
Abstract. Semiclassical equations describing the interaction
of a probe pulse with a `dressed' Bose ëEinstein condensate of
a rareéed atomic gas are proposed. The analytic solution of
these equations is obtained for low-intensity pulses. The
conditions of the appearance of a diffraction grating from
recoil atoms are found. The existence of induced super-
radiance at the probe-beam frequency is predicted. The pulse
propagation velocity in the condensate is determined as a
function of its energy. The limits of the applicability of the
two-level model of a `dressed' atom are estimated.

Keywords: `dressed' Bose ëEinstein condensate, diffraction grating
of recoil atoms, probe pulse delay, induced superradiance, multiple
excitation of atoms.

1. Introduction

Optical phenomena observed upon interaction of laser
radiation with the Bose ëEinstein condensate (BEC) of
various substances attract recent attention of many
researchers [1 ë 20]. This interest is caused by the fact
that a BEC has two very important properties: a long
(hundreds of microseconds) transverse relaxation time of
the induced dipole moment in atoms and extremely small (a
few cm sÿ1) thermal velocities of atoms. These properties
are manifested differently depending on the medium
geometry, radiation intensity, etc. [3 ë 6].

In this paper, the experiment on the interaction of the
`dressing' and probe laser beams with the condensate of
sodium vapour conéned in a magnetic trap of diameter
20 mm and length 200 mm and containing a few millions of
atoms is considered [5]. The dressing beam frequency is
shifted to the red with respect to the resonance frequency of
the 3S1=2, F � 1! 3P3=2, F � 0, 1, 2 transition by 1.7 GHz,
while the probe beam frequency is in turn is lower by
91 kHz than the dressing beam frequency. Both beams lie in
the plane perpendicular to the elongation axis of the
condensate and intersect at the angle 1358. The main result
of the experiment was the observation of the probe beam
ampliécation when the dressing beam was switched on. The

ampliécation was most noticeable for the relatively weak
probe beam. As the probe beam power was increased, the
ampliécation decreased, and when the intensities of the
beams became comparable, the ampliécation changed to
decaying oscillations. For a comparatively high dressing
beam intensity, the residual radiation at the probe beam
frequency was detected after the irradiation of the con-
densate. In addition, the delay of the probe pulse at the
output was observed, which was interpreted as a decrease in
the group velocity of light.

The interaction of two laser beams with a condensate is
described, as a rule, semiclassically [5, 19, 20]. At present
the basic properties of the probe beam ampliécation are
determined [5, 19, 20]. In addition, the delay mechanism of
probe pulses was qualitatively explained [5, 19] and the
existence of the residual radiation was interpreted [5].

The aim of this paper is to analyse quantitatively the two
latter effects and estimate the limits of applicability of the
two-level model of a `dressed' atom used for their descrip-
tion. In addition, the conditions of multiple excitation of
atoms and, érst of all, the conditions of population of states
providing the reemission of photons from the probe wave to
the dressing wave are studied

2. Equations of the model

Because the interaction of two laser beams with an atom is
quasi-resonant, we consider the atom as a system with two
electronic states with the wave functions fa (ground state)
and fb (excited state). During reemission, a recoil
momentum is imparted to the atom. By neglecting the
énite size of a trap, we describe the translational motion of
the atom with the momentum �hk by the de Broglie wave.
The corresponding wave function of the atom can be
written in the form

js; ki � 1

V 1=2
exp�ikr�fs �s � a; b�, (1)

where V is the condensate volume.
The wave function C of the atom in an arbitrary state

can be deéned by the expansion

C �
X

s�a;b;k

cs;kjs; ki, (2)

where cs;k are time-dependent expansion coefécients. Note
that in basis (1) chosen above, the electronic wave functions
fs also depend on time [through the time phase factor
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exp (ÿ iost), where �hos is the electronic energy of the atom
in the state s].

The total laser éeld can be written as the superposition
of the éelds of the dressing (Ed) and probe (Ep) waves
propagating perpendicular to the elongation direction of the
condensate (the z axis) and intersecting at the angle 1358 in
the xy plane:

E � i
X
f�d;p

Ef exp�ÿioft� ikfr� � c:c: (3)

Here, kd � kd(iÿ j)=
���
2
p

; kd and kp are the wave numbers; i
and j are the unit vectors along the x and y axes,
respectively. The polarisation of all waves is assumed to
be directed along the z axis.

