
Abstract. A new method for analysing the transmission and
scattering of the guided TE mode in an inclined reêector
located in an optical waveguide is proposed and studied. The
reêection of an inhomogeneous optical beam from the inclined
reêector is described semi-analytically for the érst time by
using the theory of coupled waves and taking into account the
interrelation and transformation of energy between all the
waves of the discrete and continuous spectra of the optical
2D-waveguide (even and odd guided, radiation, and evan-
escent waves). The results of calculations of the propagation
of light through the inclined reêector in the form of a thin
(10 ë 500 nm) homogeneous strip obtained by our method and
by the énite difference time domain (FDTD) method are in
excellent quantitative agreement. The calculation rate of our
method considerably (by one ë two orders of magnitude)
exceeds that of the FDTD method and our method has a
better accuracy.

Keywords: integrated optics, optical waveguide, method of coupled
modes, énite difference time domain method, nanophotonics.

1. Introduction

Inclined nanoreêectors are used in optical waveguides as
beamsplitters in devices for optical data processing [1, 2] or
as basic elements in multirefection éltering technology
[3 ë 6]. The reêection of an inhomogeneous optical beam
from single reêectors was earlier investigated by the énite
difference time domain (FDTD) method [1 ë 4]. The FDTD
methods are universal, but they require large computational
resources and do not provide the adequate accuracy in
calculations of light energy losses upon weak reêection to
the side from a single reêector, which is very important for
optical signal processing with the help of new élters and
multiplexers based on multibeam effects [3 ë 6].

In this paper, we developed a fundamentally new
approach based on the theory of coupled waves (modes)
[7 ë 9], which was érst used here to analyse the total éeld
during the propagation of an optical beam in an optical

waveguide containing an inclined reêector. Earlier, the
equations of coupled waves were considered, as a rule,
only for two `main' interacting modes [10]. Now, the
propagation, specular reêection, and scattering of an
inhomogeneous optical beam from an inclined reêector is
described for the érst time by using the theory of coupled
modes taking into account the interrelation and trans-
formation of energy between all the waves of the discrete
and continuous spectra of an optical waveguide (even and
odd guided, radiation, and evanescent waves). To simplify
the problem, a three-dimensional (3D) optical waveguide is
replaced by its two-dimensional (2D) analogue by using the
effective refractive index method [11]. In this case, the TM
polarisation of the 3D waveguide corresponds to the TE
polarisation of the equivalent 2D waveguide. To demon-
strate the possibilities of the method, we considered an
important case of the reêection of the fundamental TE0

mode from a narrow homogeneous nanostrip oriented at an
angle to the axis of a homogeneous two-dimensional wave-
guide.

2. Use of the method of coupled waves to
analyse the reêection of a guided mode from a
strip inclined reêector crossing an optical
waveguide

2.1 Formulation of the problem and basic equations

Consider a typical waveguide structure with a single
inclined reêector (Fig. 1). We assume that the ends of
the reêector project beyond the waveguide boundary to
provide the complete capture of the `tails' of the radiation
éeld of the incident TE0 mode. The electromagnetic éeld at
any point of the structure is sought as a superposition of
the forward and backward waves of the unperturbed optical
waveguide. For each type of such forward and backward
waves, we can obtain from Maxwell's equations [7] an exact
integro-differential system relating the amplitudes of all the
interacting waves in the interaction region oriented along
the z axis:

dA�b; z�
dz

� ÿi
X
p;q

�
B�b 0; z�k�b; b 0; z� exp��ixz�db 0;

(1)dB�b; z�
dz

� i
X
p;q

�
A�b 0; z�k ��b; b 0; z� exp��ixz�db 0:

Here, ¡(b; z) are the changing amplitudes of the incident
(forward) modes of the discrete and continuous spectra,
which are the eigenmodes of the waveguide without a
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reêector, including the amplitude A0(z) of the fundamental
TE0 wave; B(b; z) are the changing amplitudes of the
natural backwards waves, including the amplitudes Bn(z) of
reêected discrete TEn waves; b and b 0 are the longitudinal
wave numbers of the eigenmodes; x are all possible pair
combinations of the differences of the longitudinal wave
vectors b and b 0 of the interacting waves, both for guided
modes and modes of the continuous spectrum (radiation
and evanescent, forward and backward);

k�b; b 0; z� � o
� �1
ÿ1

De�x; z�E�b; x�E ��b 0; x�dx (2)

is the coupling coefécient [7], which is proportional to the
overlap integral for the transverse éelds E(x; b) and E(x; b 0)
of any two eigenmodes of the total set of modes of the
given waveguide; De(x; z) � e(x; z)ÿ e0(x; z) is the difference
of the permittivities caused by the presence of the reêector;
e(x; z) and e0(x; z) are the permittivities of the waveguide
with the reêector and without it, respectively; o is the
frequency of light with the wavelength l0 in vacuum and
the wave vector k0 � 2p=l0; the subscripts p and q denote
summation over the types of the waves, their directions
(forward and backward) and parity, because the modes of
the continuous spectrum are degenerate in the wave
number.

