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Interaction of a probe pulse with a ‘dressed’ Bose — Einstein
condensate of rarefied atomic gases

N.I. Shamrov

Abstract. Semiclassical equations describing the interaction
of a probe pulse with a ‘dressed’ Bose — Einstein condensate of
a rarefied atomic gas are proposed. The analytic solution of
these equations is obtained for low-intensity pulses. The
conditions of the appearance of a diffraction grating from
recoil atoms are found. The existence of induced super-
radiance at the probe-beam frequency is predicted. The pulse
propagation velocity in the condensate is determined as a
function of its energy. The limits of the applicability of the
two-level model of a ‘dressed’ atom are estimated.
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1. Introduction

Optical phenomena observed upon interaction of laser
radiation with the Bose—Einstein condensate (BEC) of
various substances attract recent attention of many
researchers [1—20]. This interest is caused by the fact
that a BEC has two very important properties: a long
(hundreds of microseconds) transverse relaxation time of
the induced dipole moment in atoms and extremely small (a
few cm s™!) thermal velocities of atoms. These properties
are manifested differently depending on the medium
geometry, radiation intensity, etc. [3—6].

In this paper, the experiment on the interaction of the
‘dressing” and probe laser beams with the condensate of
sodium vapour confined in a magnetic trap of diameter
20 pm and length 200 um and containing a few millions of
atoms is considered [5]. The dressing beam frequency is
shifted to the red with respect to the resonance frequency of
the 38,5, F =1 — 3P;,, F =0, 1, 2 transition by 1.7 GHz,
while the probe beam frequency is in turn is lower by
91 kHz than the dressing beam frequency. Both beams lie in
the plane perpendicular to the elongation axis of the
condensate and intersect at the angle 135°. The main result
of the experiment was the observation of the probe beam
amplification when the dressing beam was switched on. The
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amplification was most noticeable for the relatively weak
probe beam. As the probe beam power was increased, the
amplification decreased, and when the intensities of the
beams became comparable, the amplification changed to
decaying oscillations. For a comparatively high dressing
beam intensity, the residual radiation at the probe beam
frequency was detected after the irradiation of the con-
densate. In addition, the delay of the probe pulse at the
output was observed, which was interpreted as a decrease in
the group velocity of light.

The interaction of two laser beams with a condensate is
described, as a rule, semiclassically [5, 19, 20]. At present
the basic properties of the probe beam amplification are
determined [5, 19, 20]. In addition, the delay mechanism of
probe pulses was qualitatively explained [5, 19] and the
existence of the residual radiation was interpreted [5].

The aim of this paper is to analyse quantitatively the two
latter effects and estimate the limits of applicability of the
two-level model of a ‘dressed’” atom used for their descrip-
tion. In addition, the conditions of multiple excitation of
atoms and, first of all, the conditions of population of states
providing the reemission of photons from the probe wave to
the dressing wave are studied

2. Equations of the model

Because the interaction of two laser beams with an atom is
quasi-resonant, we consider the atom as a system with two
electronic states with the wave functions ¢, (ground state)
and ¢, (excited state). During reemission, a recoil
momentum is imparted to the atom. By neglecting the
finite size of a trap, we describe the translational motion of
the atom with the momentum 7%k by the de Broglic wave.
The corresponding wave function of the atom can be
written in the form

5K) = 3 explikr)o, (5 = a.b), (n

where V' is the condensate volume.
The wave function ¥ of the atom in an arbitrary state
can be defined by the expansion

W= culs;k), )

s=a,b;k

where ¢, are time-dependent expansion coefficients. Note
that in basis (1) chosen above, the electronic wave functions
¢, also depend on time [through the time phase factor
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exp ( — iw,t), where hwy is the electronic energy of the atom
in the state s].

The total laser field can be written as the superposition
of the fields of the dressing (£4) and probe (£;) waves
propagating perpendicular to the elongation direction of the
condensate (the z axis) and intersecting at the angle 135° in
the xy plane:

E=i Z Eexp(—iwst + ikr) 4 c.c. 3)
J=dp

Here, kg = kq(i — j)/v/2; kq and k, are the wave numbers; i
and j are the unit vectors along the x and y axes,
respectively. The polarisation of all waves is assumed to
be directed along the z axis.

