
Abstract. The structure and motion of complexes of in-phase
weakly coupled fundamental solitons in a wide-aperture class
A laser with saturable absorption are analysed. The
symmetry of the éeld distribution and its relation to the
motion of the complex are studied. Due to the absence of
wavefront dislocations in such complexes, the transverse
radiation intensity and phase distributions are the symmetry
objects, which simpliées analysis compared to the case when
wavefront dislocations are present. Four types of the motion
of soliton complexes are demonstrated: a motionless complex
in the presence of two mirror symmetry axes; linear motion of
the complex when only one mirror symmetry axis exists;
rotation around a motionless centre of inertia in the absence
of the mirror symmetry axis and in the presence of symmetry
with respect to rotation through the angle 2p/M (M is an
integer); and curvilinear (circular) motion of the centre of
inertia and simultaneous rotation of the complex around the
instantaneous position of the centre of inertia in the absence
of symmetry elements.
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1. Introduction

Dissipative solitons, or autosolitons, are stable localised
structures of a éeld in a homogeneous or weakly modulated
nonconservative (with considerable energy exchange) non-
linear medium or system [1]. Optical autosolitons entering
this class, predicted in wide-aperture nonlinear-optical
systems in the 1980s [2, 3], have a number of speciéc
properties that are related, for example, to diffraction
phenomena typical for optics. Therefore, the study of

optical autosolitons is of considerable scientiéc interest; in
addition, they are very promising for applications in optical
data processing [4]. A particular case of optical autosolitons
is solitons in a wide-aperture laser with saturable absorp-
tion, predicted in [5]. The unusual mechanics for complexes
of such laser solitons, in particular, the curvilinear motion
of the centre of inertia, which is impossible for conservative
solitons, was demonstrated in [6 ë 8]. The type of motion of
two-dimensional solitons in class A lasers (where the
relaxation time of nonlinear medium is much shorter
than the photon lifetime in the cavity) is determined by the
symmetry of the transverse distributions of the radiation
intensity and energy êuxes (the Poynting vector) [8].

In this paper, we analysed the motion of the simplest and
at the same time nontrivial variant of such complexes,
namely, weakly coupled in-phase fundamental (vortex-free)
laser solitons with éxed (linear) polarisation. The simplify-
ing feature is the absence in this case, unlike previous papers
[6 ë 10], wavefront dislocations, so that the radiation phase
is everywhere a certain and unique function of transverse
coordinates. Then, it is sufécient to analyse only the
symmetry of the transverse radiation intensity and phase
distributions. The corresponding replacement of the vector
éeld (energy êuxes) by the scalar éeld (phase) noticeably
simpliées analysis. Another argument in favour of the
choice of in-phase complexes is that the steady motion
of the centre of inertia is impossible within the framework of
the known asymptotic approaches of the theory of weak
interaction of laser solitons [9] (this motion is decelerated
and eventually ceases). At the same time, we will demon-
strate below numerically all the regimes of the motion of
complexes which can be observed in the case of the weak
interaction of solitons [8], in particular, their linear and
curvilinear motions.

2. The model and basic relations

We will consider the same scheme of a laser with saturable
absorption in the same approximation and notation as in
our previous papers [2 ë 8]. The laser cavity can be formed
by two parallel plane mirrors or can be a ring cavity. The
cavity contains a nonlinear amplifying and absorbing
medium. Radiation propagates predominantly along the
cavity axis z, and the cavity loss for oblique beams
quadratically increases with increasing a small angle of
incidence, for example, due to the angular dependence of
the reêectance of cavity mirrors.

We assume that the polarisation of radiation is éxed and
the éeld envelope slowly varies in time and space, so that the
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éeld is described by the scalar complex envelope of the
electric strength E. The nonlinearity of the medium is
assumed inertialless. The cavity has a large aperture and
a small length (large Fresnel number), so that its transverse
sizes in the ideal model are inénitely large and the scheme
has no transverse inhomogeneities (inhomogeneity is pos-
sible only in the initial conditions). We assume that linear
(caused by diffraction and mirror transmission) and non-
linear changes in the éeld envelope are small, which allows
us to average the envelope in the longitudinal direction (the
average éeld model). Under these conditions, the éeld can
be described by the generalised complex Ginzburg ëLandau
equation

qE
qt
� �i� d�D?E� f �jE j2�E. (1)

