
Abstract. The evolution of the orbital angular momentum
(OAM) of a Laguerre ëGaussian beam interacting with
turbulent inhomogeneities of the atmosphere is studied
theoretically. The integral representations are obtained for
the OAM in terms of the distributions of the random intensity
and random éeld of the permittivity of the medium, and also
for OAM statistical characteristics in terms of corresponding
correlation functions. It is found that the average OAM value
is preserved during the propagation of the laser beam in a
random medium. The dependence of the dispersion of OAM
êuctuations on the atmospheric turbulence and beam
parameters is calculated. It is shown that the dependence
of the OAM dispersion on the initial angular momentum of
the laser beam disappears in the case of very strong
turbulence.

Keywords: optical vortex, orbital angular momentum, atmospheric
turbulence, Laguerre ëGaussian beams, wave-front dislocations.

1. Introduction

It has been found theoretically and experimentally that light
beams not only transfer energy but also have the linear and
angular momenta. The total angular momentum can
contain both the spin component related to polarisation
and the orbital component related to the spatial distribu-
tions of the intensity and phase [1, 2]. This angular
momentum can be also imparted to material particles,
producing their rotation. This property has important
applications in quite different éelds such as biology [3] and
micromechanics [4]. The angular momentum of light can be
also used for information coding and processing [5], in
particular, in optical communication systems [6]. By
normalising the angular momentum of light to the energy
carried by a light beam and measuring the energy in photon

energy units �ho, each photon can be characterised by the
spin orbital momentum sz�h, where sz � �1 for circularly
polarised light and sz � 0 for linearly polarised light. The
orbital angular momentum (OAM) is related to the energy
circulation in the light beam and is independent of the light
polarisation. The properties of the OAM are manifested
most distinctly in a beam carrying an optical vortex (OV)
due to its helical wave front [7]. Laguerre ëGaussian light
beams are the typical example of the beams carrying OVs.
The longitudinal component of the OAM in such beams is
an integer (topological charge l or the optical vortex
strength) multiplied by �h. The beam OAM characterises the
properties of OVs existing in the beam. This stimulates
increasing interest in the peculiarities of OAM trans-
formations in various optical systems [8 ë 11].

The aim of this paper is to study the OAM trans-
formation in a medium with random inhomogeneities of the
permittivity, in particular, in the turbulent atmosphere. The
object of our analysis is a linearly polarised coherent light
beam representing the Laguerre ëGaussian mode LG �l�0 with
l � 1, 2, 0.

2. Basic equations

Let u(r; z) be the complex amplitude of the light éeld of a
coherent paraxial beam propagating along the z axis and
r(x; y) be the vector in the xy plane. It is known that the z
component of the OAM can be written in the form [2, 5]

Lz �
i

2o

�1
ÿ1

�1
ÿ1
� r� �uH?u � ÿ u �H?u��n dxdy�1
ÿ1

�1
ÿ1
ju�x; y; z�j2dxdy

, (1)

where

H? � l
q
qx
�m

q
qy

;

l, m, and n are the unit vectors directed along the x, y, and z
axes, respectively; and o is the angular frequency. By
introducing the function U1;1(r1; r2; z) � u(r1; z)u

�(r2; z)
[U1;1(r1; r1; z) � I(r1; z) is the beam intensity], making the
change of variables r � (r1 � r2)=2, q � r1 ÿ r2, and deno-
ting U1;1(r� q=2; rÿ q=2; z) by U2(r; q; z), we obtain

uH?u
� ÿ u �H?u � 2H? qU2�r; q; z�jr�0,
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where

H? q � l
q
qrx
�m

q
qry

.

By using this equality, we obtain instead of (1) the
expression

Lz �
1

io

�1
ÿ1

�1
ÿ1
fr� �H? qU2�r; q; z�jr�0�gn dxdy�1
ÿ1

�1
ÿ1

I�x; y; z�dxdy
. (2)

We will use the éeld distribution in the initial plane (z � 0)
as in [8]

u0l�r� �
1

a

������
8F
c

r ������
1

jl j!

s �
x� iy

a

�jl j
exp

�
ÿ r 2

2a 2

�
, (3)

where c is the speed of light, F is the total energy êux, and a
is the effective radius of the beam. By using (3) and (2), it is
easy calculate that the orbital angular momentum Lz for
l � 1, 2, 0 is 1=o, 2=o, and 0, respectively. Consider now
the change in Lz during the propagation of laser beam in an
inhomogeneous medium.

