
Abstract. The method is proposed for calculating dynamic
synchronisation regions of a ring laser with a periodic
frequency support of a special type. The proposed algorithm
in essence taking into account the special type of the support
allows the search for minimal widths of regions when the
support parameters change. The widths of the regions are
calculated as an example for the case of the harmonic carrier
modulation as a harmonic envelope (three-frequency support)
and an envelope of the `soft' meander type (multifrequency
support).

Keywords: ring laser, dynamic synchronisation regions, alternating
support.

1. Introduction

A single-mode (two-wave) ring laser can operate in the two-
frequency generation regime (each wave is generated at its
own frequency) and in the single-frequency regime (both
waves are generated at one frequency, i.e. mutually phase-
locked). Realisation of these regimes depends on the ratio
of the difference in the resonator eigenfrequencies DO
(frequency nonreciprocity) to the value Ost [static synchro-
nisation threshold (SST)]. The single-frequency regime
occurs for DO=Ost 4 1, while the two-frequency regime ë
in the opposite case. If the SST is inadmissibly large, a
periodic frequency support (frequency modulation) at the
frequency vm with the amplitude Om is introduced, which
substantially exceeds the SST. The support is the part of the
difference in frequencies generated by counterpropagating
waves, which is formed by the control signal (i.e. completely
known). As the measured (i.e. unknown in advance) part of
this frequency difference, the support is generated by the
nonreciprocity of the ring resonator. In the presence of a
periodic support, the frequency difference �O being meas-
ured is a result of some operation performed above the

value set of the phase difference in the counterpropagating
waves j(t) in certain discrete instants of time. In the
simplest case, the phase difference is quantized with the step
p, the speciéed instants of time correspond to the quantized
values of the phase and the expression

�O � j�nTm� ÿ j�0�
nTm

is used to estimate the frequency nonreciprocity, where
Tm � 2p=vm is the support period; n is an interger (in
theory, usually n � 1). It is possible to estimate rather
accurately in this way the frequency nonreciprocity, which
is smaller than the SST, but even in this case it should
exceed the value Odyn called the dynamic synchronisation
threshold (DST).

It has been also found that in the vicinity of the values
DO multiple of the support frequency, the estimate of the
nonreciprocity drastically deteriorates due to the appearance
of dynamic synchronisation regions (DSRs) of different
orders. The appearance of such regions is the result of
synchronisation of a coupled system of two generators in the
regime of beatings on the support frequency overtone. The
main peculiarities of using the periodic support show up in
the dependence �O (DO), which can be treated as an output
characteristic of the ring laser as a measuring converter.
This characteristic was studied in many papers. Early papers
[1 ë 5] mainly described the DST; however, in [6] the DSRs
of the lowest regions were studied in a numerical experi-
ment. The theory was further developed in the direction of
more exact and detailed description of the entire complex of
the DSRs and the characteristic behaviour between them.

The phase difference of counterpropagating waves in the
presence of a periodic support OmH(vmt) satisées the known
expression

dj
dt
� DO� OmH�vmt� ÿ Ost cosj. (1)

Usually, either a harmonic support or a support of the
meander type is used (this is determined by speciéc
technical decisions). In the érst case one frequency is
present in its spectrum, while in the second case, the
spectrum is a multifrequency one. For this reason, it is the
multifrequency periodic support that is studied in many
papers. In particular, the general theory of a ring laser with
a periodic support was constructed in [7, 8] but for
vm 4Ost. Not only DSRs of the integral orders (in the
linear coupling approximation) [7] but also DSRs of the
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half-integer orders (in the quadratic coupling approxima-
tion) [8] were studied.