By using the rotating wave method, we can obtain in the
dipole approximation the following equations for the
coefficients ¢;; and amplitudes Ey of the average fields in
the condensate [20]:

. d: - _ .
Cak =7 [EqCp sk, + Ep CXP(—ISCUZ)Cb,Hk,,]

x exp(—iAwt) — iwgc, k.

4
. d .
ok =—3% [EqCak—i, + Ep eXP(ﬂSw’)Ca,kka
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x exp(iAwt) — i(TR + wk> Choke>

D
—E =E; -

h . _
5 E, + dx exp[—i(dw + Awt)] Z CakChi's

k'—k=k
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Z Ed = Eg — Ed + E eXp(-lA(Dl‘) Z Ca,kch,k/’ (6)

where Ej and Ej are the field amplitudes of the dressing
and probe beams at the input to the condensate; Aw =
wp, — g 1S the electronic resonance mismatch; dw =
wg — w,, is the frequency difference of the dressing and
probe waves; I'g is the spontaneous decay probability of
the excited atomic state; Awy is the kinetic recoil energy of
an atom with the momentum /k; d is the matrix element of
the dipole transition moment; 1 = ch/(rta)ddzNOD) is the
superradiance lifetime; N, is the concentration of atoms; D
is the transverse size of the condensate; w,, = @, — w,; and
the horizontal bar denotes complex conjugation.

Note that the field amplitudes E4 and E, change in the
condensate linearly and, therefore, their difference at the
output and input is twice as large as their average values.

The Rabi frequency in experiments on the interaction of
laser radiation with the BEC of alkali atoms [3—6] is much
smaller than the resonance mismatch. Therefore, the ampli-
tude of the excited electronic state can be written in the form
cpk = Cppexp (Awt), where C, ; is a slowly varying func-
tion of time [14]. In this case, its time derivative can be
neglected, the amplitude can be expressed from the second
equation in (4) and substituted to the remaining equations.
As a result, we obtain for C,x=c,; and the field
amplitudes E4 and E, the equations

_7)[(‘5 |+ |Eq]*) Co + E4E, exp(—idort)

X Cotesky—ky T EpEa eXp(i6W)Ca«,k+krkp] —iwiCop» (7)

%E'p ES— Ey+—— y zk:[\c,,” E,
+ exp(—i8w ) Cok Co sk —ky Eal ®)
ZBEd = Eg — Eq +TZ Ucak| Ey
%
+exp(i81) C x Co esks— vy o) ()]

where 4 = Awtg and v = I'y /2Aw.

Let us introduce the field transformation £y —> E,x
exp (2ict/DA) (f=d, p). Then, Eqn (7) remains invariable,
and (8) and (9) take the form

2 B =B = B (1= YICul)E,

i—v . -
+ TGXP(—ISW) Zk: CoukCotrh,—teysEds (10)
D
Z*Ed—Ed*Ed**< Zlcak|>
i—v . -
+ —exp(ider) Xk: CokCokrgiy Ep- (11)

Here, we take into account that v)_, \Cl,,k|2<A under the
experimental conditions.

By using a phenomenological relaxation model, we can
write the system of equations for elements of the density
matrix R,pax = CoxCox’ = Ry and the amplitudes Ey
and E, of the average fields:

: d*G—v) . - . -
Rk,k/ = m [EdEp exp(—lﬁwt)Rk_kﬁkmk/ + EpEd
SR d*(i+v)
x exp(idwi) k+kd7kpﬁk’] T ThAm

X [EdEp CXp(—iS(D[)Rkurkd,kp’k +EpEd exp(iBwI)Rk’—deka?k]

dz
—|iwr + Tppr + 55— PEYW (IE)* + | Eql ):|Rk4k’a (12)
D .
b =FE-E 77< ZRM)
i—v .
+ —exp(—ider) Zk:RH,{p,kd,,{Ed, (13)

D
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50 Fa = Ed — £a Zkk at
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i—v .
+ Texp(léwt) Ek: Ricitey—ty ks (14)

where I'y: are the transverse relaxation rates and wy ;=
wy, — wy are the multiphoton transition frequencies.

