
Abstract. A nonreciprocal ring optical resonator with the
simplest type of nonuniformity in the form of two interacting
scatterers is considered. A boundary problem of a periodic
type allowing one to write the characteristic equation for
determining eigenfrequencies is formulated. Analytic expres-
sions for eigenfrequencies and the distribution coefécient of
travelling waves in the mode are derived under the assumption
of relative smallness of the reêection coefécient and the
nonreciprocity parameter. The peculiarities of splitting these
frequencies and the structure of the eigenfrequencies (reso-
nator modes) corresponding to them are discussed.

Keywords: ring resonator, eigenfrequencies, modes, frequency non-
reciprocity.

1. Usually the theory of ring lasers is formulated based on
the equations for the expansion coefécients (oscillation
amplitudes) of the generated éeld in travelling waves. The
latter ones are the modes of a uniform reciprocal (ideal)
ring resonator with a doubly degenerate frequency spec-
trum. To substantiate the appearance of the internal
synchronisation (locking) of travelling waves and to explain
the peculiarities of the regime of their mutual beatings, a
linear coupling is introduced phenomenologically in the
dynamic equations for the expansion coefécients. At the
same time, it is possible and even natural to use the
expansion of the éeld over the modes of a real ring
resonator, nonreciprocal (in some cases) and usually
nonuniform (due to the énite aperture of reêectors, the
presence of a diaphragm, the nonuniformity of the
refractive index, etc.). In the case of this expansion, the
dynamic equations for the oscillation amplitudes will be
coupled only due to the mutual inêuence through the active
medium, which allows the approach to the analysis of the
locking and beat phenomena to be somewhat changed.

To use the expansion in the modes of a real resonator, it
is necessary to solve quite accurately the spectral problem

for this resonator. This was the aim of Refs [1, 2], where the
real resonator was considered reciprocal and a diaphragm in
the form of a thin cylinder served as the nonuniformity.
Modes and the spectrum of a reciprocal resonator with
another type of nonuniformity was studied in [3], i.e. two
partially reêecting inénite facets (sites of the reêection
coefécient jump in the élling medium) taking multiple
reêections between them into account. The nonuniformity
was localised in [1, 2], which speciéed the description of the
modes in the paraxial approximation. The approximation of
plane waves is adequate to the formulation of the problem
in [3].

In this paper, we summarise the results of paper [3] for
the case of not only a nonuniform but also a nonreciprocal
resonator in order to construct later the theory of a laser
gyroscope based on the expansion of its radiation over the
modes of such a real resonator. Losses in the élling medium
are neglected. A problem is stated to obtain within the
framework of the resonator theory an analytic dependence
of the frequency splitting on the nonreciprocity and non-
uniformity parameters. To avoid the undesirable
cumbersome expressions and to take into account, at the
same time, the main peculiarity of the nonuniformity (the
possibility of mutual multiple reêections in the resonator),
its simplest model as in paper [3] was taken: élling the
resonator with a piecewise-uniform dielectric with the step
reêective index only in two maximally remote sections. Only
forward and backward radiation scattering is possible in this
representation and, hence, losses due to the radiation exit
from the resonator are absent. The formulation of the
problem used here, despite the ultimate simplicity of the
mode (as well as due to it) transfers some important issues
from the level of the laser theory to the level of a simpler
linear resonator theory.
2. Let op be the degenerate eigenfrequency of a reciprocal
uniform ring resonator ( p is a natural number). The
degeneracy is removed in a nonreciprocal ring resonator.
One travelling wave corresponds to each of different
eigenfrequencies o ���p . Below, we brieêy describe the
scheme used to remove the degeneracy because it is this
scheme that we will use to take the nonuniformity into
account.