We assume that the beam propagates in the half-space
z5 0 élled with a refracting medium with the permittivity
e(x; y; z) � 1 � ~e(x; y; z), where hj~eji5 1, and the complex
amplitude of the beam satisées the equation

2ik
qu
qz
� D?u� k 2~e�r; z�u�r; z� � 0, (4)

u�r; 0� � u0l�r�,
where k � o=c. It is known that the quantity

P0 �
�1
ÿ1

�1
ÿ1

I�x; y; z�dxdy,

which coincides accurately to a constant factor with the
total energy êux of the beam, is preserved during the beam
propagation in the small-angle scattering approximation.
We will seek the parameters of Lz (2) in the inhomogeneous
medium by the method used in [12] for calculating the
statistical characteristics of the beam displacement. Let us
write the equation for the random quantity U2 in sum and
difference variables:

q
qz

U2�r; q; z� � i

k
H? qH? rU2

� ik

2

�
~e�r� q=2; z� ÿ ~e�rÿ q=2; z��U2, (5)

U2�r; q; 0� � u0l�r� q=2�u �0l�rÿ q=2�.

To derive the equation for Lz, we will subject Eqn (5) to the
action of the operator H? q=(ioP0) and then set q=0. As a
result, we obtain

q
qz

H? q

ioP0

U2�r; q; z�jr�0 �
1

oP0k
D? qH? rU2jr�0

� 1

2cP0

H? r ~e�r; z�I�r; z�. (6)

Taking into account (2), we perform the vector multi-
plication of (6) by r and perform integration over this
variable. As a result, we obtain

d

dz
Lz�z� �

1

2P0c

�1
ÿ1

�1
ÿ1

dxdy� r� H? r~e�r; z��nI�r; z�. (7)

Equation (7) should be supplemented with the boundary
condition

Lz�0� � Lz0. (8)

The equation similar to (7) was obtained earlier by Berry
[13] by the quantum-mechanical method. The integration of
Eqn (7) gives the z component of the beam OAM in the
form

Lz�z� � Lz0

� 1

2P0c

� z

0

dx
�1
ÿ1

�1
ÿ1

dxdy� r� H? r~e�r; x��nI�r; x�. (9)

By expanding the vector H? r~e(r; x) into the radial and
azimuthal components, we obtain that the OAM of the
beam propagating in the refractive medium changes under
the action of the azimuthal component. It is obvious that
the OAM value remains invariable in a medium with the
axial symmetry. Expression (9) will be used below to study
the OAM evolution in a random medium.

3. Statistical characteristics of the OAM
in a random medium

We are interested in the mean hLzi and dispersion Bl �
h(Lz ÿ hLzi) 2 i of OAM êuctuations. To obtain hLzi, we
perform statistical averaging in (9):

hLz�z�i � Lz0

� 1

2P0c

� z

0

dx
�1
ÿ1

�1
ÿ1

dxdy


I�r; x�n� r� H? r~e�r; x��

�
. (10)

To calculate correlations in (10), we will use érst the
Markov random process approximation, assuming that the
éeld ~e is a homogeneous random Gaussian éeld. In the
Markov approximation, we have

h~e�r; z�~e�r 0; z 0�i � d�zÿ z 0�A�rÿ r 0�,

A�x� �
�1
ÿ1

dxh~e�x 0; z�~e�x 0 � x; z� x�i

� 2p
�1
ÿ1

�1
ÿ1

dkxdky exp�ijx�Fe�j�, (11)

where d(x) is the delta function; Fe(j) is the three-
dimensional spectrum of the éeld ~e; and j is the two-
dimensional vector. Then, by using the Furuzu ëNovikov ë
Donsker formula [14], we calculate the mean of the product
of the random éled and its functional:

h~e�r; z�R�~e�i �
� z

0

dx
�1
ÿ1

�1
ÿ1

dx 0dy 0h~e�r; z�~e�r 0; x�i

�
�

dR�~e�
d~e�r 0; x�

�
. (12)
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Because in the calculation of the intensity variations in the
éled ~e the equality

dI�r; x�
d~e�r 0; x 0�

����
x 0�x
� 0 (13)

is fulélled, the mean OAM in the Markov random process
approximation proves to be equal to the initial momentum:

hLz�z�i � Lz0. (14)

Therefore, the angular momentum dispersion Bl is
described by the expression

Bl �
1

4P 2
0 c

2

� z

0
dx1

� z

0
dx2

�1
ÿ1

�1
ÿ1

dx1dy1

�1
ÿ1

�1
ÿ1

dx2dy2

�hI�r1; x1�I�r2; x2�� r1�H? r1 ~e�r1; x1��� r2�H? r2 ~e�r2; x2��i. (15)
By using relation (12) for calculating correlations in (15),
after the calculation of a number of variational derivatives,
we obtain in the Markov approximation the expression

Bl �
1

4P 2
0 c

2

� z

0
dx1

� z

0
dx2

�1
ÿ1

�1
ÿ1

dx1dy1

�1
ÿ1

�1
ÿ1

dx2dy2

�hI�r1;x1�I�r2;x2�ih� r1�H? r1 ~e�r1; x1��� r2�H? r2 ~e�r2; x2��i (16)

with the `splitting' of the correlation of ~e and I, which, after
representing the vector products in terms of coordinates,
can be written in the form

Bl �
1

4P 2
0 c

2

� z

0

dx1

� z

0

dx2

�1
ÿ1

�1
ÿ1

dx1dy1

�1
ÿ1

�1
ÿ1

dx2dy2

�hI�r1; x1�I�r2; x2�i
�
x1x2

q 2

qy1qy2
ÿx1y2

q 2

qy1qx2
ÿy1x2

q 2

qx1qy2

� y1y2
q 2

qx1qx2

�
h~e�r1; x1�~e�r2; x2�i. (17)

By substituting the correlation function (11) into (17), we
obtain the expression

Bl �
p

2P 2
0 c

2

� z

0
dx
�1
ÿ1

�1
ÿ1

dkxdkyFe�j�
�1
ÿ1

�1
ÿ1

dx1dy1

�
�1
ÿ1

�1
ÿ1

dx2dy2
ÿ
x1x2k

2
xÿx1y2kxkyÿy1x2kxky � y1y2k

2
y

�
� exp�ij�r1 ÿ r2��hI�r1; x�I�r2; x�i. (18)

The calculation of the dispersion Bl from (18) involves the
preliminary determination of the function
G4(r1; r2; r3; r4; z) � hu(r1; z)u(r2; z)u �(r3; z)u �(r4; z)i, which
can be calculated by asymptotic or numerical methods
[14]. Because asymptotic methods can be applied only in the
limiting cases of the weak or strong turbulence, we derive
the approximate formula to estimate Bl by using the so-
called `mean-intensity' approximation involving the replace-
ment

hI�r1; x�I�r2; x�i � hI�r1; x�ihI�r2; x�i. (19)

This approximation was used earlier to calculate êuctua-
tions of the `centre of gravity' of laser beams in a random
medium and gave good results [12] not only in limiting
situations but also in the intermediate case (the region of
êuctuation focusing). By using the Fourier transform for
the intensity

I�r; z� �
�1
ÿ1

�1
ÿ1

J�j; z� exp�ijr�dkxdky, (20)

J�j; z� � 1

4p 2

�1
ÿ1

�1
ÿ1

I�r; z� exp�ÿijr�dx dy

�J ��j; z�� J�ÿj; z��, (21)

we obtain from (18)