The integration limits in (1) will be indicted below. Note
that the theory of coupled waves is not at all a variant of the
perturbation theory. It was developed independently and
was presented by Marcuse for the most general case of
anisotropic waveguides in 1975 [12]. It should be emphasised
that because the formalism of coupled modes is rigorous [7],
we will not use any approximations or expansions.

We will solve the inénite system of equations (1) by using
the original numerical-analytical approach [8, 9]. Consider
its basic principles. The intermediate integral functions
P(b; b 0; z) and Q(b; b 0; z)

P�b; b 0; z� �
�
k�b; b 0; z� exp��ixz�1dz;

(3)

Q�b; b 0; z� �
�
k�b; b 0; z� exp��ixz�zdz,

are introduced for each type of the waves ë discrete and
continuous, forward and backward, radiation and evan-
escent, even and odd.

The integration limits in (3) and (1) for forward or
backward waves related to the index b are different (from 0
to z or from zmax to z). The integral functions k(b; b 0; z),
P(b; b 0; z), and Q(b; b 0; z) are continuous. It is important
that they can be represented analytically exactly for a
homogeneous waveguide in the case of a reêector with
plane boundaries. The explicit expressions for k, P, and Q,
which are combinations of exponentially trigonometric
expressions, we omit here. Figure 2 presents the typical
dependences of coupling coefécients on b and z, which were
constructed based on the known éelds [7] of a two-mode
élm optical waveguide. The parameters of the structure were
as follows: the waveguide width was H � 3:8 mm, the
reêector thickness was h � 0:65 mm, the reêector inclination
angle was a � 608, and the refractive indices of the medium
and waveguide were n1 � 2:2, and n2 � 2:21, respectively.
Note that a special attention should be paid to the matching
of intermediate functions (3) at the interfaces of media with
different refractive indices.

The interaction region is divided along the z axis into a
énite number (20 ë 50) of parts zk, and A0(z) is represented
in the form of a piecewise linear function with unknown
(complex) inclination coefécients ak for each linear interval:

A0�z� � akz� bk: (4)

According to the condition of the problem, the incident
mode is the TE0 mode. Therefore, the amplitudes of all the
incident waves (except one) in the beginning of the
interaction region (z � 0) are zero: A(b; 0) � 0, A0(0) � 1.
For backward waves, vice versa, the amplitudes are zero at
the end of the interaction region, B(b; zmax) � 0 because no
reêected waves should be behind this region (z > zmax).

First we separate the main part of the solution of system
(1). The terms containing the function A0(z) are grouped to
a separate subsystem, which, taking into account (3), (4),
and the boundary conditions pointed out above, can be
integrated over z:
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Figure 1. Illustrations to the calculation of éelds in a waveguide with an inclined reêector by the method of coupled waves (a) and the FDTD method
for h � 300 nm and n3 � 2:4 (b): ( 1 ) optical waveguide; ( 2 ) inclined reêector; ( 3 ) intensity scale for the normalised electric éeld.
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A�b; z� � ÿi
X
p;q

�Xk
j�1
fajÿ1�Q�b; b 0; zj� ÿQ�b; b 0; zjÿ1��

� bjÿ1�P�b; b 0; zj� ÿ P�b; b 0; zjÿ1��g � ak�Q�b; b 0; z�

ÿ �Q�b; b 0; zk�� � bk�P�b; b 0; z� ÿ P�b; b 0; zk��
�
: (5)

Here, zk < z < zk�1 and the free index b 0 (wave number)
should be set equal to the longitudinal wave number of the
discrete TE0 mode. A similar expression can be written for
the complex amplitudes B(b; z) of backward waves, the only
difference being that summation over the numbers k of

linear parts of the interaction region is performed in the
reverse order, from the end of the interaction region to its
beginning. Taking into account summation over p and q,
the right-hand side of (5) contains ten types of functions P
and Q, of which eight belong to the continuous spectrum of
the waves (radiation and evanescent, forward and back-
ward, even and odd) and two ë to the discrete spectrum of
guided forward and backward modes. But in fact,
expression (5) is a simple linear combination of functions
P and Q with coefécients ak, because bk are expressed in
terms of ak linearly as b1 � 1� a1(z1 ÿ z0), b2 � 1� a1(z1ÿ
z0)� a2(z2 ÿ z1), etc.