The éeld E (for example, the transverse component of a
polarised electric éeld) in a one-dimensional ring resonator
is described by the wave equation

q 2E

qz 2
� 2

a

c0

q 2E

qzqt
ÿ n 2

c 20

q 2E

qt 2
� 0, (1)
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where c0 is the speed of light; n is the refractive index of the
élling medium; a is the dimensionless nonreciprocity
parameter {if the axial contour of the resonator has the
form of a circle with a perimeter L, and the nonreciprocity
is produced by its rotation with a constant angular velocity
O with respect to the normal to the resonator plane, then
a �LO=(2pc0)51 [4]}. The éeld in the ring resonator
without losses should satisfy the boundary conditions of a
periodic type:

E�0; t� � E�L; t�, qE�0; t�
qz

� qE�L; t�
qz

. (2)

Waves E(z; t) � u(z) exp (iot) satisfy boundary problems
(1), (2), where u(z) are the solutions of the stationary
boundary problem

d2u

dz 2
� i2a

o
c0

du

dz
� n 2 o

2

c 20
u � 0, (3)

u�0� � u�L�, du�0�
dz
� du�L�

dz
. (4)

A spatial travelling wave u(z) � E 0 exp (ÿ ikz) is the
solution of wave equation (3), if the frequency o and the
wave number k satisfy the dispersion equation

k 2 ÿ k2awÿ w 2n 2 � 0, w � o
c0

. (5)

If the wave number k � k ���p � � kp0 � � 2pp=L, the
travelling wave, satisfying boundary conditions (4) is the
solution of boundary problem (3), (4), i.e. this wave is a
mode of a ring resonator. Eigenfrequencies are found from
expression (5). Let us solve it with respect to wave numbers:

k ���p � ÿaw ���p �
hÿ
aw ���p

�2 � n 2w ���2p

i1=2
� � nw ���p ÿ aw ���p .

We obtain here the doublets of eigenfrequencies o ���p �
c0w

���
p � c0kp0=(n� a). They depend both on the degenerate

frequency op0 � c0kp0 in the absence of nonreciprocity and
on the nonreciprocity parameter, which causes the splitting
of the degenerate frequency and the doublet formation.
Thus, all eigenfrequencies o ���p are different and a natural
travelling wave (mode) E ���p (z; t) � E ���p exp (� ikp0z)
� exp (io ���p t) corresponds to each of them.

3. Consider a nonreciprocal nonuniform ring resonator
according to the scheme in clause 2. Let the refractive index
of the élling medium be:

n�z� �
n1 for 04 z <

L

2
;

n2 for
L

2
4 z < L :

8><>:
It was shown in [3] that this nonuniformity, similarly to
nonreciprocity, removes the degeneracy of the spectrum of
eigenfrequencies of a uniform reciprocal ring resonator.
One should expect that the combined effect of the
nonreciprocity and nonuniformity will also lead to a
nondenegerate (simple) spectrum, the inêuence of both
factors increasing the frequency splitting of doublets
compared to the inêuence of any of them. The splitting
of eigenfrequencies will be found to prove this assumption.

The parameter of the reduced nonreciprocity 2ppa=nav,
where nav � (n1 � n2)=2, and the reêection coefécient
R1 � (n1 ÿ n2)=�n1 � n2) are considered the small quantities
of the same order.
4. The éeld in a nonuniform nonreciprocal ring resonator
without losses satisées the wave equation

q 2E

qz 2
� a

c0

q 2E

qzqt
ÿ n 2�z�

c 20

q 2E

qt 2
� 0 (6)

and boundary conditions of periodic type (2). We will seek
natural oscillations in the form E�z; t) � u(z) exp (iot). The
mode u(z) should be the solution of the boundary problem

d2u

dz 2
� i2a

o
c0

du

dz
� n 2�z�o

2

c 20
u � 0 (7)

with boundary conditions (4) supplemented with conditions

u

�
L�
2

�
� u

�
Lÿ
2

�
,
du

dz

�
L�
2

�
� du

dz

�
Lÿ
2

�
. (8)

Subscripts `+' and `ÿ' at L in expression (8) mean the right
and left vicinities of the point z � L=2, respectively.