The speciéed restriction is not always fulélled in
practice. To make up for this deéciency, the Floquet theory
was used in [9] instead of the averaging method. To apply
this theory, nonlinear equation (1) was reduced to the
second-order differential equation for some artiécial `oscil-
lation' with a periodic coefécient and phase close to j(t).
However, the authors of [9] succeeded in using the general
theory for the support of the meander type. Note that in [7]
the general theory was in fact used to calculate only the
harmonic support and the meander support, although the
possibilities of the averaging method are far from being
restricted by this. Further signiécant generalisations are
presented in papers [10, 11], where the characteristic �O(DO)
is described in detail for the case of the meander support,
based on [7], i.e. on the averaging method. In particular, not
only the DSR dimensions but also the positions of their
centres are speciéed (which reénes the scale factor of the
characteristic). Some special types of the unmodulated
support (including a harmonic and a meander support)
were studied in [11]. Other papers quoted above are the
generalisation of the obtained results for the case of the
support involving noise components. A special place is held
by paper [12], where a physically illustrative method (vector
model) convenient for applications was developed, which is
efécient, in particular, for studying a periodic support with a
noise component.

All papers known to us are devoted to a periodic support
satisfying an important condition, which was formulated in
[11]: any horizontal straight line is intersected by a curve
describing the support modulation no more than two times
at the period of this modulation. In this case, the shape of
this support at the period can be arbitrary ë from meander
to harmonic (including triangle, saw-like, exponential, etc.).
However, apart from the support of this type, a basically
different type is possible, i.e. a modulated support including
fast (carrier) and slow components so that several carrier
periods étted the period of the slow component. In this case,
it is reasonable in the construction of the theory to focus on
the high-frequency component of the support and instead of
the averaging method to use an alternative technique, which
takes into account the special character of the modulated
support. This paper is devoted to the description and
application of this method. For deéniteness, we consider
the supports of two types: with the modulation of a
harmonic signal by a harmonic signal or an exponentially
smoothed meander. Such supports, as far as we know, have
not been studied in detail so far. The method realised below
has a limited éeld of application but within this éeld it is
efécient for numerical calculations, which is important for
practical applications.

2. Basic equation and its transformation

If a modulated support is used to form the characteristic
�O(DO), phase equation (1) can be written in the form:

dj
dt
� DOÿ Om cos�vct��1� eH�vmt�� ÿ Ost cosj. (2)

In this particular case, the support represents a harmonic
carrier at the frequency vc with a periodic modulation by
the function H(vmt) (jH(vmt)j4 1) and the modulation
depth e < 1. Eqaution (2) can be reduced to the from

dj
dt
� DOÿ Om cos�vct� � Ome f �t� ÿ Ost cosj, (3)

where

f �t� � cos�vct�H�vmt�. (4)

By using the dimensionless time t � Ostt, Eqn (3) can be
written in the from

dj
dt
� gÿ s cos�at� � es �f �at� ÿ cosj�t�, (5)

where �f (at) � 2 sin (at)H(Mÿ1at) and dimensionless para-
meters

a � vc
Ost

; s � Om

Ost

4 1; g � DO
Ost

; M � vc
vm

5 2 (6)

are introduced.
It is easy to assume that the support period is

Tm � 2p=vm, although as we will see below it is not
obligatory (the support can be almost periodic). Let us
represent solution (5) in the from:

j�t� � matÿ s
a
sin�at� � e

s
a
F�at� � jm�t�, (7)

where the integer m5 0 is the DSR order;

F�at� �
�

�f �z�dz

is the periodic function; z � at. By substituting (7) into
expression (5), it is easy to derive the equation for the
additive phase jm(t):

djm�t�
dt

� gÿmaÿ cos�matÿ Z sin�at� � eZF�at� � jm�t��,

where Z � Om=vc 4 1.
If we integrate this equation in the dimensionless time at

the interval [ÿMp=a;Mp=a], which corresponds to the
modulation period, we obtain the expression for the phase
increment at the speciéed interval:

Djm � �gÿma�2M p
a

ÿ
�Mp=a

ÿMp=a
cos�matÿ Z sin�at� � eZF�at� � jm�t��dt. (8)

It is easy to énd from (7) and (8) that

�O � Dj�t�
2Mp=a

� ma� Djm�t�
2Mp=a

.