By neglecting spontaneous scattering (v = 0), one can
easily see that the Z,(|C,l_k|2 =1 and the third term in
Eqns (10), (11), (13), and (14) vanishes.

Because the law of conservation of momentum takes
place during the interaction of an atom with an electro-
magnetic wave, the momentum of the atom in the state |a, k)
can be written in the form

p=hk="hnlkg —ky), n=0=£1,£2,...,.

Upon absorption of a photon with the wave vector k4 and
emission of a photon with the wave vector k,,, the number n
increases, while in the case of the inverse process, this
number decreases by unity.

Let us make the substitution |a,k) — ¥,, Ry — Ry
Wy k' = Wyps Tgpr — Iy and introduce the transforma-
tion of elements of the density matrix R,,, — R, ,X
expli(n — m)dwi]. Then, the factors containing exp (idw?)
in (12)—(14) will disappear. Let us also introduce the
dimensionless time and field amplitudes [20]: T = #/T,py,
and & = Ef/Emax (f=d, p), where Tamp = Awhz/(dzEr%lax)
is the characteristic time scale and E,,, is a maximum
amplitude of laser fields used in the experiment. In this case,
Eqns (12)—(14) can be written explicitly in the fiorm

Rm,n = (1 - V) (SdEpRmfl,n + 8pEdRm+l,n)
7(1 + V) (Sdngm,n+1 + SpédRm,n—l)

- [iﬁmm + Vmn + V<|8p|2 + |Fd|2)} Rm,n’ (15)

. i i—v
K, = &5 — &, — v (1 - Z:Rnﬁ)sp +TZ;R"71‘"8‘1’ (16)

) i i—v
Kéq = 8((1: — & — Z (1 - ZRH,n)Sd +TZRH+1J18d~ (17)
n n

Here, B, = finn — (m — n)d is the multiphoton mismatch of
the resonance; f;n,n = wm,n/‘t';rip; 0= Bw/‘cz;rlp; Ymn = F@nx
Tamps K:D/(ZCTamp); W = pz/(th) =1+ \/E)hkgx
(m* —n?)(2M)~"; and M is the atom mass.

We assume that first

Rop(0) =1, Ry, (0) =0 (18)

(mn=0,£1,22,.... £m=n#0),

where / is the maximum excitation multiplicity of con-
densate atoms. One can easily see that the number of
equations in system (15)—(17) is [+ )(I+ 1) + 2.

Let us estimate the values of parameters entering
Eqns (15)—(17), for example, for experimental conditions
in [5]. Let E,, = 1.45 x 107> CGS units (the field ampli-
tude for the laser radiation intensity equal to
100 mW cm2). Because d = 0.52 x 1077 CGS units (effec-
tive dipole moment) and Aw=1.07x 105!, the
characteristic time is Ty, = 2.10 X 107® s and the energy
unit is hra}}p =0.50 x 10 2! erg. Let the total number of

atoms in the condensate be N =4 x 10°. Then, for
L =200 um and D =20 pm, the concentration of atoms
in the condensate is N, = 1.60 x 10'* cm™. Because
wg=320x 10”°s7!, we have tp =037x10%s and
I'g =0.63x 10% s7'. Due to absorption of a photon at a
wavelength of 589 nm, the kinetic energy of the atom is
W, = 1.60 x 10722 erg. Thus, the typical width of the laser
pulse (100 ps) and the peak field intensity in it (the power
density 5 mW cm™?) under these experimental conditions
are approximately 47.67,y,, and 0.22F,,,,, constants are v =
029 x 1072, 4 = 9.95, 0 = 1.20, and the energy is W, =
0.32/T -

3. Extended pulses in a ‘dressed’ condensate

Consider a BEC irradiated by pulses of duration

do’

tr> (f=p,dim#n=0,%£1,£2,...,+/). (19)

mpn

Then, the probability of the 0 — —1 transition is extremely
small and can be neglected. In addition, if the dressing wave
is not very intense [20], the repeated excitation of atoms by
this wave can be also neglected. In this situation only the
two states, 0 and 1, will be actual. It is these conditions that
are realised in experiments [5]. Therefore, we consider here
Eqns (15)—(18) only for m, n=0, 1. In this case, by
neglecting the influence of spontaneous Rayleigh scattering
(assuming that v = 0) on the condensate dynamics and the
delay of radiation in the condensate (xé; < ¢;), we obtain