By using the rotating wave method, we can obtain in the
dipole approximation the following equations for the
coefécients cs;k and amplitudes Ef of the average éelds in
the condensate [20]:

_ca;k �
d

�h

�
�Edcb;k�kd � �Ep exp�ÿidot�cb;k�kp

�
� exp�ÿiDot� ÿ iwkca;k,

(4)

_cb;k � ÿ
d

�h

�
Edca;kÿkd � Ep exp�ÿidot�ca;kÿkp

�

� exp�iDot� ÿ i

�
GR

2
� wk

�
cb;k,

D

2c
_Ep � E e

p ÿ Ep �
�h

dtR
exp�ÿi�do� Dot��

X
k 0ÿk�kp

�ca;kcb;k 0 ,

(5)

D

2c
_Ed � E e

d ÿ Ed �
�h

dtR
exp�ÿiDot�

X
k 0ÿk�kp

�ca;kcb;k 0 , (6)

where E e
d and E e

p are the éeld amplitudes of the dressing
and probe beams at the input to the condensate; Do �
oba ÿ od is the electronic resonance mismatch; do �
od ÿ op is the frequency difference of the dressing and
probe waves; GR is the spontaneous decay probability of
the excited atomic state; �hwk is the kinetic recoil energy of
an atom with the momentum �hk; d is the matrix element of
the dipole transition moment; tR � c�h=(podd

2N0D) is the
superradiance lifetime; N0 is the concentration of atoms; D
is the transverse size of the condensate; oba � ob ÿ oa; and
the horizontal bar denotes complex conjugation.

Note that the éeld amplitudes Ed and Ep change in the
condensate linearly and, therefore, their difference at the
output and input is twice as large as their average values.

The Rabi frequency in experiments on the interaction of
laser radiation with the BEC of alkali atoms [3 ë 6] is much
smaller than the resonance mismatch. Therefore, the ampli-
tude of the excited electronic state can be written in the form
cb;k � Cb;k exp (iDot), where Cb;k is a slowly varying func-
tion of time [14]. In this case, its time derivative can be
neglected, the amplitude can be expressed from the second
equation in (4) and substituted to the remaining equations.
As a result, we obtain for Ca;k � ca;k and the éeld
amplitudes Ed and Ep the equations

_Ca;k �
d 2�iÿ v�

�h 2Do

�ÿ
Epj2 � jEdj2

�
Ca;k � Ed

�Ep exp�ÿidot�

�Ca;k�kpÿkd � Ep
�Ed exp�idot�Ca;k�kdÿkp

�ÿ iwkCa;k, (7)

D

2c
_Ep � E e

p ÿ Ep �
iÿ v

D

X
k

�jCa;kj2Ep

� exp�ÿidot� �Ca;kCa;k�kpÿkdEd

�
, (8)

D

2c
_Ed � E e

d ÿ Ed �
iÿ v

D

X
k

�jCa;kj2Ed

� exp�idot� �Ca;kCa;k�kdÿkpEp

�
, (9)

where D � DotR and v � GR=2Do.
Let us introduce the éeld transformation Ef !> Ef�

exp (2ict=DD) ( f � d, p). Then, Eqn (7) remains invariable,
and (8) and (9) take the form

D

2c
_Ep � E e

p ÿ Ep ÿ
i

D

�
1ÿ

X
k

jCa;kj2
�
Ep

� iÿ v

D
exp�ÿidot�

X
k

�Ca;kCa;k�kpÿkdEd, (10)

D

2c
_Ed � E e

d ÿ Ed ÿ
i

D

�
1ÿ

X
k

jCa;kj2
�
Ed

� iÿ v

D
exp�idot�

X
k

�Ca;kCa;k�kdÿkpEp. (11)

Here, we take into account that v
P

k jCa;kj25D under the
experimental conditions.

