
Abstract. An algorithm for the wind proéle recovery from
spatiotemporal spectra of a laser beam reêected in a turbulent
atmosphere is presented. The cases of a spherical wave
incident on a diffuse reêector of énite size and a spatially
limited beam reêected from an inénite random surface are
considered.
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1. Introduction

Speckle methods for studying materials and dynamics of
liquid or gas êows have been developed in many papers.
The intensity êuctuations of laser radiation scattered by or
transmitted through a diffuse surface (suspended particles)
detected in these methods give information on the motion
of a diffuse object itself (particles) or of its parts
(deformations). The results of investigations performed in
this éeld are presented, for example, in monographs [1 ë 3].

The possibility of determining the wind velocity aver-
aged (integrated) over the path in the atmosphere by
measuring the spatiotemporal correlation function of tur-
bulent intensity êuctuations of light scattered by a chaotic
surface was analysed in fact in the only paper [4]. We are not
aware of any publications considering the problem of
measuring the wind velocity proéle in the atmosphere
from turbulent êuctuations of reêected optical radiation
by illuminating a scattering surface.

In this paper, we analyse the possibilities of the wind
proéle recovery from turbulent intensity êuctuations of laser
radiation propagated in the atmosphere after reêection.
Expressions for the spatiotemporal correlation function of
intensity are obtained and an algorithm for the wind proéle
recovery is proposed.

2. Formulation of the problem

Let us assume that a laser source located in the plane
x 0 � x0 illuminates a diffusely scattering surface located in

the plane x 0 � x and the reêected radiation is received by a
computer-aided detector array in the source plane x 0 � x0.
The sequences of realisations of two-dimensional intensity
distributions with a repetition rate f � 1=t (t is the time
between exposures) in the digitised form are subjected to
the spectral correlation processing. The scheme is presented
in Fig. 1.

We assume that the éeld of the laser source in the plane
x 0 � x0 is speciéed by the Gaussian model
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where O � ka 2=L; a and F are the beam radius and the
radius of curvature of the phase front at the centre of
transmitting aperture, respectively; U0 is the éeld amplitude
on the beam axis; k � 2p=l; and L � xÿ x0 is the beam
path length. The éeld incident on the reêecting surface in
the plane x 0 � x is written in the form [5]
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Figure 1. Geometry of the problem.
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is the Green function [6, 7]; e1(x
0; q 0; r;Sj) is the part of the

permittivity of the medium êuctuating due to turbulence;
q 0, r, and Sj are two-dimensional vectors in the transverse
plane; integration is performed along the beam propagation
direction; x � (x 0 ÿ x0)=(xÿ x0); and
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.

The wave formed on the reêecting surface due to
scattering is described by the expression [5]

Ur�x; r 0� �
�
d rV�r; r 0�U�x; r�,

where V(r; r 0 ) is the reêection coefécient. Taking into
account the reciprocity theorem for the Green function of
the wave propagating in the forward and backward
directions, the éeld received in the plane x 0 � x0 has the
form
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This gives the radiation intensity in the plane x 0 � x0
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and we obtain the product of radiation intensities at points
with radius vectors q1 and q2 at the instants t � 0 and t � t
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The second spatiotemporal statistical intensity moment
is obtained after averaging (5). We assume that the surface is
diffuse, with the reêection coefécient varying randomly in
time and space in the general case. We also assume that
êuctuations of the reêection coefécient and refractive index
in the atmosphere are independent. Then, averaging in (5)
over the reêection coefécient and turbulent êuctuations e1
can be performed separately. By assuming that the corre-
lation time of the reêection coefécient is shorter than the
time t between exposures, we obtain the expression

hV�r1; r 01�V ��r2; r 02�V�r3; r 03�V ��r4; r 04�i

� hV�r1; r 01�V ��r2; r 02�ihV�r3; r 03�V ��r4; r 04�i (6)

for the fourth statistical moment of the reêection coefécient
[5], where

hV�ri; r 0i �V ��rl; r 0l �i

� �4p=k 2�jA�ri�j2d�ri ÿ rl�d�ri ÿ r 0i �d�rl ÿ r 0l �; (7)

A(ri) are the amplitudes of the reêection coefécient and
angle brackets denote ensemble averaging.