For a travelling wave u(z) � E 0 exp (ÿ ikz) on each
interval, where the refractive index is constant, the dis-
persion equation

k 2 ÿ 2a
o
c0

kÿ o 2

c 20
n 2
1 � 0 for 04 z <

L

2
,

k 2 ÿ 2a
o
c0

kÿ o 2

c 20
n 2
2 � 0 for

L

2
4 z < L

is valid. Two wave numbers are found here for each of the
mentioned intervals, the wave numbers corresponding to
the speciéed frequency:

k
���
1 � w

�� �a 2 � n 2
1 �1=2 � a

� � �w�n1 � a�

for 04 z <
L

2
, (9)

k
���
2 � w

�� �a 2 � n 2
2 �1=2 � a

� � �w�n2 � a�

for
L

2
4 z < L . (10)

The distribution u(z) satisfying (7) should be searched
for in the form of a wave with different ratios of amplitudes
of counterpropagating travelling waves within each interval
with a constant refractive index:

u1�z� � E
���
1 exp

ÿÿ ik
���
1 z

�� E
�ÿ�
1 exp

ÿÿ ik
�ÿ�
1 z

�
for 04 z <

L

2
, (11)

u2�z� � E
���
2 exp

ÿÿ ik
���
2 z

�� E
�ÿ�
2 exp

ÿÿ ik
�ÿ�
2 z

�
for

L

2
4 z < L , (12)
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where E
���
1;2 are unknown amplitudes of travelling waves.

Their choice is determined by boundary conditions (4) and
(8).

Boundary condition of periodicity (4) allows one to
obtain the érst relation in the form

E
���
1 � R1E

�ÿ�
1 � T2E

���
2 exp

ÿÿ ik
���
2 L

�
,

(13)

E �ÿ�2 exp
ÿÿ ik �ÿ�2 L

� � ÿR1E
���
2 exp

ÿÿ ik ���2 L
�� T1E

�ÿ�
1 .

Boundary condition of continuity (8) allows one to obtain
the second relation in the form

E
�ÿ�
1 exp

�
ÿ ik

�ÿ�
1

L

2

�
� R1E

���
1 exp

�
ÿ ik

���
1

L

2

�

�T2E
�ÿ�
2 exp

�
ÿ ik

�ÿ�
2

L

2

�
,

(14)

E
���
2 exp

�
ÿ ik

���
2

L

2

�
� ÿR1E

�ÿ�
2 exp

�
ÿ ik

�ÿ�
2

L

2

�

�T1E
���
1 exp

�
ÿ ik

���
1

L

2

�
.

Here, T2 � n2=nav and T1 � n1=nav are the transmission
coefécients. The ratio between them and the reêection
coefécient R1 is obvious: T1T2 � 1ÿ R 2

1 .
5. We will use below the reduced amplitudes of travelling
waves

~E
���
1 � E

���
1 exp

�
ÿ ik

���
1

L

2

�
, ~E

���
2 � E

���
2 exp

�
ÿ ik

���
2

L

2

�
.

In these notations, boundary conditions (13) and (14) will
take the from:

~E
�ÿ�
2

~E
���
2

 !
� 1

T2

�
exp

�
i
ÿ
k
�ÿ�
1 � k

�ÿ�
2

�L
2

�
ÿ R1 exp

�
i
ÿ
k
���
1 � k

�ÿ�
2

�L
2

�
ÿR1 exp

�
i
ÿ
k
�ÿ�
1 � k

���
2

�L
2

�
exp

�
i
ÿ
k
���
1 � k

���
2

�L
2

�
0BBB@

1CCCA,

(15)

~E
�ÿ�
1

~E
���
1

 !
� 1

T1

1 R1

R1 1

 !
~E
�ÿ�
2

~E
���
2

 !
. (16)

Let us combine these two equations into one by using in
this case the ratio between the transmission and reêection
coefécients presented above. As a result, we obtain the
condition of self-reproduction of the vector of reduced
amplitudes after a round trip in the resonator:

~E
�ÿ�
1

~E
���
1

 !
� Ŵ

~E
�ÿ�
1

~E
���
1

 !
. (17)

This condition is typical of ring structures of different
nature. By substituting (15) into (16), we obtain the
transformation matrix (per transit)

Ŵ � 1

T2

1

T1

1 R1

R1 1

 !