By using a phenomenological relaxation model, we can
write the system of equations for elements of the density
matrix Ra;k;a;k 0 � Ca;k

�Ca;k 0 � Rk;k 0 and the amplitudes Ed

and Ep of the average éelds:

_Rk;k 0 �
d 2�iÿ v�

�h 2Do

�
Ed

�Ep exp�ÿidot�Rkÿkd�kp ;k 0 � Ep
�Ed

� exp�idot�Rk�kdÿkp;k 0
�ÿ d 2�i� v�

�h 2Do

��Ed
�Ep exp�ÿidot�Rk 0�kdÿkp ;k �Ep

�Ed exp�idot� �Rk 0ÿkd�kp;k
�

ÿ
�
iwk;k 0 � Gk;k 0 �

vd 2

�h 2Do

ÿjEpj2 � jEdj2
��
Rk;k 0 , (12)

D

2c
_Ep � E e

p ÿ Ep ÿ
i

D

�
1ÿ

X
k

Rk;k

�
Ep

� iÿ v

D
exp�ÿidot�

X
k

Rk�kpÿkd ;kEd, (13)

D

2c
_Ed � E e

d ÿ Ed ÿ
i

D

�
1ÿ

X
k

Rk;k

�
Ed�

30 N.I. Shamrov



� iÿ v

D
exp�idot�

X
k

Rk�kdÿkp;kEp, (14)

where Gk;k 0 are the transverse relaxation rates and wk;k 0 �
wk ÿ wk 0 are the multiphoton transition frequencies.

By neglecting spontaneous scattering (v � 0), one can
easily see that the

P
k jCa;kj2 � 1 and the third term in

Eqns (10), (11), (13), and (14) vanishes.
Because the law of conservation of momentum takes

place during the interaction of an atom with an electro-
magnetic wave, the momentum of the atom in the state ja, ki
can be written in the form

p � �hk � �hn�kd ÿ kp�, n � 0;�1;�2; . . . ; .

Upon absorption of a photon with the wave vector kd and
emission of a photon with the wave vector kp, the number n
increases, while in the case of the inverse process, this
number decreases by unity.

Let us make the substitution ja, ki !Cn, Rk;k 0 ! Rm;n,
wk;k 0 ! wm;n, Gk;k 0 ! Gm;n and introduce the transforma-
tion of elements of the density matrix Rm;n ! Rm;n�
exp�i(nÿm)dot�. Then, the factors containing exp (idot)
in (12) ë (14) will disappear. Let us also introduce the
dimensionless time and éeld amplitudes [20]: t � t=tamp

and ef � Ef=Emax ( f � d, p), where tamp � Do�h 2=(d 2E 2
max)

is the characteristic time scale and Emax is a maximum
amplitude of laser éelds used in the experiment. In this case,
Eqns (12) ë (14) can be written explicitly in the éorm

_Rm;n � �iÿ v��ed�epRmÿ1;n � ep�edRm�1;n�

ÿ�i� v��ed�epRm;n�1 � ep�edRm;nÿ1�

ÿ�ibm;n � gm;n � v
ÿjepj2 � jedj2��Rm;n, (15)

k_ep � e ep ÿ ep ÿ
i

D

�
1ÿ

X
n

Rn;n

�
ep �

iÿ v

D

X
n

Rnÿ1;ned, (16)

k_ed � e ed ÿ ed ÿ
i

D

�
1ÿ

X
n

Rn;n

�
ed �

iÿ v

D

X
n

Rn�1;ned. (17)

Here, bm;n � fm:n ÿ (mÿ n)d is the multiphoton mismatch of
the resonance; fm;n � wm;n=t

ÿ1
amp; d � do=tÿ1amp; gm;n � Gm;n�

tamp; k�D=(2ctamp); wm;n � p 2=(2M�h) � (1� ���
2
p

)�h�k 2
d�

(m 2 ÿ n 2)(2M)ÿ1; and M is the atom mass.
We assume that érst

R0;0�0� � 1, Rm;n�0� � 0 (18)

�m; n � 0;�1;�2; . . . ;�l;m � n 6� 0�,
where l is the maximum excitation multiplicity of con-
densate atoms. One can easily see that the number of
equations in system (15) ë (17) is (2l� 1)(l� 1)� 2.