Bl �
8p 5

P 2
0 c

2

� z

0

dx
�1
ÿ1

�1
ÿ1

dkxdkyFe�j�
�
k 2
x

�
q
qkx

J�j; x�
�

�
�

q
qkx

J ��j; x�
�
ÿ kxky

�
q
qkx

J ��j; x�
��

q
qky

J�j; x�
�

ÿ kxky

�
q
qky

J ��j; x�
��

q
qkx

J�j; x�
�

� k 2
y

�
q
qky

J�j; x�
��

q
qky

J ��j; x�
��

. (22)

If the condition

hJ�j; z�i � hJ ��j; z�i � hJ�jj j; z�i (23)

is fulélled, then by using in (22) instead of the Cartesian
coordinate system (kxky) the polar system (kj), after
integration over the angular variable j, we obtain

Bl �
8p 6

P 2
0 c

2

� z

0

dx
�1
0

dkk 3Fe�k�
�
q
qk
hJ�k; x�i

�2
. (24)

4. Mean intensity distribution and mean
intensity spectrum of Laguerre ëGaussian beams

To perform calculations by expression (24), we calculate the
mean intensity spectrum for beams with the initial intensity
distribution (3) by using the well-known solution [14]

G2�r; q; z� � hU2�r; q; z�i � k 2

4p 2z 2

�1
ÿ1

�1
ÿ1

dx 0dy 0

�
�1
ÿ1

�1
ÿ1

dr 0xdr
0
yU2�r 0; q 0; 0� exp

�
ik

z
� q ÿ q 0��rÿ r 0�

ÿ pk 2

4

� z

0

H

�
q
z
z
� q 0

�
1ÿ z

z

��
dz
�
, (25)

where

H�x� � 2

�1
ÿ1

�1
ÿ1
�1ÿ cosjx�Fe�j�dkxdky.

We will study the beam OAM with l � 1, 2, 0. By setting
q � 0 in (25) and using (3) with the parameter l � 1, after
integration over the variable r 0, we obtain
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hI�r; z�i � k 2

4p 2z 2

�
1

a 2

������
8F
c

r �2
pa 4

�1
ÿ1

�1
ÿ1

dr 0xdr
0
y

�
�
1ÿ 1

4a 2
g 2�z�r 0 2

�
exp

�
ÿ 1

4a 2
g 2�z�r 0 2 ÿ ik

z
q 0r

ÿ pk 2

4

� z

0

H

�
q 0
�
1ÿ z

z

��
dz
�
, l � 1, (26)

where g 2(z) � 1� O 2; O � ka 2=z is the diffraction Fresnel
parameter. By integrating (26) in the xy plane, we énd P0

for l � 1:

P0 �
�1
ÿ1

�1
ÿ1

dx 0dy 0hI�r 0; z�i � 8p
F
c
. (27)

By using (21) and (26), we obtain the mean intensity
spectrum for the beam with l � 1 in the form

hJ�k; x�i � 2
F
pc

�
1ÿ 1

4a 2
g 2�x�

�
x
k

�2
k 2

�

� exp

�
ÿ 1

4a 2
g 2�x�

�
x
k

�2
k 2

ÿ pk 2

4

� x

0

H

�
ÿ j

x
k

�
1ÿ z

x

��
dz
�
. (28)

For l � 2 and 0, we have

hJ�k; x�i� F
pc

�
k 4

16a 4

�
x
k

�4
� g 2�x��2 ÿ 1

a 2 g
2�x�

�
x
k

�2
k 2 � 2

�

� exp

�
ÿ 1

4a 2
g 2�x�

�
x
k

�2
k 2

�

� exp

�
ÿ pk 2

4

� x

0

H

�
ÿ j

x
k

�
1ÿ z

x

��
dz
�
, l � 2, (29)

hJ�k; x�i � 2
F
pc

exp

�
ÿ 1

a 2
g 2�x�

�
x
k

�2
k 2

ÿ pk 2

4

� x

0

H

�
ÿ j

x
k

�
1ÿ z

x

��
dz
�
, l � 0. (30)

For P0 and l � 2 and l � 0, the same equality (27) will be
fulélled.