We will perform the averaging over turbulent êuctua-
tions of the permittivity [the last exponential in (5)] by
assuming that the probability density for the integral of the
êuctuating part of the permittivity over the beam path is
described by a Gaussian [8]

hexp�ij�i � exp
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2
hj 2i

�
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We represent the square of the integrand in the last
exponential in (5) appearing upon averaging as a sum of
squares of differences of functions e1 in pairs with the sign
`+' in front of them if functions e1 have different signs and
the sign `ÿ' if these functions have the same signs. As a
result, we obtain in the last exponential in (5) a sum of
twenty-eight spatiotemporal structural functions of the
permittivity of the type

h�e1�x 0; qi; rl; aj; t1� ÿ e1�x 0; q 0k; r 0m; bj; t2��2i, (9)

in which averaging is performed by assuming that the
êuctuations of e1 over the coordinate x

0 are delta-correlated
[8],
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� H� qi ÿ q 0k; rl ÿ r 0m; aj ÿ bj; t1 ÿ t2�, (10)

where j is the two-dimensional vector of the spatial
frequency; Fe(x; j) is the three-dimensional vector of the
permittivity êuctuations; and V(x 0) is the wind velocity. The
averaging in (10) was performed by using the Taylor
hypothesis of the frozen turbulence [9]

e1�x 0; q; t� � e1�x 0; q ÿ V�x 0�t; 0�. (11)

After substitution of expressions (6) and (7) into (5),
averaging over an ensemble of turbulent êuctuations of the
permittivity by using (9) and (10) and integrating by using
the properties of delta functions, the second spatiotemporal
statistical intensity moment can be represented in the form
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Expression (12) is rigorous within the framework of the
modern theory of propagation of short waves in random
media. It represents in the general form the spatiotemporal
correlation function of intensity êuctuations of a Gaussian
beam reêected from a diffuse surface under arbitrary
turbulent conditions of propagation in the atmosphere. The
only restriction is the assumption that the reêection
coefécient of the surface (6) is constant in the calculation
of correlations of the sequence of exposures (frames) of the
intensity distributions.

Below, we consider the regime of a weak optical
turbulence in the approximation of the Kolmogorov spec-
trum Fe(j), when the parameter b 2

0 � 1:23C 2
n k

7=6x 11=6

characterising the turbulent conditions of propagation (x
is the beam path length, C 2

n is the structural characteristic of
êuctuations of the refractive index) does not exceed unity.
The parameter b 2

0 stands in front of the integral in the last
exponential in (12). Under the condition b 2

0 < 1, this
exponential can be expanded into a Taylor series by
retaining only the two érst terms of the series.

Let us distinguish two diffraction propagation regimes:
(i) a spherical wave illuminates a diffuse reêector of énite
size and (ii) a spatially limited beam is reêected from an
inénite diffuse surface. This allows us to simplify consid-
erably expression (12) for the correlation function and
construct the algorithm for recovering the wind velocity
proéle.

The initial éeld is speciéed in calculations by using
model (1), and the amplitude of the reêection coefécient is
written in the form [5]

A�R� � A0 exp

�
ÿ R 2

2a 2
r

�
, (13)

where R is the two-dimensional vector lying in the reêection
plane; A0 the amplitude at the centre of the reêector; and ar
is the effective radius of the reêector corresponding to the
eÿ1 level of the squared amplitude.

3. Spherical wave ë reêector of énite size

By substituting (1) and (13) into (12) and assuming that
O! 0, which corresponds to the passage to the spherical
weave regime, and expanding the last exponential in (12)
into a series by retaining the érst two terms, we énd the
spatiotemporal correlation function of intensity

KI�x0; q1; q2; t� � hIR�x0; q1; 0�IR�x0; q2; t�i
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where A is a numerical constant. Expression (15) for t � 0
coincides with results [5] obtained for the spatial correlation
function of intensity for a spherical wave reêected from a
diffuse reêector in a turbulent atmosphere for b 2

0 < 1.
Let us assume that q1 � 0 and consider the difference of

values of the correlation function at points with radius
vectors q2 and ÿq2
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It follows from (16) that, as the size of a scattering surface
is increased (ar !1), êuctuations of the reêected spherical
wave decrease to zero due to averaging, in accordance with
results [5].