Let us estimate the values of parameters entering
Eqns (15) ë (17), for example, for experimental conditions
in [5]. Let Emax � 1:45� 10ÿ2 CGS units (the éeld ampli-
tude for the laser radiation intensity equal to
100 mW cmÿ2). Because d � 0:52� 10ÿ17 CGS units (effec-
tive dipole moment) and Do � 1:07� 1010 sÿ1, the
characteristic time is tamp � 2:10� 10ÿ6 s and the energy
unit is �htÿ1amp � 0:50� 10ÿ21 erg. Let the total number of

atoms in the condensate be N � 4� 106. Then, for
L � 200 mm and D � 20 mm, the concentration of atoms
in the condensate is N0 � 1:60� 1013 cmÿ3. Because
od � 3:20� 1015 sÿ1, we have tR � 0:37� 10ÿ8 s and
GR � 0:63� 108 sÿ1. Due to absorption of a photon at a
wavelength of 589 nm, the kinetic energy of the atom is
W0 � 1:60� 10ÿ22 erg. Thus, the typical width of the laser
pulse (100 ms) and the peak éeld intensity in it (the power
density 5 mW cmÿ2) under these experimental conditions
are approximately 47:6tamp and 0:22Emax, constants are v �
0:29� 10ÿ2, D � 9:95, d � 1:20, and the energy is W0 �
0:32�htÿ1amp.

3. Extended pulses in a `dressed' condensate

Consider a BEC irradiated by pulses of duration

tf 4
1

do
;

1

wm;n

� f � p; d;m 6� n � 0;�1;�2; . . . ;�l �: (19)

Then, the probability of the 0! ÿ1 transition is extremely
small and can be neglected. In addition, if the dressing wave
is not very intense [20], the repeated excitation of atoms by
this wave can be also neglected. In this situation only the
two states, 0 and 1, will be actual. It is these conditions that
are realised in experiments [5]. Therefore, we consider here
Eqns (15) ë (18) only for m, n � 0, 1. In this case, by
neglecting the inêuence of spontaneous Rayleigh scattering
(assuming that v � 0) on the condensate dynamics and the
delay of radiation in the condensate (k_ef 5 ef), we obtain

_R0;0 � iep�edR1;0 ÿ i�eped �R1;0, (20)

_R1;1 � i�eped�R1;0 ÿ iep�edR1;0, (21)

_R1;0 � i�epedR0;0 ÿ i�eped �R1;1 ÿ �ib� g�R1;0, (22)

ep � e ep �
i

D
�R1;0ed, (23)

ed � e ed �
i

D
R1;0ep, (24)

where b � b1;0 and g � g1;0. The éeld amplitudes e outp and
e outd at the output can be obtained from the corresponding
expressions (23) and (24) by doubling the second term in
each of them.

In the second part of the experiment in paper [5], the
condensate was irradiated by a continuous wave at fre-
quency od, so that E e

d(t) � E 0
d � const during the entire

irradiation time. We will call the condensate under these
conditions a `dressed' condensate.

Consider érst the interaction of the `dressed' condensate
with a probe rectangular pulse:

E e
p�t� � E 0

p ; 04 t4 tp;

0; t < 0; t > tp

(
(25)

where E 0
p and tp are the amplitude and duration of the

probe pulse.
Let the fraction of atoms acquiring the recoil momentum

be small. Then, R0;0 � 1, and the second term in (22) can be
neglected:

_R1;0 � i�eped ÿ �ib� g�R1;0. (26)
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In addition, we assume that the depletion of the dressing
beam is insigniécant, i.e. Ed � E e

d . In this case, the system
of equations (23) and (26) has the analytic solution

R1;0�t� �
ie 0d�e 0p
aÿ ib

� �exp�aÿ ib�tÿ 1�; t4tp;
�exp�aÿ ib�tp ÿ 1� exp��aÿ ib��tÿ tp��; t > tp;

�
(27)

ep�t� � e 0p

�
1� g�aÿ ib�

a 2 � b 2
�exp�aÿ ib�tÿ 1�; t4tp;

g�aÿ ib�
a 2 � b 2

�exp�a� ib�tp ÿ 1� exp��a� ib��tÿ tp��; t > tp.