�
exp

�
i
ÿ
k
�ÿ�
1 � k

�ÿ�
2

�L
2

�
ÿ R1 exp

�
i
ÿ
k
���
1 � k

�ÿ�
2

�L
2

�
ÿR1 exp

�
i
ÿ
k
�ÿ�
1 � k

���
2

�L
2

�
exp

�
i
ÿ
k
���
1 � k

���
2

�L
2

�
0BBB@

1CCCA,

(18)

which depends on the resonator parameters (including the
nonreciprocity parameter) and on the unknown yet
frequency.

The zero vector of reduced amplitudes in Eqn (17) exists
only for frequencies, which are the roots of the characteristic
equation

Det �Ŵÿ Î � � 0, (19)

where Î is the unit matrix. The frequencies determined in
this way are the eigenfrequencies of the resonator. Mixed
waves (11), (12) corresponding to them are eigenwaves
(modes) for boundary problem (7), (4) and (8). Let us
derive the expression for eigenfrequencies.
6. It is easy to show that Det (Ŵÿ Î ) � 1ÿ Sp Ŵ �Det Ŵ.
Let us énd the trace and determinant of transformation
matrix (17):

Det Ŵ � 1ÿ R 2
1

�T1T2�2
�
exp

�
i
ÿ
k �ÿ�1 � k �ÿ�2 � k ���1 � k ���2

�L
2

�

ÿR 2
1 exp

�
i
ÿ
k
���
1 � k

�ÿ�
2 � k

�ÿ�
1 � k

���
2

�L
2

�
,

Sp Ŵ � 1

T1T2

�
�
exp

�
i
ÿ
k
�ÿ�
1 � k

�ÿ�
2

�L
2

�
ÿ R 2

1 exp

�
i
ÿ
k
�ÿ�
1 � k

���
2

�L
2

�

ÿR 2
1 exp

�
i
ÿ
k
���
1 � k

�ÿ�
2

�L
2

�
� exp

�
i
ÿ
k
���
1 � k

���
2

�L
2

��
.

By using (9), (10) and the ratio between the reêection and
transmission coefécients as well as some cumbersome
transformations, we reduce the latter expressions to the
form

Det Ŵ � exp

�
ÿ iw4a

L

2

�
,

Sp Ŵ � 2 exp

�
ÿ iw2a

L

2

�
�1ÿ R 2

1 �ÿ1
�
cos

�
n1 � n2�

L

2

�
ÿR 2

1 cos

�
w�n1 ÿ n2�

L

2

��
.

Taking these expressions into account, characteristic
equation (19) can be written in the form:
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2 exp

�
ÿ iw2a

L

2

�
1

1ÿ R 2
1

�
�1ÿ R 2

1 � cos
�
w2a

L

2

�

ÿ cos

�
w�n1 � n2�

L

2

�
ÿ R 2

1 cos

�
w�n1 ÿ n2�

L

2

��
� 0.

It is convenient to represent this equation in the equivalent
form:

sin

�
w
n1 � n2 ÿ 2a

2

L

2

�
sin

�
w
n1 � n2 � 2a

2

L

2

�

ÿR 2
1 sin

�
w
n1ÿ n2 ÿ 2a

2

L

2

�
sin

�
w
n1ÿ n2 � 2a

2

L

2

�
�0. (20)

If a � 0 and R1 � 0, the roots of Eqn (20) are doubly
degenerate and form a sequence kp � 2pp=(navL) (formally
n1 � n2) for natural p. We again arrived at the above-
mentioned frequency spectrum of a reciprocal uniformly
élled ring resonator.