Ry = igpeq Ry g — i&peaR) o, (20)
Ry | =1ig,64R o — ig,84 R o, (#2))]
Ry = igpeq Ry — i&peaRy 1 — (if +7)Ry . (22)
£y = &p —l—Ai Ry eq, (23)
ta = 65+ Rigty (24)
where =, and y =7, The field amplitudes ¢, and

ed™ at the output can be obtained from the corresponding

expressions (23) and (24) by doubling the second term in
each of them.

In the second part of the experiment in paper [5], the
condensate was irradiated by a continuous wave at fre-
quency oy, so that ES(f) = ES = const during the entire
irradiation time. We will call the condensate under these
conditions a ‘dressed’ condensate.

Consider first the interaction of the ‘dressed’ condensate
with a probe rectangular pulse:

0
ES(1) = {E*” Osrsh (25)
0, 1<0,1>1,

where Eg and t#, are the amplitude and duration of the
probe pulse.

Let the fraction of atoms acquiring the recoil momentum
be small. Then, Ry, ~ 1, and the second term in (22) can be
neglected:

Ry =igyeq — (if+7)Ri. (26)
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In addition, we assume that the depletion of the dressing
beam is insignificant, i.e. Ey ~ EJ. In this case, the system
of equations (23) and (26) has the analytic solution

. 020
Rigl) =%
fexp(u— i) — 1], <e
X{ fexple— if)t, — expl— Bt —,))s t>1,
ep(T) = 88
. 1 +‘g;(?o‘4_—llf2)[exp(a—iﬁ)r— 1], <1,
goc(;“T_;f? lexp(a +if)t, — exp[(x +if)(r — 7)l, T>1p.
(28)

By substituting now expressions (27) and (28) into Eqn
(21) and integrating it, we find the approximate solution for
the diagonal element of the density matrix:

2\83|2|8§)\2 exp ot
RI,I(T) = 062+ﬁ2 062+ﬁ2

[29Bsin pr — (o + 2y + B?)

g . 2
z‘*fﬁz} TS

(29)

x cos f1] + £ exp2ut +yt+1—
20

2Re (&) [ed g
Ry (t) = Ry(7p) +(2p7)dz
a(e” + B%)

x (exp 20t — 2expatcos fr + 1){exp[2a(t — 7,)] -1}, T > 7,

Similarly, we can obtain the expression
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Figure 1. Interference of light from a recoil atom grating induced upon
irradiation of a condensate by a 100-us rectangular Bragg pulse of
intensity Ir? =0.002 (1), 0.005 (2), 0.01 (3), 0.015 (4), and
0.04 mW cm > (6); (a) the intensity of diffracted radiation normalised
to its value for ¢ = t,, (b) the excited-level population. The transverse
relaxation rate is 0.5 x 107*s7! the dressing beam intensity is
20 mW em ™2,

dressing beam, the dynamic grating decays with time.
The situation becomes critical from this point of view
when G =T.

L0012 i ipye— {1 8e=1h) if)r — 1} <
() = (o) —of = ot oo {1+ SR -1 e<sy (30)
* g(exp 2at, — 2exp oty cos fr, + 1) exp[2a(t — 1)), 7> T,

for the field amplitude of the scattered dressing radiation.
Here, t, = t,/Tamp: 8J9 = Efo /Enax are the dimensionless
peak values of the field amplitudes of the double beam (f' =
d, p) at the condensate input; a=g—7; g= |sg\2/A;
pr=w—-0dw); (g—y)t= (G—DI)t; w=w;, is the 1-0
transition frequency; I' = I'|; is the transverse relaxation
rate of the matrix element R, o; G =g/Tymp = 3INRy/ Skj is
the probe radiation gain per unit time; Ry is the Rayleigh
scattering rate of the dressing beam; S is the condensate
cross section perpendicular to the dressing beam propaga-
tion direction.