8>><>>:
(28)

By substituting now expressions (27) and (28) into Eqn
(21) and integrating it, we énd the approximate solution for
the diagonal element of the density matrix:

R1;1�t� �
2je 0p j2je 0d j2
a 2 � b 2

�
exp at

a 2 � b 2

�
2gbsin btÿ ÿa 2 � 2ga� b 2

�

� cos bt
�� g

2a
exp 2at� gt� 1ÿ g

2a
� 2ag

a 2 � b 2

�
, t4tp,

R1;1�t� � R1;1�tp� �
2Re

ÿ
e 0p
�je 0d j2g

a
ÿ
a 2 � b 2

� (29)

��exp 2atÿ 2 exp at cos bt� 1�fexp�2a�tÿ tp��ÿ1g, t > tp.

Similarly, we can obtain the expression

for the éeld amplitude of the scattered dressing radiation.
Here, tp � tp=tamp; e 0f � E 0

f =Emax are the dimensionless
peak values of the éeld amplitudes of the double beam (f �
d, p) at the condensate input; a�gÿ g; g � je 0d j2=D;
bt � (wÿ do)t; (gÿ g)t � (Gÿ G)t; w � w1;0 is the 1 ë 0
transition frequency; G � G1;0 is the transverse relaxation
rate of the matrix element R1;0; G �g=tamp � 3NRd=Sk

2
d is

the probe radiation gain per unit time; Rd is the Rayleigh
scattering rate of the dressing beam; S is the condensate
cross section perpendicular to the dressing beam propaga-
tion direction.

It follows from solutions of (27) and (29) that in the case
of the exact two-phonon resonance, a dynamic grating of
atoms moving in the same direction with the same velocity is
formed by the instant of the probe beam switching off.
Because the dressing radiation is continuous, it will diffract
from this grating at times t > tp. For G < G, as follows from
(30), the diffracted light intensity Is (Is � jesj2) will decrease,
the decrease being faster with increasing the difference
Gÿ G. This means that in the case of a low-intensity

dressing beam, the dynamic grating decays with time.
The situation becomes critical from this point of view
when G � G.

In the case of the high-power dressing radiation (G > G),
the radiation scattering probability increases with time.
However, this is not always the case. The numerical
solutions of the total system of equations (20) ë (24)
(Fig. 1) show that, as the ratio I 0p=I

0
d increases, which is

accompanied by the increase in the number of recoil atoms,
the increase in the scattering probability slows down and
ceases at all after the transition of approximately 10% of
atoms to level 1. For even larger values of I 0p=I

0
d , the value

of Is decreases with time. Thus, the additional factor
affecting the possibility of the existence of a dynamic grating
of recoil atoms is the degree of nonlinearity of the
interaction of the probe pulse with a `dressed' BEC, speciéed
by the ratio I 0p=I

0
d .

For G > G, the intensity of scattered dressing radiation
increases with decreasing the parameter Is (Fig. 1). Because
�hwp 5 �hod, the scattered energy is mainly concentrated in
the p mode. The probe-wave intensity can be made due to
grating generation many times higher than the input
intensity. Switching off the laser at frequency op under

es�t� � ed�t� ÿ e 0d �
ÿe 0d je 0p j2

D
ÿ
a 2 � b 2

� �a� ib��exp�a� ib�tÿ 1�
�
1� g�aÿ ib�

a 2 � b 2
�exp�a� ib�tÿ 1

�
; t4tp;

g�exp 2atp ÿ 2 exp atp cos btp � 1� exp�2a�tÿ tp��; t > tp:

8><>: (30)
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Figure 1. Interference of light from a recoil atom grating induced upon
irradiation of a condensate by a 100-ms rectangular Bragg pulse of
intensity I 0p � 0:002 ( 1 ), 0.005 ( 2 ), 0.01 ( 3 ), 0.015 ( 4 ), and
0.04 mW cmÿ2 ( 6 ); (a) the intensity of diffracted radiation normalised
to its value for t � tp, (b) the excited-level population. The transverse
relaxation rate is 0:5� 10ÿ4 sÿ1, the dressing beam intensity is
20 mW cmÿ2.
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such conditions will not affect in fact the probe-pulse
dynamics, resulting in the appearance of superradiance at
this frequency. The role of the pulse E e

p (25) will be reduced
only to the induction of weak polarisation in the BEC whose
value follows from expression (27):