It is natural to search for the reduced eigenfrequencies w
with the help of the theory of degenerate spectrum
perturbations at small parameters of nonreciprocity and
nonuniformity (in the above sense). Let us write for the érst
term in (20) by using a linear approximation for its factors:

sin

�
w
n1 � n2 ÿ 2a

2

L

2

�
sin

�
w
n1 � n2 � 2a

2

L

2

�

�
�
n1 � n2

2

L

2

�2
�wÿ k ���p ��wÿ k �ÿ�p �, (21)

where k ���p � 2pp=�(nav � a)L� are the roots of the érst and
second cofactors, respectively.

The second term in (20) is small. To preserve the order of
smallness, the parameter w in it can be replaced by kp; and a
number of approximate transformations shown below can
be performed. First,

R 2
1 sin

�
w
n1 ÿ n2 ÿ 2a

2

L

2

�
sin

�
w
n1 ÿ n2 � 2a

2

L

2

�

� R 2
1 sin

2

�
kp

n1 ÿ n2
2

L

2

�
. (22)

In addition, for w close to kp, Eqn (20) under expressions
(21) and (22) can be replaced by the quadratic equation in
the form

�wÿ k ���p ��wÿ k �ÿ�p � � R 2
1 sin

2

�
R1kp0

L

2

��
nav

L

2

�ÿ2
,

where kp0 � 2pp=L � 2p=l.
By solving this equation we obtain two values w ���p :

w ���p � k ���p � k �ÿ�p

2

�
��

k ���p ÿ k �ÿ�p

2

�2
� R 2

1 sin
2

�
R1kp0

L

2

��
nav

L

2

�ÿ2 �1=2
. (23)

In the zero approximation as follows from above the
expression for splitting frequencies caused by the degener-
ate frequency perturbation has the form:

Dop � o ���p ÿ o �ÿ�p � �w ���p ÿ w �ÿ�p �c0

� 2
c0

Lnav

�
�akp0L�2 � 4R 2

1 sin
2

�
R1kp0

L

2

��1=2
. (24)

This expression within the framework of the assumptions
performed takes into account the effect of both the
nonreciprocity and nonuniformity of élling a ring reso-
nator.
7. Let us formulate the main results of this paper. The
degenerate frequencies (of a reciprocal uniform resonator)
form an equidistant spectrum with a frequency spacing
op0 ÿ opÿ1 0 � 2pc0=(n1L). The rotation and nonuniformity
of the resonator élling remove the degeneracy. Expression
(23) yields an expression for a doublet of eigenfrequencies
o ���p � c0w

���
p lying near the degenerate eigenfrequency

op0 � c0kp0. The frequency difference for each doublet
(frequency splitting) is determined by expression (24). It
depends both on the number of the doublet (through kp0)
and on the resonator parameter, i.e. the nonreciprocity
parameter and the reêection coefécient. Smaller (as well as
larger) doublet frequencies form a non-equidistant
sequence. A similar dependence is also typical of the
difference of eigenfrequencies of coupled conservative
contours with different partial resonance frequencies.
Thus, a certain degenerate eigenfrequency of an `unper-
turbed' ring resonator corresponds to coinciding
eigenfrequencies of two identical uncoupled contours.
The coupling (of the inductive and capacitive type) between
the contours is a counterpart of coupling between the waves
of a ring resonator due to its nonuniform élling. In the
presence of coupling and `nonreciprocity' (differences in the
partial frequencies of contours), eigenfrequencies of the
system of contours, as eigenfrequencies of the resonator,
`push' apart [5], each of the two factors only increasing the
splitting. The internal synchronisation in the ring resonator
[6] can be considered to be the compensation for total
splitting of eigenfrequencies of a real resonator due to
nonlinear coupling between modes (which are not travelling
waves). Naturally, the theory of generation in a two-
frequency ring laser is more complicated and the mentioned
analogy has only a qualitative character.