It follows from solutions of (27) and (29) that in the case
of the exact two-phonon resonance, a dynamic grating of
atoms moving in the same direction with the same velocity is
formed by the instant of the probe beam switching off.
Because the dressing radiation is continuous, it will diffract
from this grating at times ¢ > ¢,. For G < I', as follows from
(30), the diffracted light intensity I, (I, ~ |5S|2) will decrease,
the decrease being faster with increasing the difference
I' — G. This means that in the case of a low-intensity

In the case of the high-power dressing radiation (G > I'),
the radiation scattering probability increases with time.
However, this is not always the case. The numerical
solutions of the total system of equations (20)—(24)
(Fig. 1) show that, as the ratio 1;?/1(10 increases, which is
accompanied by the increase in the number of recoil atoms,
the increase in the scattering probability slows down and
ceases at all after the transition of approximately 10 % of
atoms to level 1. For even larger values of I[? /I3, the value
of I, decreases with time. Thus, the additional factor
affecting the possibility of the existence of a dynamic grating
of recoil atoms is the degree of nonlinearity of the
interaction of the probe pulse with a ‘dressed” BEC, specified
by the ratio 112/15’.

For G > I', the intensity of scattered dressing radiation
increases with decreasing the parameter I, (Fig. 1). Because
hiw, < hwy, the scattered energy is mainly concentrated in
the p mode. The probe-wave intensity can be made due to
grating generation many times higher than the input
intensity. Switching off the laser at frequency w, under
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such conditions will not affect in fact the probe-pulse
dynamics, resulting in the appearance of superradiance at
this frequency. The role of the pulse E; (25) will be reduced
only to the induction of weak polarisation in the BEC whose
value follows from expression (27):

0 0

a7 1 lexp(— i)z, — 1]

Rio(tp) = (31

Let the dressing field be very strong, so that G > T.
Then, by omitting the first term in the right-hand side of (24)
for times 7 > ¢, and substituting this expression into (20)—
(22), we obtain the equations

R=—2gZR —ifiR, (32)

Z = 2R/, (33)

where Z = Rl 1 — RO 0> - 2R1 0-
Equations (32) and (33) have the integral of motion
2 2 2 2
|R(D)|” + Z(x)” = [R(zp)|” + Z(zp)" = L. (34)
By using it, we can readily obtain the solution of these
equations:

Z(7) = tanh =20
‘CS

R(t) = sechyexp[ iB(r—1,)l,

where
Ts 1+Z(Tp) .

7 =—2In {—12(%) : (35)
Ty = lg

it IR@,)| < 1. then Z(z) = —[1 ~ [R(z,)] N 14

0. S\R(rp)\ and 1y = —1,1n | R o(7p)].
Thus, when G > I and the phase relaxation can be
neglected, Eqns (20)—(24) have the solution

- 0-0
18d8p
Rio(t) = -
e =
lexp(g —if)r — 1], TS T,
X 1 _ — (36)
Esech%exp[ B(r—1,)l, > 1,
Z(r) =
(37
A led ( 2¢1 — 2exp2greosfr+ 1) — 1, 1<
———(exp 2gt — 2exp 2gtcos fit -1, <1,
g+ p ’
tanhm, T > T,
‘C,Y
—1i .
83{1+M[exp(g+lﬁ)r—u}, T <15,
— g +p
(t) = ied T—T,—7T
ﬁsech%oexp[iﬁ(f -1,), >,

(38)

One can see from these expressions that the nondiagonal
element R, ((r) of the density matrix and the population
difference Z(r) at the instant t = t,, are continuous, but the
field sp(r) experiences a break As pointed out above, the
smaller Ip and the larger 1, the smaller is the field jump.

Thus, for I, 9 < 1Y and weak phase relaxation, radiation
in the p mode appears in the form of a bell-shaped pulse of
width t, delayed by the time 7, with respect to the instant zy,.