Here, t is the dimensionless time in units of the decay time
of the éeld in an empty cavity; d is the effective diffusion
coefécient describing a weak angular selectivity of the loss
(0 < d5 1); D? � q 2=qx 2 � q 2=qy 2 is the transverse Lap-
lace operator corresponding to the diffraction of radiation;
the transverse coordinates x and y are expressed in units of
the effective width of the Fresnel zone wF �
fLcav=�2k(1ÿ jRj)�g1=2; Lcav is the cavity length; k is the
wave vector in the linear medium; and R is the product of
the amplitude reêectances of cavity mirrors. We assume
that the function f (jE j2) is a real function of the éeld
intensity I � jE j2 (frequency detunings are neglected), so
that Im f � 0. This function describes the saturation of
ampliécation and absorption and contains constant (non-
resonance) losses. Within the framework of a two-level
model of media with ampliécation and absorption, the
function f can be written in the form

f �jE j2� � ÿ1� g0

1� jE j2 ÿ
a0

1� bjE j2 , (2)

where g0 and a0 are the linear gain and absorption
coefécients, respectively; b is the intensity ratio for
saturated gain and absorption; the term ÿ1 in the right-
hand side represents the nonresonance loss due to time
normalisation. The radiation intensity is normalised to the
gain saturation intensity. The initial éeld distribution is
speciéed as a linear superposition of several separate
symmetric solitons separated by a comparatively large
distance (compared to the width of a single soliton). By
varying the initial condition, we can construct stable
complexes with any number of individual solitons. In
this case, the distance between neighbouring solitons is
close to the distance between them in a stable in-phase pair.

The master equation was solved by the splitting method
by using the fast Fourier transform algorithm [5]. The
parameters of nonlinear function (2) used in calculations
were a0 � 2, b � 10, g0 � 2.11 and the effective diffusion
coefécient was d � 0:06. The main results were preserved
when parameters were varied within a certain range.

3. Symmetric analysis and results of calculations

The vector Rc(t) of transverse coordinates of the centre of
inertia of a localised complex and the instantaneous
velocity Vc(t) of its transverse motion are determined by
the relations

Rc�t� �

�
r?jE j2dr?�
jE j2dr?

, Vc�t� �
d

dt
Rc. (3)

Not only coordinates of the centre of inertia but also its
instantaneous velocity of motion are completely determined
by the distributions (at the same instant) of the intensity I �
jE j2 and transverse Poynting vector [1] [taking master
equation (1) into account]. In the case under study, the
radiation intensity does not vanish and the wavefront has
no dislocations. Therefore, to deéne the propagation
direction of the energy êux, it is sufécient to specify the
phase distribution (the energy êux direction is orthogonal
to the phase level lines). In this case, it is sufécient to
consider the simultaneous symmetry of the instantaneous
transverse intensity and phase distributions. More exactly,
it is reasonable to consider symmetry which is stable with
respect to small asymmetric perturbations (not increasing
during the further evolution). Then, according to [8], we
can formulate the conclusions:

(i) There exists the axial symmetry of the intensity and
phase distributions. For this type of symmetry, the velocity
of motion Vc of the centre of inertia is directed along the
symmetry axis (the transverse component of the velocity is
zero). Therefore, the motion of the structure can be only
linear and its rotation is impossible (the angular velocity is
O � 0). If the structure has two or more symmetry axes,
both the motion of the centre of inertia and rotation of the
structure are absent.

(ii) There exist the symmetry of the intensity and phase
distributions with respect to the rotation through the angle
a � 2p=M (M � 2, 3, ... ), i.e. the symmetry axis of the Mth
order exists (CM). In this case, the velocity vector Vc � 0, so
that the centre of inertia is immobile, but the structure can
rotate (O 6� 0). The case M � 2 corresponds to the central
symmetry and the case M � 1 is realised for axially
symmetric structures (single autosoliton).

In the presence or absence of these symmetries, the
following four variants of motion of soliton structures are
possible:

(i) Two (or more) symmetry axes. In this case, both the
translational (Vc � 0) and rotational (O � 0) motions of the
structure are absent. Figures 1 and 2 demonstrate the
examples of such immobile structures. The phase distribu-
tion is presented in more detail for a pair of weakly coupled
solitons in Fig. 1c; hereafter, we consider complexes with
the minimal equilibrium distance between solitons, which
are more stable than in the case of larger equilibrium
distances known from the theory.