Expression (24) allows one to notice an important
feature of splitting doublet frequencies, which, for obvious
regions, does not have an analogue in the system of coupled
conservative contours. For an approximate numerical
estimate by expression (24) let us specify the values of
quantities entering it. If the axial contour of the ring
resonator is a circle with the perimeter L � 0:4 m and
the nonreciprocity is formed by the resonator rotation with
the angular velocity equal to the velocity of the Earth
rotation, a � 1:55� 10ÿ14.

Consider a resonator élled with media with
n1 � 1:1� 5� 10ÿ4 and n2 � 1:1ÿ 5� 10ÿ4 as an example
explaining the effect of two sharp nonuniformities of the
resonator (regarded as interacting scattering centres). In this
case, nav � 1:1, Dn � n1ÿ n2 � 10ÿ3, and R1 � 10ÿ5. By
using a resonator with the central wavelength l0 � 10ÿ6 m,
the degenerate wave number is kp0 � 6:28� 106 mÿ1. The
frequency splitting depends not only on R1 but also on the
periodically changing quantities j sin (R1kp0L=2)j. One can
see that at comparatively low difference in the refractive
indices, the contribution introduced into slpitting (24) due to
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reêections on the inhomogeneity, can vary from zero to the
maximum value Domax

p � 4R1c0=(navL). For nav � 1:1,
L � 0:4 m and R1 � 10ÿ3, this contribution is 2:72� 105

rad sÿ1, which is the order of the capture region in a ring
laser with a considered real resonator.

The frequency splitting varies from the minimum value
depending only on the nonreciprocity parameter to the
maximum value determined also by the reêection coefécient
(numerical estimates are presented in Fig. 1). For clearness,
the nonreciprocity parameter in Fig. 1 is a � 3� 10ÿ11. One
can see that at some values of the refractive index difference
(reêection coefécient) the medium élling the resonator `is
bleached': the frequency splitting is determined by the
nonreciprocity only. This is the effect of interaction of
scatterers, which also takes place for more realistic inho-
mogeneities.

8. The description of modes of the resonator under study is
also of certain interest. The modes are determined with the
accuracy up to a constant value and only the distribution
coefécient, i.e. the ratio of amplitudes of counterpropagat-
ing travelling waves forming this mode, is their quantitative
characteristic. The ring resonator problem under study is
similar to the quantum-mechanical spectral problem with a
periodic potential and periodic boundary conditions. The
solutions of this problem can be (depending on the
potential properties) periodic eigenfunctions of the type
of the standing or travelling wave.

In our case we can expect similar results. In this case, we
should take into account that even insigniécant but jump-
wise changes in the refractive index Dn are efécient
equivalent point reêectors. In the presence of two such
reêectors, a system of two coupled linear resonators, which
are combined into one ring resonator, is formed. Depending
on Dn and geometrical parameters of the system, the
coupling of such linear resonators can be weak (up to
complete independence) and strong (up to the formation of
a uniform ring resonator). In the érst case, the modes will be
similar to standing waves (the modulus of the distribution
coefécient is comparable to unity) and, in the second case,
the mode is similar to a travelling wave (the modulus of the
distribution coefécient is either much larger than unity or
close to zero). The degree of coupling in the system of
interacting linear resonators periodically depends on Dn
(other parameters being éxed). Indeed, the equivalent
dimensions of the resonators change with changing Dn,

which, in turn, obviously leads to a periodic reproducibility
of all the properties of the system.

As follows from (17), the coefécient of the mode
distribution in the region of the medium with n � n1 for
the reduced eigenfrequency w � w ���p can be derived from
expression

E
�ÿ�
1

E
���
1

�
�~E
�ÿ�
1

~E
���
1

� W12

1ÿW11

. (25)

The mentioned elements of the matrix Ŵ depend only on w.
By using (18), we can show that

W12 �
R1

T1T2

�

�
�
exp

�
i
ÿ
k
���
1 � k

���
2

�L
2

�
ÿ exp

�
i
ÿ
k
���
1 � k

�ÿ�
2

�L
2

��

� R1

T1T2

�
exp

�
iwL

n1 � n2
2

�
exp�ÿiwLa�

ÿ exp

�
iwL

n1 ÿ n2
2

��
,

W11 �
1

T1T2

�
�
exp

�
i
ÿ
k �ÿ�1 � k �ÿ�2

�L
2

�
ÿ R 2

1 exp

�
i
ÿ
k �ÿ�1 � k2 ���

�L
2

��

� 1

T1T2

�
exp

�
ÿ iwL

n1 � n2
2

�
exp�iwLa�

ÿR 2
1 exp

�
ÿ iwL

n1 ÿ n2
2

��
.