5. Orbital angular momentum dispersion
in the turbulent atmosphere

Expressions (28) ë (30) are valid for any shape of the
spectrum Fe(j) and, therefore, for any function H(x). We
will assume below that êuctuations of the permittivity of
the medium are caused by temperature pulsations and set

Fe�j� � 0:033C 2
e k
ÿ11=3, (31)

where C 2
e is the structural characteristic of êuctuations of

the air permittivity. In this case, we have H(x) �
0:465C 2

e jxj5=3. By substituting this expression into (28),
we obtain

hJ�k; x�i � 2
F
pc

�
1ÿ 1

4a 2
g 2�x�

�
x
k

�2
k 2

�
exp

�
ÿ 1

4a 2
�

� g 2�x�
�
x
k

�2
k 2 ÿ 1:1824b 2

0x
3

8

�
x
k

�5=6
k 5=3

�
, l � 1, (32)

where b 2
0x � 0:307C 2

e k
7=6x 11=6 is the mean square of

êuctuations of the plane-wave intensity at a distance x,
found in the continuous perturbation approximation. It
follows from (32) that the condition of applicability of
expression (24) is fulélled.

Then, we can calculate

q
qk
hJ�k; x�i � 2

F
pc

exp

�
ÿ 1

4a 2
g 2�x�

�
x
k

�2
k 2

ÿ 1:1824b 2
0x

3

8

�
x
k

�5=6
k 5=3

��
ÿ 1

a 2
g 2�x�

�
x
k

�2
k

�
�
g 2�x�
4a 2

�
x
k

�2 �2
2k 3 ÿ

�
1ÿ g 2�x�

4a 2

�
x
k

�2
k 2

�

� 1:1824b 2
0x

5

8

�
x
k

�5=6
k 2=3

�
. (33)

By squaring (33) and substituting the result into (24), by
using spectrum (31) and the calculated value of P0, we
obtain after simple transformations

B1 �
1

o 2
0:530b 2

0

� 1

0

dx
�1
0

dkkÿ2=3 exp
�
ÿ 1

2O
q 2�x�k 2

ÿ 0:887b 2
0 x

8=3k 5=3

��
1

O
q 2�x�k� 0:739b 2

0 x
8=3k 2=3

ÿ 2

�
1

4O
q 2�x�

�2
k 3 ÿ 0:739

1

4O
q 2�x�b 2

0 x
8=3k 8=3

�2

, (34)

where q 2(x) � x 2 � O 2 and b 2
0 � 0:307C 2

e k
7=6z 11=6.

Expression (34) can be used to calculate OAM êuctua-
tions for arbitrary turbulent conditions in the laser beam
path. These conditions can be determined based on the
turbulence parameter b 2

0 and expression (34) can be sim-
pliéed for the weak and strong turbulence. Consider the
behaviour of the relative OAM dispersion s 2

Ll � Bl=hLzi2.
Taking (14) into account, we have for the weak turbulence
( b 2

0 5 1)

s 2
L1 � 0:53b 2

0

� 1

0

dx
�1
0

dkkÿ2=3 exp
�
ÿ 1

2O
q 2�x�k 2

�

�
��

1

O
q 2�x�

�2
k 2 � 4

�
1

4O
q 2�x�

�4
k 6

ÿ 4
1

O
q 2�x�

�
1

4O
q 2�x�

�2
k 4

�
. (35)

After the calculation of integrals entering (35), we obtain

s 2
L1 � 0:53

331� 21=6G�7=6�
576

b 2
0O
ÿ5=6

� 1

0

dx
�
q 2�x��5=6

� 0:317b 2
0O

5=6
2F1

�
ÿ 5

6
;
1

2
;
3

2
;ÿ 1

O 2

�
. (36)

Here, G(x) is the gamma function and 2F1(a; b; c; x) is the
hypergeometric Gaussian function [15]. In the near-éeld
diffraction zone (O4 1), we énd from (36):
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s 2
L1 � 0:317O 5=6b 2

0 ( b 2
0 5 1). (37)

In the far-éeld zone (O5 1), we have

s 2
L1 � 0:119Oÿ5=6b 2

0 (b 2
0 4 1). (38)