It is useful to compare this distribution with a portrait of
radiation energy êuxes [8, 10], which are represented by a
family of lines orthogonal to a family of equal-phase lines.
The phase has seven singularities: four extrema (two
maxima and two minima) and three saddle points. The
extrema in the portrait of energy êuxes correspond to nodes
N, while the saddle points correspond to saddles S. The
centres of individual solitons correspond to the phase
maxima or nodes in the portrait of êuxes. In the case of
the `the mechanical analogy', the sign of the effective
potential is opposite to that of the phase, so that the centre
of each (fundamental) soliton corresponds to the local
minimum of the potential. The energy êuxes sweep down
to this minimum in a cell restricted by a closed curve
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consisting of two approximate semicircles passing through
peripheral saddles S and nodes N nearest to the centre of
symmetry. These semicircles weakly distorted by the inter-
action of solitons correspond for the potential to the
`watershed' between radiation energy êuxes propagating
to the centre of solitons (internal cells) and going away
to inénity (external cells). In the middle between the centres
of solitons, a central saddle is located. In this case, the
separatrices of saddles divide the phase portrait into four
cells symmetrical with respect to two orthogonal axes. The
separatrices serve simultaneously as the symmetry axes of
the intensity distribution, justifying the assignment of the
structure to the given class. The analogous symmetry is also

realised for immobile structures with a greater number of
solitons (Fig. 2).

(ii) The only symmetry axis. According to the symmetry
rules, such a structure can move only rectilinearly. The
minimal number of solitons that can be used to obtain such
structures with a weak in-phase coupling is equal to éve. An
example is shown in Fig. 3; the structure in this égure moves
in the vertical direction at a velocity of Vc � 0:0023.

(iii) Symmetry to the rotation through the angle
a � 2p=M (M � 2, 3,...). Such structures have the immobile
centre of inertia coinciding with the centre of symmetry, but
can rotate at some angular velocity. The minimal number of
solitons from which such structures with a weak in-phase
coupling can be constructed is equal to six. Figure 4
presents an example of a rotating structure with the central
symmetry (the binary symmetry axis, M � 2) and Fig. 5
shows the rotation of a structure with the triad symmetry
axis (M � 3).

(iv) Structures without symmetry elements. The minimal
number of solitons required for constructing structures of
this type is equal to seven. Figure 6 presents an example.
Here, as in the general (nondegenerate) case, the absence of
symmetry leads to the motion and rotation of the structure.
The trajectory of the centre of inertia is a circle of radius
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Figure 1. Intensity (a) and phase (b, c) distributions for a stable pair of weakly coupled in-phase fundamental laser solitons separated by a minimal
equilibrium distance. The pair is at rest due to the presence of two mirror symmetry axes; N are nodes (phase maxima at the two most separated nodes
and minima at the nearest nodes); S are saddle points, their separatrices being shown by the dashed arrows.
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Figure 2. Intensity (a, c) and phase (b, d) distributions for stable
complexes of weakly coupled in-phase fundamental laser solitons;
complexes are immobile due to the presence of two mirror symmetry
axes.
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Figure 3. Intensity (a) and phase (b) distributions for a stable complex of
éve weakly coupled in-phase fundamental solitons; due to the presence
of only one mirror symmetry axis, the structure moves rectilinearly at the
constant velocity Vc � 0:0023.
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R � 280 (the trajectory in Fig. 6c differs from a circle due to
the restricted calculation accuracy), the period of revolution
along this circle is T � 140000. The structure performs a
complete rotation for the same period (rotation of the type
of the Moon movement around the Earth [6 ë 8]).

4. Conclusions

Our calculations have shown that the four variants of
motion are realised for complexes of weakly coupled in-
phase solitons, including the translational motion at a
constant velocity and circular motion of the centre of
inertia at a constant linear velocity. Different types of
motion correspond to the different symmetry of the
transverse radiation intensity and phase distributions.
The immobile soliton structures are stable at the same
parameters, so that bifurcations accompanied by the
disappearance of the stability of immobile solitons are
absent. Because wavefront dislocations are also absent in
this case, we can conclude that the motion is obviously
caused by the asymmetry of the transverse éeld distribu-
tion. Therefore, the opinion that the wavefront dislocations
play a decisive role in the dynamics of soliton complexes
(see, for example, [9]) is not quite correct, and a more
general criterion is related to the symmetry considerations.
The latter are also substantial in the presence of dis-
locations. Indeed, symmetrically arranged dislocations do
not cause the motion of a soliton complex. At the same
time, the stable asymmetry of their arrangement leads to a
considerable asymmetry of energy êuxes, and the velocities
of motion of the complex noticeably exceed those observed
in the absence of dislocations.