By deénition the quantity �O is taken as the estimate of the
frequency nonreciprocity. One can see that for all DO so
that Djm(t)=(2Mp=a) � 0, the mth order synchronisation
takes place: �O � ma. The synchronisation width 2Sm can be
determined from the value of the integral in expression (8).

3. Estimate of the DSR width in the general
form

Let us introduced in the study the function Rm(Z; e) of a
large parameter Z:
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Rm�Z; e� �
1

2Mp

�Mp

ÿMp
expfi�mzÿ Z sin z� eZF�z��gdz. (9)

It follows from the estimates for Z4 1 and e < 1 that the
second term in the exponent substantially exceeds two
others at points zk � (2k� 1)p=2. For ÿM4 k4Mÿ 1,
these points are stationary for integral (9). Therefore, an
asymptotic approximation [13]

Rm�Z; e� �
1

2Mp

������
2p
Z

s Xk�Mÿ1
k�ÿM

exp

�
i

�
mzk ÿ Z�ÿ1�k

� p
4
�ÿ1�k � eZF�zk�

��
(10)

can be used for it. Extreme stationary points are neglected
because terms corresponding to them in (10) are propor-
tional to 2p=Z, i.e. noticeably lower than the terms taken
into account. It follows from (8) that synchronisation
occurs under the condition

jgÿmaj4Sm�Z; e�

� 1

2Mp

�Mp

ÿMp
cos�mzÿ Z sin z� eZF�z��dz. (11)

We obtain from (11) and (10) an approximate expression
for the DSR half-width of the mth order in the general
form:

Sm�Z; e� � jReRm�Z; e�j �
1

2Mp

������
2p
Z

s

�
���� Xk�Mÿ1
k�ÿM

cos

�
mzk ÿ Z�ÿ1�k � p

4
�ÿ1�k � eZF�zk�

�����. (12)

Note that expression (11) is equivalent to the condition
jOÿmvcj4Sm(Z; e)Ost, i.e. Sm(Z; e) is the DSR half-width
normalised to the SST and characterising the support
inêuence.

In the absence of modulation (e � 0), we obtain the
expression

Sm�Z; e� � jReRm�Z; e�j

� 1

2Mp

������
2p
Z

s ���� Xk�Mÿ1
k�ÿM

cos

�
mzk ÿ Z�ÿ1�k � p

4
�ÿ1�k

�����.
It is easy to show that it does not depend on M and
therefore, we can set M � 1. As a result. We obtain

Sm�Z; 0� �
������
2

pZ

s ���� cos�m p
2
ÿ Z� p

4

�����.
This is a known asymptotic expression for the DSR half-
width of the mth order in the case of the harmonic support,
which indirectly conérms the validity of the main result
described by expression (12). The modulation effect is
reasonably described by the inêuence coefécient

Sm�Z; e� �
Sm�Z; e�
Sm�Z; 0�

. (13)

The quantity S0(Z; e) related to the region of mutual phase
matching of waves (the main DSR) is of special interest.

4. Estimate of the DSR widths for the speciéed
types of the support modulation

Let us use general expressions to calculate the coefécient
Sm(Z; e) for the speciéc cases.

4.1 A three-frequency support

Let the function H(vmt) be equal to cos (vmt) in Eqn (2).
This support contains three harmonics in its spectrum. In
this case, �f (at) � cos (at)H(Mÿ1at) and its prototype is

F�at��
�

�f �z�dz� 1

2

�
sin��1�Mÿ1�at�

1�Mÿ1 � sin��1ÿMÿ1�at�
1ÿMÿ1

�
.

By substituting this expression into (13), we will calculate
Sm(Z; e), m � 0, 1 for different values of M, Z, and e.
Typical values of these parameters are 44M4 8,
1004Z4 200, 04e4 0:1. The results of these calculations
are presented in Figs 1 ë 3.