In the case of strong turbulence, we will also use (34), but
consider only the far-éeld zone, when the relative OAM
dispersion can be asymptotically estimated as

s 2
L1 � 0:0534b 4

0 ( bÿ3=50 5O5 1, b 2
0 4 1). (39)

Note that in the case of strong turbulence, s 2
L1 becomes

independent of the beam size. It is obvious that the values
of b 2

0 for intermediate values of the parameter s 2
L1 can be

found by numerical integration in expression (34).
For a Laguerre ëGaussian beam with l � 2, by sub-

stituting (29) into (24), for ther turbulence spectrum of type
(31), we obtain

B2 �
1

o 2
0:530b 2

0

� 1

0

dx
�1
0

dkkÿ2=3 exp
�
ÿ 1

2O
q 2�x�k 2

ÿ 0:887b 2
0 x

8=3k 5=3

��
3

2

�
1

2O
q 2�x�

�2
k 3 ÿ 0:739b 2

0 x
8=3k 2=3

ÿ 3
1

2O
q 2�x�kÿ 1

8

�
1

2O
q 2�x�

�3
k 5� 0:739

1

2O 2
b 2
0 x

8=3k 8=3

ÿ0:739 1

8
b 2
0 x

8=3

�
1

2O
q 2�x�

�2
k 4=3

�2

. (40)

For weak and strong turbulence, we énd from (40) the
following expressions:

s 2
L2 � 0:124b 2

0O
5=6

2F1

�
ÿ 5

6
;
1

2
;
3

2
;ÿ 1

O 2

�
(b 2

0 5 1), (41)

s 2
L2 � 0:0133b 4

0 ( bÿ3=50 5O5 1, b 2
0 4 1). (42)

Figure 1 presents root-mean-square deviations of OAM
êuctuations calculated for a laser beam propagating under
conditions of arbitrary turbulence. Figure 1b shows the
initial parts of curves ( 1 ) and ( 2 ) at the enlarged scale. It
follows from the curves in Fig. 1 and expressions (36), (39),
and (41) that three characteristic regions can be distin-
guished in the dependence of the dispersion of OAM
êuctuations on the parameter b 2

0 . In the érst region
(weak turbulence), the OAM dispersion increases with b 2

0

and the inequality s 2
L1 > s 2

L2 is satiséed. This inequality is
also fulélled in the third region (strong turbulence), how-
ever, the OAM dispersion increases with b 2

0 much faster. It
seems that the increase in s 2

L1 for b 2
0 5 1 is caused by the

increase in the `mechanical' component of the OAM [8],
while a faster increase in s 2

L1 is caused by the creation of new
optical vortices due to the atmospheric turbulence and the
increase in the vortex component of the OAM. In the second
region (intermediate), the inequality s 2

L1 < s 2
L2 is fulélled.

We can assume that the change in the inequality in passing
from the érst region to the second one and the enhancement
of OAM êuctuations in the laser beam with l � 2 compared
to the OAM êuctuations in the beam with l � 1 are related
to the instability of the optical vortex with the topological
charge l � 2, carried by the beam, with respect to small
perturbations [16] and its decomposition into a system of

two randomly arranged vortices of the same sign, each of
them having the unit topological sign.

Consider now the `atmospheric' component of the OAM
by calculating the dispersion of êuctuations of the momen-
tum of a Gaussian beam, which had initially the zero OAM.
By using (30) and performing calculations according to the
scheme presented above, we have in the most general case

B0 �
1

o 2
0:530b 2

0

� 1

0

dx
�1
0

dkkÿ2=3 exp
�
ÿ 1

2O
q 2�x�k 2

ÿ 0:887b 2
0 x

8=3k 5=3

���
1

2O
q 2�x�

�2
k 2 � ÿ 0:739b 2

0 x
8=3�2k 4=3

�2 � 0:739 1

2O
q 2�x�b 2

0 x
8=3k 5=3

�
, (43)

and in the cases of weak and strong turbulence, we obtain

B0 � 0:138
1

o 2 b
2
0O

5=6
2F1

�
ÿ 5

6
;
1

2
;
3

2
;ÿ 1

O 2

�
( b 2

0 5 1), (44)