R1;0�tp� �
ie 0d �e 0p
aÿ ib

�exp�aÿ ib�tp ÿ 1�. (31)

Let the dressing éeld be very strong, so that G4G.
Then, by omitting the érst term in the right-hand side of (24)
for times t > tp and substituting this expression into (20) ë
(22), we obtain the equations

_R � ÿ2gZRÿ ibR, (32)

_Z � 2gjRj2, (33)

where Z � R1;1 ÿ R0;0; R � 2R1;0.
Equations (32) and (33) have the integral of motion

jR�t�j2 � Z�t�2 � jR�tp�j2 � Z�tp�2 � 1. (34)

By using it, we can readily obtain the solution of these
equations:

Z�t� � tanh
tÿ tp ÿ t0

ts
,

R�t� � sech
tÿ tp ÿ t0

ts
exp�ÿib�tÿ tp��,

where

t0 � ÿ
ts
2
ln

�
1� Z�tp�
1ÿ Z�tp�

�
; (35)

ts � 1
2 g.

If jR(tp)j5 1, then Z(tp) � ÿ�1ÿ jR(tp)j2�1=2 � ÿ1�
0:5jR(tp)j2 and t0 � ÿts ln jR1;0(tp)j.

Thus, when G4G and the phase relaxation can be
neglected, Eqns (20) ë (24) have the solution

R1:0�t� �
ie 0d �e 0p
gÿ ib

�
�exp�gÿ ib�tÿ 1�; t4tp;

1

2
sech

tÿ tp ÿ t0
ts

exp�ÿib�tÿ tp��; t > tp;

8><>: (36)

Z�t� �
(37)

4je 0p j2je 0d j2
g 2 � b 2

�exp 2gtÿ 2 exp 2gt cos bt� 1� ÿ 1; t4tp;

tanh
tÿ tp ÿ t0

ts
; t > tp;

8>>><>>>:

ep�t� �
e 0p

�
1� g�gÿ ib�

g 2 � b 2
�exp�g� ib�tÿ 1�

�
; t4tp;

ie 0d
2D

sech
tÿ tp ÿ t0

ts
exp�ib�tÿ tp��; t > tp:

8>>><>>>:
(38)

One can see from these expressions that the nondiagonal
element R1;0(t) of the density matrix and the population
difference Z(t) at the instant t � tp are continuous, but the
éeld ep(t) experiences a break. As pointed out above, the
smaller I 0p and the larger I 0d , the smaller is the éeld jump.

Thus, for I 0p 5 I 0d and weak phase relaxation, radiation
in the p mode appears in the form of a bell-shaped pulse of
width ts delayed by the time t0 with respect to the instant tp.

If the gain G is moderate, exceeding G only by several
times, the main properties of the probe radiation remain the
same, as follows from the numerical solution of the total
system of equations (20) ë (24) (Fig. 2). In particular, probe-
pulse width and peak intensity are independent of its input
energy, while the delay time decreases with increasing input
energy. The pulse delay time and duration are inversely
proportional to the dressing radiation power, while its
maximum intensity is proportional to this power.

The following analysis depends on the probe radiation
spectrum. We will assume here that the probe pulse has a
Gaussian shape

E e
p � E 0

p exp

�
ÿ 2 ln 2

�
tÿ t0
tp

�2 �
, (39)
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Figure 2. Shape of an induced superradiance pulse for probe pulse
durations tp � 10 ( 1 ), 25 ( 2 ), 50 ( 3 ), and 100 ms ( 4 ) (a), its intensities
I 0p � 0:00005 ( 1 ), 0.0002 ( 2 ), 0.0004 ( 3 ), and 0.001 mW cmÿ2 ( 4 ) (b),
and the dressing laser radiation intensities I 0d � 40 ( 1 ), 55 ( 2 ), 70 ( 3 ),
and 90 mW cmÿ2 ( 4 ) (c). The beam intensities are I 0d � 50 mW cmÿ2 (a,
b), I 0p � 0:0001 mW cmÿ2 (a), pulse durations are tp � 50 (b) and 25 ms
(c).
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where the time t0 corresponds to the pulse maximum I 0p and
tp is the pulse FWHM.

