klimontovich Yu.L., Kuryatov V.N., Landa P.S. Zh. Eksp. Teor.

Fiz., 51, 3 (1966).
22. Aronowitz F., Collind R.J. Appl. Phys. Lett., 9, 55 (1966).
23. Fradkin E.E. Opt. Spektrosk., 33, 674 (1972).
24. Bershtein I.L., Stepanov D.P. Izv. Vyssh. Uchebn. Zaved., Ser.

Radioéz., 16, 531 (1973).
25. Andronova I.A. Izv. Vyssh. Uchebn. Zaved., Ser. Radioéz., 17,

775 (1974).
26. Kutsak A.A., Strekalovskaya E.Yu. Zh. Prikl. Spektrosk., 23,

995 (1975).
27. Birman A.Ya., Savushkin A.F., Salamatin V.A. Opt. Spectrosk.,

53, 174 (1982).
28. Andronova I.A., Bershtein I.L. Izv. Vyssh. Uchebn. Zaved., Ser.

Radioéz., 14, 698 (1971).
29. Sardyko V.I., Severikov V.N. Zh. Prikl. Spektrosk., 26, 826

(1977).
30. Paddon P., Sjerve E., May A.D., et al. J. Opt. Soc Am. £, 9, 574

(1992).
31. Jones R. C. J. Opt. Soc. Am., 31, 488 (1941).
32. Jones R. C. J. Opt. Soc. Am., 38, 671 (1948).
33. Jones R. C. J. Opt. Soc. Am., 46, 126 (1956).
34. Rubanov V.S., Svirina L.P., Severikov V.N. Dokl. Akad. Nauk

BSSR, 26, 616 (1982).

35. Il'yushchenko N.V., Svirina L.P., Severikov V.N. Opt. Spektrosk.,
54, 380 (1983).

36. Il'yushchenko N.V., Svirina L.P., Severikov V.N. Opt.
Spektrosk., 54, 874 (1983).

37. Kuznetsov V.M., Rubanov V.S., Svirina L.P., Severikov V.N.
Kvantovaya Elektron., 13, 66 (1986) [Sov. J. Quantum Electron.,
16, 38 (1986)].

38. Voitovich A.P., Severikov V.N. Lasery s anizotropnymi
rezonatorami (Ansisotropic-Cavity Lasers) (Minsk: Nauka i
Tekhnika, 1988).

39. Azzam R.M., Bashara N.M. Ellipsometry and Polarized Light
(Amsterdam: North-Holland, 1977; Moscow: Mir, 1981).

40. Raterink H.J., Van der Stadt H., Velsel C.H.P., Dijkstra G. Appl.
Opt., 6, 813 (1967).

41. Svirina L.P. Quantum & Semiclassical Optics, JEOS, part B, 10,
213 (1998).

42. Zborovskii V.A., Tiunov E.A., Fradkin E.E. Izv. Vyssh. Uchebn.
Zaved., Ser. Radioéz., 21, 816 (1978).

43. Pando C.L., Luno Acosta G.A. Opt. Commun., 114, 509 (1995).
44. Tiunov E.A., Fradkin E.E. Opt. Spektrosk., 44, 557 (1978).
45. Anishchenko V.S. Slozhnye kolebaniya v prostykh sistemakh

(Complex Oscillations in Simple Systems) (Moscow: Nauka,
1990).

46. Anischenko V.S. Dynamical Chaos ë Models Experiments.
Appearance, Routes Structure of Chaos in Simple Dynamical
Systems (Singapore, World Scientific, 1995).

47. Anishchenko V.S., Vadivasova T.E., Astakhov V.V.
Nelineinaya dinamika khaoticheskikh i stokhasticheskikh sistem
(Nonlinear Dynamics of Chaotic and Stochastic Systems)
(Saratov: Saratov State Unversity, 1999).

48. Hilborn R.C. Chaos Nonlinear Dynamics (New York, Oxford:
Oxford University Press, 1994).

49. Chua L.O., Komuro M., Matsumoto T. IEEE Trans. Circuits
Syst., CAS-33, 1073 (1986).

50. Chua's Circuit: A Paradigm for Chaos. Ed. by R.N. Madan
(Singapore: World Scientific, 1993).

51. Svirina L.P. J. Optics B: Quantum & Semiclas. Opt., 3, S133
(2001).

52. Skryabin D.V., Vladimirov A.G., Radin A.M. Opt. Commun.,
116, 109 (1995).

53. Skryabin D.V., Vladimirov A.G., Radin A.M. Opt. Spektrosk.,
78, 989 (1995).

54. Svirina L.P. Opt. Spektrosk., 95, 339 (2003).
55. Nikolaev E.V. Matemat. Sbornik, 196, 143 (1995).
56. Avetisov V.A., Gol'danskii V.I. Usp. Fiz. Nauk, 166, 873 (1996).
57. Dmitriev A.S., Kislov V.Ya. Stokasticheskie kolebaniya v

radioézike i elektronike (Stochastic Oscillations in Radiophysics
and Electronics) (Moscow: Nauka, 1989).

58. Gudelev V.G., Svirina L.P., Zhurik Yu.P. Proc. SPIE Int. Soc.
Opt. Eng., 2792, 119 (1995).

59. Hwang S.K., Gao J.B., Liu J.M. Phys. Rev. E, 61, 5162 (2000).
60. Gao J.B., Hwang S.K., Liu J.M. Phys. Rev. E, 82, 1132 (1999).
61. Butkovskii O.Ya., Brash J.S., Kravtsov Yu.A., Surovyatkina E.D.

Zh. Eksp. Teor. Fiz., 109, 2201 (1996).
62. Kravtsov Yu.A., Kadtke J.B. Predictability in Complex

Dynamical Systems (New York: Springer, 1999).
63. Svirina L.P. Opt. Spektrosk., 97, 165 (2004).
64. Van Kampen N.G. Stochastic Processes in Physics and

Chemistry (Amsterdam: North-Holland Publishing Co., 1981;
Moscow: Vysshaya Shkola, 1990).

65. Sobelman I.I. Introduction to the Theory of Atomic Spectra
(Oxford: Pergamon Press, 1972; Moscow: Fizmatgiz, 1963).

66. Lamb W.E. Phys. Rev. A, 134, 1429 (1964).

Phase instability in a four-frequency anisotropic-ring cavity gas laser 15