If the gain G is moderate, exceeding I' only by several
times, the main properties of the probe radiation remain the
same, as follows from the numerical solution of the total
system of equations (20)—(24) (Fig. 2). In particular, probe-
pulse width and peak intensity are independent of its input
energy, while the delay time decreases with increasing input
energy. The pulse delay time and duration are inversely
proportional to the dressing radiation power, while its
maximum intensity is proportional to this power.

o 432 1
e 03 F
§
%5 02|
> a
Z 01 f
2
=
0
1 1 1 1
0 100 200 300 400
Time /pus
432 1 /u
T 03
£
Q
Z o2tk
E 7 b
2
g 0.1
E
0
1 1 1 1
0 100 200 300 400
Time /ps
Tz
£
Q
5
=)
= c
E

400
Time/ps

0 100 200 300

Figure 2. Shape of an induced superradiance pulse for probe pulse
durations #, = 10 (1), 25 (2), 50 (3), and 100 ps (4) (a), its intensities
I0 =0. 00005 (1), 0.0002 (2), 0.0004 (3), and 0.001 mW cm 2 (4) (b),
dnd the dressing laser radiation intensities Id =40 (1) 55(2), 70 (3)
and 90 mW cm ™2 (4) (c). The beam intensities are I§ = 50 mW cm™> (a,
b), IS =0.0001 mW cm 2 (a), pulse durations are t, = 50 (b) and 25 pus

(©.

The following analysis depends on the probe radiation
spectrum. We will assume here that the probe pulse has a
Gaussian shape

2
ES=E’exp |—2In2 i ,
p p A

(39)
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where the time 7, corresponds to the pulse maximum Ig and
is the pulse FWHM.

In a linear case, when the fraction of atoms receiving the
recoil pulse is small and the depletion of the dressing wave is
insignificant, Eqns (20)—(24) for the probe pulse of type
(39), as for pulse (25), admit the analytic solution.

In the case of the exact resonance, we have the non-
diagonal element of the density matrix in the form

iy/mel EI())
2

Ip

Rip(r) =

bz
exp {a(r —179) — w}

a a
x{d{z—b—i—b(r—‘co)} —<1'><2—b—b‘c0>}, (40)
and the average field amplitude for the p mode is
0
ep(t) = ef exp [~ b (1 —19)° + \/?;gsp
b2
X exp {a(r — 1) — W}
a a
x{dj{z—ber(ffro)} —QD(%fbrO)}, 41

where a =o; b= (21n2)1/2/rp; Tp = ty/Tamps To = Lo/ Tamp’
and @(7) in the integral Poisson function.

The output probe field amplitude ¢5"" is obtained from
expression (41) by doubling the second term, which is
always positive. That is why the intensity maximum
I, ~ |8]§’“t\2 coincides with the amplitude maximum ¢
and is achieved at #" > #,. This means that the probe
pulse propagates through the BEC for a finite time 75"
In addition, I,(t5™) > I,(%), i.e. the pulse is amplified. The
propagation velocity, width, and amplification of the probe
pulse in the condensate depend on its energy and the
dressing wave intensity.

Let us assume that the probe pulse duration #, and the
inverse linear amplification time 1/G are smaller than or
comparable to the transverse relaxation time 7T, = 1/I for
the 0—1 transition. If the intensity 11? is smaller than I by
one—two orders of magnitude, the propagation of the probe
pulse through the BEC is accompanied by its weak
amplification (by several times), the amplification increasing
with increasing the dressing beam intensity (Fig. 3a). In this
case, the pulse almost does not broaden. The pulse
propagation velocity first decreases with increasing the
dressing wave power [curves (/) and (2)] and then increases
[curves (4) and (5)]. The minimal propagation velocity
[curve (3)] is achieved for values of Ij at which approx-
imately half the atoms undergo transitions from the state 0
to the state 1 (Fig. 3b). For parameters of the problem used,
this velocity was ~ 1.4 m s L

If the probe pulse energy is reduced so that the ratio
11;) /1) becomes ~ 10~ and smaller, the main factor affecting
the pulse shape will be grating generation. This leads to a
considerable broadening of the pulse and significantly
increases its propagation time in the BEC. The smaller is
probe pulse energy, the more distinct are these effects.
Under these conditions, an extremely large time delay of
the probe pulse in the ‘dressed’ condensate can be observed.
For example, for [do =50 mW cmfz, Ip0 =0.001 mW cm™>

— 1.