By omitting the terms proportional to R 2
1 and using two

last expressions, Eqn (25) can be written in the form:

E
�ÿ�
1

E
���
1

� R1
exp�iwLnav� exp�ÿiwLa� ÿ exp� iwL�n1 ÿ n2�=2�

1ÿ exp�ÿiwLnav� exp�iwLa�
. (26)

It is easy to obtain from (23) after some cumbersome
transformations that

exp�iwpLnav�

� exp

�
� i

�
�akp0L�2 � 4R 2

1 sin
2

�
R1kp0

L

2

��1=2
(27)

[one can easily see that expression (24) follows from (27)].
Expression (27) was obtained under the condition that

akp0L and 2R1 have the same order of smallness; this
condition is not fully correct in the limiting case R1 � 0
and a 6� 0, when one should take advantage of signiécantly
simpler relation, which was stated above. The use of (27) in
(26) allows one to give numerical estimates of the modulus
of distribution coefécient (26) in the speciéed approxima-
tion. Figure 2 shows the dependence of this quantity on Dn
for the same values of nav, a, L, kp0, and l as in clause 7.

1:2� 106

7.95 8.05 8.15 8.25 104Dn
0

Dop

�
rad sÿ1

6� 105

Figure 1. Dependence of the eigenfrequency difference Dop (24) on the
refractive index difference Dn for a � 3� 10ÿ11 and kp0L � 3:99� 106.
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For comparison, Fig. 2 also presents the dependence
Dop(Dn). The calculation was performed only for one
reduced eigenfrequency w ���p � o ���p =c0. A similar depend-
ence for another eigenfrequency (for the corresponding
mode) can be calculated by using expression (24).

All the above mentioned peculiarities of a nonuniform
ring resonator are seen in Fig. 2. These modes are on
average close to standing waves. However, for those Dn
when the eigenfrequency difference is determined by the
nonreciprocity only (resonator `bleaching'), the mode is
close to a travelling wave (the modulus of the distribution
coefécient achieves 10). For some values of Dn in the region
of a strong inêuence of the nonuniformity (when the
frequency difference is mainly caused by the resonator
nonuniformity), the modulus of the distribution coefécient
achieves the lower limit of 0.4, which corresponds to a slight
difference of the mode from a standing wave. It is possibly
caused by the approximations used but the physical
explanation cannot be excluded: the prevalence of the
opposite direction of wave propagation in the mode for
some Dn can be caused by a complex character of inter-
action of waves in the system of two coupled linear
resonators under the equivalence of both propagation
directions (this is obvious if the nonreciprocity is absent).

Figure 3 shows for completeness the dependence of the
modulus of the distribution coefécient on the nonreciprocity
parameter for éxed Dn providing the mode character similar
to that of a standing wave. This dependence in a wide range
of variations in the nonreciprocity parameter is weak and
monotonous. For other Dn, the regularity is the same, i.e.
the mode structure is mainly determined by the resonator
nonuniformity.
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Figure 2. Dependences of the modulus of the distribution coefécient
E �ÿ�1 =E ���1 (26) of one of the modes (solid curve) and eigenfrequency
difference Dop (24) (dashed curve) on the refractive index difference Dn.
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Figure 3. Dependences of the modulus of the distribution coefécient
E �ÿ�1 =E ���1 (26) on the nonreciprocity parameter a for Dn � 8:158� 10ÿ4

and kp0L � 3:99� 106.
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