Consider now the spatiotemporal spectrum in the region
of spatial frequencies qz, qy > 0,

~FI�q;o� �
1

�2p�3
�
dq

�
dt exp�iqqÿ iot�DI�x0; q; t�

� 2A

� x

x0

dx 0Fe

�
x 0;

q

1ÿ x

�
exp

�
ÿ x 2a 2

r q
2

2�1ÿ x�2
�

� sin 2

�
xÿ x0
2k

q 2 x
1ÿ x

�
1

�1ÿ x�2 d
�
oÿ V�x�q

1ÿ x

�
. (17)

For the power Kolmogorov spectrum of permittivity
êuctuations Fe(x

0; j) � 0:132C 2
n (x

0)jÿ11=3, the relation
Fe(x

0; q=(1ÿ x)) � Fe(x
0; q)(1ÿ x)11=3 is valid. Let us set

q � qiei (ei is the unit vector of the Cartesian coordinate

system), V(x)q� Vi(x)qi, and a � o=qi is the ratio of the
time and spatial frequencies. Then, the normalised spectrum
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Let us calculate the integral
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and the parameter g takes positive values. If the reêecting
surface is small enough, so that 4
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p
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r < 1, the

absolute value of the last fraction in (19) has a maximum at

g 2 � L 2x 2
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and possibly at the point g � 0. Thus, if the delta function
in the integrand in (19) is nonzero at the only point in the
integration region, this point is unambiguously determined
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Figure 2. Behaviour of integral (19) for a constant wind velocity (a) and wind velocity changing linearly along the beam path (b).
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by the position of maximum (20). Figure 2 shows the
behaviour of integral (19) on the plane (g; a) with a
pronounced maximum in sections a � const for the
constant wind velocity Vi(x) � V0 (Fig. 2a) and the wind
velocity Vi(x) � V0(1ÿ 10x) changing linearly along the
beam path (Fig. 2b). The structural characteristic was
assumed constant and the effective radius of the diffuse
surface was 1/10 radius of the érst Fresnel zone
ar � 0:1(lL)1=2

These features of integral (19) allow us to formulate the
algorithm for recovering the wind velocity proéle. We énd
spatiotemporal spectrum (17) from the recorded sequence of
two-dimensional intensity distributions and calculate inte-
gral (19). By using relation (20), we énd the coordinate a of
the point on the beam path for each speciéed value of x for
which the maximum of the modulus of integral (19) is
separated. Then, by using the relation a � Vi(x)=(1ÿ x),
which should be fulélled for nonzero values of (19), we énd
the wind velocity Vi(x) at the given point on the beam path.
Having passed through the entire region of values of a at
which integral (19) is nonzero, we construct the wind
velocity proéle. Note that the recovery of the velocity
proéle by this method is impossible at the ends of the
path for

jxÿ 0:5j > 1

2

�
1ÿ 4

���
3
p �

k

L

�
a 2
r

�1=2
. (21)

This is explained by the fact that both upon reêection from
the diffuse surface and imaging, information on the wave
phase is lost, and phase incursions from the ends of the
path have no time to transform to noticeable intensity
êuctuations.

An important feature of this algorithm is that the
structural constant of the refractive index enters into (19)
at a éxed value of a as a constant coefécient and its
variation along the path does not affect the position of
the maximum (20).

4. Spatially restricted beamë inénite surface

By substituting (1) and (13) into (12), assuming that
ar !1, and expanding the last exponential in (12) into a
series by retaining the two érst terms, we obtain the
spatiotemporal correlation function (14) in the form
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where

a 2
rb � a 2

�
1ÿ L

F

�
� L 2

a 2k 2
. (23)

As in the case (15), expression (22) for t � 0 coincides with
the expression for the spatial correlation function obtained
in [5] for the condition b 2

0 < 1.
Consider now the spatiotemporal spectrum
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This expression coincides accurate to a constant factor with
the expression for the spatiotemporal spectrum of a
spherical wave reêected from a reêector of énite size (17)
with the effective radius ar � arb. This means that algorithm
(18) ë (20) for recovering the wind velocity proéle is also
valid in the beam-inénite reêector regime.

5. Conclusions

We have proposed the algorithm for the wind proéle
recovery from êuctuations of laser radiation reêected in a
turbulent atmosphere. The expressions have been obtained
for the spatiotemporal correlation function and spectrum of
the optical wave reêected by a diffuse scatterer in the
turbulent atmosphere. It has been shown that the recovery
of the wind velocity proéle based on the correlation spectral
analysis of two-dimensional intensity distributions of
reêected radiation is possible in the weak optical turbulence
regime, and the recovery algorithm has been proposed for
the cases of a spherical wave incident on a diffuse reêector
of énite size and a spatially restricted beam reêected from
an inénite random surface. An important feature of the
algorithm is that variations in the structural characteristic
of the refractive index along the beam path do not affect
the wind velocity proéle being recovered.
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