In a linear case, when the fraction of atoms receiving the
recoil pulse is small and the depletion of the dressing wave is
insigniécant, Eqns (20) ë (24) for the probe pulse of type
(39), as for pulse (25), admit the analytic solution.

In the case of the exact resonance, we have the non-
diagonal element of the density matrix in the form

R1;0�t� �
i
���
p
p

e 0d �e 0p
2

exp

�
a�tÿ t0� ÿ

b 2

4a 2

�

�
�
F
�
a

2b
� b�tÿ t0�

�
ÿ F

�
a

2b
ÿ bt0

��
, (40)

and the average éeld amplitude for the p mode is

ep�t� � e 0p exp
�ÿ b 2�tÿ t0�2 �

���
p
p

ge 0p
2

� exp

�
a�tÿ t0� ÿ

b 2

4a 2

�

�
�
F
�
a

2b
� b�tÿ t0�

�
ÿ F

�
a

2b
ÿ bt0

��
, (41)

where a � a; b � (2 ln 2)1=2=tp; tp � tp=tamp; t0 � t0=tamp;
and F(t) in the integral Poisson function.

The output probe éeld amplitude e outp is obtained from
expression (41) by doubling the second term, which is
always positive. That is why the intensity maximum
Ip � je outp j2 coincides with the amplitude maximum eoutp

and is achieved at tout0 > t0. This means that the probe
pulse propagates through the BEC for a énite time tout0 ÿ t0.
In addition, Ip(t

out
0 ) > Ip(t0), i.e. the pulse is ampliéed. The

propagation velocity, width, and ampliécation of the probe
pulse in the condensate depend on its energy and the
dressing wave intensity.

Let us assume that the probe pulse duration tp and the
inverse linear ampliécation time 1=G are smaller than or
comparable to the transverse relaxation time T2 � 1=G for
the 0 ë 1 transition. If the intensity I 0

p is smaller than I 0
d by

one ë two orders of magnitude, the propagation of the probe
pulse through the BEC is accompanied by its weak
ampliécation (by several times), the ampliécation increasing
with increasing the dressing beam intensity (Fig. 3a). In this
case, the pulse almost does not broaden. The pulse
propagation velocity érst decreases with increasing the
dressing wave power [curves ( 1 ) and ( 2 )] and then increases
[curves ( 4 ) and ( 5 )]. The minimal propagation velocity
[curve ( 3 )] is achieved for values of I 0

d at which approx-
imately half the atoms undergo transitions from the state 0
to the state 1 (Fig. 3b). For parameters of the problem used,
this velocity was � 1:4 m sÿ1.

If the probe pulse energy is reduced so that the ratio
I 0
p =I

0
d becomes � 10ÿ3 and smaller, the main factor affecting

the pulse shape will be grating generation. This leads to a
considerable broadening of the pulse and signiécantly
increases its propagation time in the BEC. The smaller is
probe pulse energy, the more distinct are these effects.
Under these conditions, an extremely large time delay of
the probe pulse in the `dressed' condensate can be observed.
For example, for I 0

d � 50 mW cmÿ2, I 0
p � 0:001 mW cmÿ2

and tp � 50 ms, the time delay is � 113 ms (the pulse
propagation velocity is � 0:17 m sÿ1).

4. Short pulses in a `dressed' condensate

So far we described the interaction of a double laser beam
with a BEC by using the model of an atom with two states
0 and 1. To excite the states with n5 2, the dressing
radiation should have a high power. The corresponding
threshold [20]

Id;th �
1

8

�
c�h

pd

�2 Dodo
Ip

(42)

is independent of the probe pulse duration and decreases
with increasing the pulse intensity.