These results were obtained solving numerically master
equation (1). In our opinion, at present the numerical results
are most reliable. In particular, the known variant of the
asymptotic theory of weak interaction of laser solitons [9]
leads to the conclusion that the velocity of the centre of
inertia of in-phase complexes in a stable regime is zero,
which contradicts the simulation results. This conclusion
suggests that distortions of the éeld proéle of solitons due to
their interaction with other solitons should be more exactly
taken into account in the asymptotic theory. The possibility
of introducing such corrections to the asymptotic theory is
also conérmed by the fact that linear and angular velocities
obtained for in-phase structures are considerably smaller
than those obtained for complexes with solitons having
different phases.

The motion of complexes of different types can énd
applications in optical data processing and logic operations
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Figure 4. Intensity (a) and phase (b) distributions for a stable complex of
six weakly coupled in-phase fundamental solitons; due to the presence of
the central symmetry (the binary symmetry axis), the centre of inertia of
the complex is immobile and the complex rotates in the direction shown
by the arrow, with period T � 135000.
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Figure 5. Intensity (a) and phase (b) distributions for a stable complex of
weakly coupled in-phase fundamental solitons; due to the presence of the
triad symmetry axis, the centre of inertia of the complex is immobile and
the complex rotates in the direction shown by the arrow, with period
T � 210000.
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Figure 6. Intensity (a) and phase (b) distributions and the trajectory of the centre of inertia (c) for a stable asymmetric complex of weakly coupled in-
phase fundamental solitons; the period of revolution of the centre of inertia along the circle T � 140000 coincides with the rotation period of the
complex.
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[4]. It seems that the most promising are semiconductor
microcavities with quantum wells and dots [11]. The
animation of the dynamics of a number of complexes of
laser solitons can be found at web-site [12].

Acknowledgements. This work was supported by the
Russian Foundation for Basic Research (Grant Nos 07-
02-00294, 04-02-81014-Bel, and 06-02-90861-Mol) and the
Ministry of Education and Science (Grant
No. RNP.2.1.1.1189).

References
1. Rosanov N.N., in Bol'shaya Rossiiskaya entsiklopedia (Great

Russian Encyclopaedia) (Moscow: Bol'shaya Rossiiskaya entsi-
klopedia, 2005) Vol. 1, p. 171.

2. Rosanov N.N., Semenov V.E., Khodova G.V.
Kvantovaya Elektron., 10, 2355 (1983)
[Sov. J. Quantum Electron., 13, 1534 (1983)].

3. Rosanov N.N., Khodova G.V. Opt. Spektrosk., 65, 1375 (1988).
4. Rosanov N.N. Spatial Hysteresis and Optical Patterns

(Berlin: Springer, 2002).
5. Rosanov N.N., Fedorov S.V. Opt. Spektrosk., 72, 101 (1992).
6. Rosanov N.N., Fedorov S.V., Shatsev A.N. Phys. Rev. Lett., 95,

053903 (2005).
7. Rosanov N.N., Fedorov S.V., Shatsev A.N. Appl. Phys. B., 81,

937 (2005).
8. Rosanov N.N., Fedorov S.V., Shatsev A.N. Zh. Eksp. Teor. Fiz.,

129, 625 (2006).
9. Skryabin D.V., Vladimirov A.G. Phys. Rev. Lett., 89, 044101

(2002).
10. Rosanov N.N., Fedorov S.V., Shatsev A.N. Kvantovaya Elektron.,

35, 268 (2005) [Quantum Electron., 35, 268 (2005)].
11. Barland S., Tredicce J.R., Brambilla M., Lugiato L.A., Balle S.,

Giudici M., Maggipinto T., Spinelli L., Tissoni G., Kn�odl T.,
Miller M., J�ager R. Nature, 419, 699 (2002).

12. http://www.freewebs.com/rosanovteam/

Complexes of in-phase two-dimensional laser solitons 45