It follows from Fig. 1 that if four periods of the carrier ét
one period of the envelope, the inêuence of the modulation
depth on the DSR width is the same in the regions of
different orders in a broad range of the excess of the
modulation frequency Om by the average frequency vm.
There exist modulation depths e and parameters Z for which
the DSR widths drastically decrease. For example, for e �
0:068, Z � 100, the inêuence coefécient is 0.01, while for e �
0:082, Z � 200 it is 0.009, i.e. the DSR widths decrease by
approximately 100 times due to the modulation.

An increase of M up to 8, as follows from Fig. 2,
conérms that the modulation depth similarly affects the
DSR widths of different orders. For e � 0:085 and Z � 100,
the DSR widths decrease by 200 times, while for 0.07 and
e � 0:07, Z � 200 ë approximately by 100 times.

Calculations show (Fig. 3) that the effect of the mod-
ulation depth on the DSR widths of different orders is
absolutely the same. As a parameter, we selected the ratio of
the envelope amplitude to the quadruple carrier frequency
eOm=(4vc) � eZ=4 (for Z � 200, M � 4), which is convenient
for comparison with the experimental results. At some

Sm

0 0.05 0.10 e

0.5

1.0

Figure 1. Dependences of the inêuence coefécient Sm�Z; e� on the
modulation depth e for lowest DSRs (m � 0, 1) at Z � 100 (solid curve)
and 200 (dashed curve), M � 4.
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modulation depths, a signiécant decrease in the DSR widths
is possible. For example, for eZ=4 � 1:69 the modulation
leads to a decrease in these widths by more than 1500 times.

The results of calculations give an idea of the inêuence of
different parameters of a harmonically modulated support
on the DSR width. One can see that the choice of the
modulation width e allows one to substantially decrease
these widths (equally for the regions of different orders). By
varying the parameters M, e, and Z we can determine the
maximum decrease in the DSR widths.

4.2 A multifrequency support

Consider the modulation of a harmonic carrier by the
function shown in Fig. 4. Analytically this function can be
written in the form:

H�t� �
�
h0 ÿ �1� h0� exp

�
ÿ b
�
t� Tm

2

���

�
�
F
�
t� Tm

2

�
ÿ F�t�

�
� �ÿh0 � �1� h0� exp�ÿbt��

�
�
F�t� ÿ F

�
tÿ Tm

2

��
, (14)

where

h0 �
�
1� exp

�
ÿ b
vc
pM
���

1ÿ exp

�
ÿ b
vc
pM
��ÿ1

;

F(t) is the Heaviside function [14]. The whole family of

curves ë from an almost exact meander to a triangle shape ë
correspond to the function H(t). The shape parameter is an
addition support parameter b � vc=Q, which is convenient
to replace by the Q factor. The spectrum of the support
modulated in this way is rather broad (it does not depend
on Q). The prototype F(at) � � �F (z)dz used in (12) can be
found from expression (14):

F�at� �
�
h0 sin�at� ÿ �1� h0� exp

�
ÿ 1

Q
pM
�

� exp�ÿat=Q��ÿQÿ1 cos�at� � sin�at��
1� �b=vc�2

�
��F�at� pM� ÿ F�at��

�
�
ÿ h0 sin�at� � �1� h0� exp

�
ÿ 1

Q
at
�

� exp�ÿat=Q��ÿQÿ1 cos�at� � sin�at��
1� �b=vc�2

�
��F�at� ÿ F�atÿ pM��.

By substituting this expression into (13), we will calculate
Sm(Q; Z; e) for m � 0, 1 at different values of M, Z,
e, andQ. Typical values of these parameters are as follows:
44M4 8, 1004Z4 200, 04e4 0:1, and 24Q4 6.
The results of calculations are presented in Figs 5 ë 7.

It follows from Fig. 5 that when the modulation depth
changes, its inêuence on the DSR width is the same for the
regions of different orders. There exist values of the
modulation depth e and parameter Z at which the DSR

Sm

0 0.05 0.10 e

0.5

1.0

Figure 2. Dependences of the inêuence coefécient Sm�Z; e� on the
modulation depth e for lowest DSRs (m � 0, 1) at Z � 100 (solid curve)
and 200 (dashed curve), M � 8.