Transitions from the state 0 to the state ÿ1, from the
state ÿ1 to the state ÿ2, etc. occur due to absorption of a
photon from the p mode and its emission to the d mode.
Because for central frequencies �hop < �hod, not only the
power of the probe pulse but also its spectral width is
important for excitation of the states Cn with n < 0.
Therefore, we will assume that the probe pulse duration
satisées the condition

tf �
1

do
,

1

wm;n

� f � p, d; m 6� n � 0; �1, � 2, . . . ,� l �,
(43)

and the pulse itself has Gaussian shape (39).
The numerical solution of the system of equations (15) ë

(17) admitting the possibility of multiple excitation of atoms
shows that, indeed, beginning from some values of tp, the
probe pulse in the presence of the dressing pulse can induce
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Figure 3. Evolution of a 100-ms Gaussian pulse with a peak intensity of
0.1 mW cmÿ2 (dashed curve) (a) and excitation dynamics of atoms in a
condensate for I 0d � 1 ( 1 ), 5 ( 2 ), 10 ( 3 ), 15 ( 4 ), and 20 mW cmÿ2 ( 5 )
(b). The pulse intensities are normalised to the input peak value.
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transitions from the state 0 to the state ÿ1. Because a
decrease in the probe pulse duration is accompanied by a
decrease in its energy, the pulse power should be increased
to preserve its energy. However, even for tp � 1 ms and
intensities I 0

d , I
0
p � 50ÿ 100 mW cmÿ2, only a few percent

of atoms undergo transitions to the state ÿ1. Therefore, the
use of too short pulses to increase the excitation eféciency of
the states ÿ1, ÿ2, etc. is not quite justiéed. We can assume
that this can be achieved, as upon excitation of the states 2,
3, etc., by decreasing the one-photon detuning Do of the
electronic resonance. Indeed, calculations conérmed this
(Fig. 4). It was found that the smaller Do and larger the
ratio I 0

p =I
0
d , the larger fraction of atoms passes through the

cascade of states with negative n.

Note that the states with negative n can be also excited
by reducing the two-photon atomic resonance detuning do
achieved, for example, by decreasing the angle between
beams in a double beam or by using a BEC of heavier
atoms.

5. Conclusions

Semiclassical equations have been used to analyse the
interaction of a probe pulse with a `dressed' BEC of sodium
vapour. In the case of the low-intense and broad probe
pulse, only state 1, corresponding to absorption of a photon
from the dressing mode and emission of this photon to the
probe mode, is populated. Under these conditions, the

P
o
p
u
la
ti
o
n

n � ÿ2

n � ÿ1 n � 1 n � 2

n � ÿ3
n � 3

Time
�
ms Time

�
ms

0 1 2 3 4 5

P
o
p
u
la
ti
o
n

0 1 2 3 4 5

P
o
p
u
la
ti
o
n

c

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

n � ÿ2
n � 2

n � 1

n � ÿ1

n � ÿ3
n � 3

Time
�
ms Time

�
ms

0 1 2 3 4 5 0 1 2 3 4 5

P
o
p
u
la
ti
o
n

a

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

n � ÿ2

n � 2
n � 1n � ÿ1

n � ÿ3
n � 3

Time
�
ms Time

�
ms

0 1 2 3 4 5

P
o
p
u
la
ti
o
n

0 1 2 3 4 5

P
o
p
u
la
ti
o
n

b

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

Figure 4. Excitation of atomic states with high numbers n by a 50-mW cmÿ2 dressing beam and a 1-ms probe beam of intensities I 0p � 50 (a, b) and
100 mW cmÿ2 (c) for one-photon resonance detunings Do � 0:5� 1010 (a) and 0:25� 1010 sÿ1 (b, c).
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recoil atoms form a diffraction grating when the gain
exceeds the transverse relaxation rate and populations
slightly deviate from equilibrium values. A pulse propagat-
ing in such a medium slows down and broadens, this effect
increasing with decreasing the pulse energy. When the input
pulse energy is very low and the pulse can be treated as a
seed pulse, the grating generation becomes dominant and
induced superradiance appears at the probe beam fre-
quency.

Transitions from the ground state 0 to states with n 6� 1
are strongly nonresonant. These states can be populated
only if the irradiation intensity is very high. The probe pulse
width is not important for obtaining states with n > 0. At
the same time, states with n < 0 are excited by short probe
pulses of duration comparable with or smaller than the
inverse recoil frequency of atoms. The power threshold of a
cascade process in both channels can be reduced, in
particular, by decreasing the one-photon electronic reso-
nance detuning.
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