B0 � 0:0534b 4
0

1

o 2
( bÿ3=50 5O5 1, b 2

0 4 1), (45)

respectively. The ratios of the asymptotic estimates of Bl

obtained for the conditions of weak and strong turbulence,
depending on the index l have the form

B1

B0

� 2:3,
B2

B0

� 3:6 (b 2
0 5 1), (46)

b0 (rel. units)

sL1, sL2 (rel. units)

0 20 40 60 200 220 240 260

200

400

600

2
1

4000

8000

12000

16000

a

1

2

2

1

sL1, sL2 (rel. units)

b0 (rel. units)
0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b

Figure 1. Dependences of the relative dispersions sL1 ( 1 ) and sL2 ( 2 ) of
the beam OAM êuctuations on the parameter b0 and their asymptotics
(39) (*) and (42) (&) (a), and the initial parts of curves ( 1 ) and ( 2 ) at the
enlarged scale and their asymptotics (36) (*) and (41) (&) (b) for O � 1.
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B1

B0

� 1,
B2

B0

� 1 ( bÿ3=50 5O5 1, b 2
0 4 1). (47)

It follows from (46) and (47) that, as the beam path length
or the atmospheric turbulence increase, when b0 ! 1, the
initial OAM value does not affect OAM êuctuations, at
least for the beams with the diffraction parameter restricted
by the condition bÿ3=50 5O5 1. This is conérmed by the
dependences of ratios B1=B0 and B2=B0 on the parameter O
calculated for a laser beam propagating under conditions of
arbitrary turbulence (Fig. 2). It also follows from Fig. 2
that the dispersion of OAM êuctuations for a beam with
l � 2 (B2) comes out on its asymptotics later than for a
beam with the dispersion B1. Note that in the limiting case
b0 !1, the main contribution to the estimate of B1, B2,
and B0 comes from the same term on integrands, which
includes the power dependence / k 2=3. It can be shown that
the integral representation of Bl will contain the same term
in the integrand. Therefore, we can write, without explicit
calculations, that

Bl

B0

! 1, when b0 !1.

Figure 3 shows the dependence of Bl on the diffraction
parameter O calculated for b0 � 1. One can see that the
minimum of OAM êuctuations is achieved near O � 1, i.e.
for the narrowest laser beams (in the diffraction sense). The
passage to the near- or far-éeld diffraction zone is accom-
panied by the increase in êuctuations.

6. Conclusions

We have studied the change in the OAM of a vortex laser
beam caused by inhomogeneities of the permittivity of the
atmosphere. The integral representation of the laser beam
OAM has been obtained. The integral relations for the
mean and mean square OAM have been derived. It has
been shown that the statistical mean OAM coincides with
the OAM in a homogeneous medium. The dependences of
the dispersion of OAM êuctuations on the atmospheric
turbulence and diffraction parameters of the laser beam
have been calculated. It is shown that in passing from the
weak to strong turbulence regime during laser beam
propagation, the growth rate of OAM êuctuations changes.
As the atmospheric turbulence increases, the limiting
dependence of the OAM dispersion on the turbulence
conditions is uniéed and dispersion coincides with dis-
persion of a beam with the zero initial OAM, irrespective of
the initial OAM. It has been also found that the relative
dispersion of OAM êuctuations in a laser beam with the
lower index l exceeds the relative dispersion of OAM
êuctuations in a laser beam with the higher index in the
weak and strong turbulence regimes, whereas the situation
is opposite in the moderate turbulence regime. It is assumed
that the change in the inequality sign is related to the
instability and decomposition of high-order optical vortices.
It has been shown that OAM êuctuations achieve their
minimum for narrow diffraction-limited laser beams.
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Figure 3. Dependences of dispersion of OAM êuctuations B0 ( 1 ), B1

( 2 ), and B3 ( 3 ) on the diffraction Fresnel parameter O for b0 � 1 and a
laser wavelength of 1.06 mm.
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