Sm

0 1 2 3 4 eZ=4

0.5

1.0

Figure 3. Dependences of the inêuence coefécient Sm�Z; e� on eZ=4 for
m � 0 and 1, M � 4, Z � 200.

0.2± 0.4

1

ÿ0:2 0 0.4 t=Tm

H

ÿ2

ÿ1

Figure 4. Modulation by the `soft' meander H�t� for the factor Q � 5
( b � 377):

Sm

0 0.05 0.10 e

0.5

1.0

Figure 5. Dependences of the inêuence coefécient Sm�Q; Z; e� on the
modulation depth e for lowest DSRs (m � 0, 1) at Z � 100 (solid curve)
and 200 (dashed curve), M � 4, Q � 5.
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widths drastically decrease, although not so fast as in the
case of the harmonic modulation. For example, for
e � 0:026, Z � 100, the inêuence coefécient is 0.02, while
for e � 0:066, Z � 200, the inêuence coefécient is 0.011 (cf.
the commentary to Fig. 3).

For M � 8 the dependences of the inêuence coefécient
on the modulation depth presented in Fig. 6 change notice-
ably. It is important that the DSR widths decrease
signiécantly at lower Z: for e � 0:021 and Z � 100 the
inêuence coefécient is 0.0009, while for e � 0:027 and
Z � 200 it is 0.005. It follows from the comparison of
Figs 7 and 3 that the passage to the modulation by a
`soft' meander' deteriorates on the whole the possibility of
affecting the DSR: the number of possible values of the
parameter eZ=4 decreases for which the inêuence coefécient
is minimal and its values become substantially larger than in
the case of the harmonic modulation (by more than 15 times
for the best results).

Of course, the dependences presented in this paper do
not cover all possible variants but numerous experiments
performed by us indicate the preservation of qualitative
laws.

5. Conclusions

The proposed method allows one to reveal the main
properties of the output characteristic of the ring laser with
a periodic support. In particular, general expressions are
presented for the DSR widths (at frequencies multiple of
the fundamental frequency of the support) at any types of
modulation of the periodic support and within the frame-

work of accepted assumptions (the support spectrum
should be concentrated in the vicinity of the carrier
frequency). However, no signiécant limitations are imposed
on the position of this frequency with respect to Ost. The
DSR widths in the accepted approximation depend not on
the position of the érst region with respect to the SST but
on the quantity Z � Om=vc � s=a4 1, which makes the
developed theory suitable in the range of parameters where
the averaging method is not applicable. The DSR widths
are determined by the quantity M � vc=vm. In the limiting
case, when the modulation is absent (e � 0), averaging can
be formally performed over the period Tm �M2p=vc �
2p=vm (vm means some rather low frequency corresponding
to the selected period of averaging).

The general theory has been used to calculate two types
of the harmonic carrier modulation. We have studied only
those regions, which for DO are located close to frequencies
multiple of the carrier frequency vc. A more detailed analysis
allows also the estimate of those regions, which lie in the
vicinity of frequencies multiple of the modulation frequency
vm; however, their widths are incommensurably smaller than
the widths of the érst type. Therefore, we have restricted
ourselves to the study of the latter ones.

It has been found (from the ratio of the DSR widths
without and with modulation) that the modulation equally
affects the widths of all the DSRs independent of their
order. The inêuence of the support is determined by the
parameter eZ � eOm=vc, i.e. by the excess of the carrier
frequency by the envelope amplitude.

The types of the support chosen as an example dem-
onstrate the possibilities of the method and allow one to test
it in experiments. However, the method is applicable for the
study of more complex types of the modulation of the
support of the above type.
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Figure 6. Dependences of the inêuence coefécient Sm�Q; Z; e� on the
modulation depth e for lowest DSRs (m � 0, 1) at Z � 100 (solid curve)
and 200 (dashed curve), M � 8, Q � 5.
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Figure 7. Dependences of the inêuence coefécient Sm�Q; Z; e� on eZ=4 for
M � 4, Z � 200, m � 0 and 1.
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