Intensity (rel. units)

0 50 100 150 200 250 300
Time /ps

Population

0 50 100 150 200 250 300
Time /ps

Figure 3. Evolution of a 100-ps Gaussian pulse with a peak intensity of
0.1 mW cm™2 (dashed curve) (a) and excitation dynamics of atoms in a
condensate for IS =1 (1), 5(2), 10 (3), 15 (4), and 20 mW cm™2 (5)
(b). The pulse intensities are normalised to the input peak value.

and £, =50 ps, the time delay is ~ 113 ps (the pulse
propagation velocity is ~ 0.17 m s™').

4. Short pulses in a ‘dressed’ condensate

So far we described the interaction of a double laser beam
with a BEC by using the model of an atom with two states
0 and 1. To excite the states with n > 2, the dressing
radiation should have a high power. The corresponding
threshold [20]

1/ ch\* Awdw
Iy~ 3

nd I,

(42)

is independent of the probe pulse duration and decreases
with increasing the pulse intensity.

Transitions from the state 0 to the state —1, from the
state —1 to the state —2, etc. occur due to absorption of a
photon from the p mode and its emission to the d mode.
Because for central frequencies /iw, < ficg, not only the
power of the probe pulse but also its spectral width is
important for excitation of the states ¥, with n <0.
Therefore, we will assume that the probe pulse duration
satisfies the condition

1 1

~S
6w w”’lJ’l

(f=p.d; m#£n=0,£1, £2, ..., £1),
(43)

Iy

and the pulse itself has Gaussian shape (39).

The numerical solution of the system of equations (15)—
(17) admitting the possibility of multiple excitation of atoms
shows that, indeed, beginning from some values of t,, the
probe pulse in the presence of the dressing pulse can induce
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transitions from the state 0 to the state —1. Because a
decrease in the probe pulse duration is accompanied by a
decrease in its energy, the pulse power should be increased
to preserve its energy. However, even for #, ~ 1 ps and
intensities Ido, Ir? =50 — 100 mW cm 2, only a few percent
of atoms undergo transitions to the state —1. Therefore, the
use of too short pulses to increase the excitation efficiency of
the states —1, —2, etc. is not quite justified. We can assume
that this can be achieved, as upon excitation of the states 2,
3, etc., by decreasing the one-photon detuning Aw of the
electronic resonance. Indeed, calculations confirmed this
(Fig. 4). It was found that the smaller Aw and larger the
ratio 1[? / Ido, the larger fraction of atoms passes through the
cascade of states with negative n.

Note that the states with negative n can be also excited
by reducing the two-photon atomic resonance detuning dw
achieved, for example, by decreasing the angle between
beams in a double beam or by using a BEC of heavier
atoms.

5. Conclusions

Semiclassical equations have been used to analyse the
interaction of a probe pulse with a ‘dressed’ BEC of sodium
vapour. In the case of the low-intense and broad probe
pulse, only state 1, corresponding to absorption of a photon
from the dressing mode and emission of this photon to the
probe mode, is populated. Under these conditions, the
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Figure 4. Excitation of atomic states with high numbers n by a 50-mW em™? dressing beam and a 1-ps probe beam of intensities II? =50 (a, b) and
100 mW cm ™2 (c) for one-photon resonance detunings Aw = 0.5 x 10" (a) and 0.25 x 10" 57! (b, ¢).
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recoil atoms form a diffraction grating when the gain
exceeds the transverse relaxation rate and populations
slightly deviate from equilibrium values. A pulse propagat-
ing in such a medium slows down and broadens, this effect
increasing with decreasing the pulse energy. When the input
pulse energy is very low and the pulse can be treated as a
seed pulse, the grating generation becomes dominant and
induced superradiance appears at the probe beam fre-
quency.

Transitions from the ground state 0 to states with n # 1
are strongly nonresonant. These states can be populated
only if the irradiation intensity is very high. The probe pulse
width is not important for obtaining states with n > 0. At
the same time, states with n < 0 are excited by short probe
pulses of duration comparable with or smaller than the
inverse recoil frequency of atoms. The power threshold of a
cascade process in both channels can be reduced, in
particular, by decreasing the one-photon electronic reso-
nance detuning.
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