To determine the slope ak of the piecewise linear
function A0(z), we write out the total equation

dA0�z�
dz

� ÿi
X
p

��
A�b 0; z�k�b; b 0; z� exp�ÿixz�db 0

�
�
B�b 0; z�k�b; b 0; z� exp�ixz�db 0

�
(6)

separately for the amplitude of the TE0 wave from (1). The
free index b in this equation should be set equal to the
longitudinal wave number of the discrete TE0 mode. Unlike
(1), here the amplitudes A(b; z) of the forward waves are
taken out as a separate term and the index p denotes the
remaining summation over the types of waves and parity.
Because the left-hand side of expression (6) is dA0(z)=dz �
ak, after the substitution of (5) into (6), this expression gives
the algebraic system of linear equations of the N order
equal to the number of regions zk with the totally deénite
right-hand side ck, whose explicit form is omitted here:

XN
i�1

Mkiai � ck: (7)

Despite the inénite number of modes of different types in
the continuous spectrum, they are all integrally coupled
with each other via the linear system of equations (7), which
has a comparatively small order N. Without prejudice to
the concept of the method, we can assume that the elements
of the matrix Mki are calculated at the middle point of each
interval with the coordinate z � (zk � zkÿ1)=2. The limits of
integration over b 0 in (6) and (7) are different and depend
on the wave type. In the case of radiation modes, it is not
necessary to cut off the spectrum because their longitudinal
wave number varies within énite limits, while the upper
inénite integration limit for the evanescent waves with the
imaginary b 0 is speciéed by the value in accordance with
the required accuracy (the modulus of this value proved to
be comparable with the real limit of b). Note that the
density of points upon integration can be considerably
decreased by arranging them not uniformly but dividing
into groups containing 2 ë 4 points and displacing them to
quadrature nodes inside each of the groups. It is known [13]
that summation with Gaussian quadrature weights is
equivalent to the integration of the third ë seventh order
polynomials. Then, it is sufécient to éx 100 ë 150 points in
each region of the continuous spectrum and consider only
this restricted number of spectral components.

Thus, the main part of the solution of system (1) for all
the components of continuous and discrete spectra A(b; z)
and B(b; z) is completely expressed analytically as linear
combination (5) of functions P and Q with coefécients ak
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Figure 2. Typical form of the coupling coefécient k(b; z) of the TE0 wave
with continuous-spectrum modes in an optical waveguide with an
inclined reêector for even (a) and odd (b) radiation modes and for even
evanescent modes (c).
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determined (numerically) by solving the algebraic system of
linear equations (7). The component of the spectrum of the
TE0 mode is determined in turn self-consistently by solving
(6) and represents simple piecewise linear function (4). We
can say that all the components of the spectrum are
expressed in terms of one main component A0(z), while
the piecewise linear component A0 is expressed in terms of
other components, and any small changes in A(b; z) and
B(b; z) cause changes in the elements of linear system (7) and
slopes ak. The main part of the solution of system (1)
separated in such a way has a clear physical meaning.

It is known from the theory of coupled waves that the
formalism of coupled waves is conservative and always
preserves the total energy of the interacting waves, which
can be redistributed only between the spectral components
in the interaction region. Because according to the condition
of the problem, the incident and only nonzero component is
the TE0 wave, the found solution concerns the case when the
energy exchange involves only this wave as the main energy
`supplier'. The mutual energy exchange without the partic-
ipation of the main component is neglected temporarily
because the interaction of any pair of spectral components
with amplitudes considerably smaller than A0 is the lower-
order quantity. However, it is important that (6) is the total
non-truncated equation relating all spectral components.

Let us continue our solution. By substituting the main
part of (5) into system (1) and integrating by parts over z, we
obtain the expression for the addition to the solution, which
can be calculated numerically by different methods:

r�b; z� � ÿi
X
p;q

� �
P�b; b 0; z�A�b 0; z�

ÿ
� z

0

P�b; b 0; z 0� dA�b
0; z 0�

dz 0
dz 0
�
db 0; (8)

where p and q still mean summation over the types,
directions and parity of the waves, but terms with the
amplitude A0 in the sum are absent. The integration over z 0

in (8) for backward waves should be performed from zmax

to z, and the limits of integration over b 0 depend on the
type of waves. Thus, the complete solution of the system of
equations (1) for coupled waves is decomposed into the
analytic part in the form of superposition (5) of continuous
functions P and Q and additional part (8), which is
calculated numerically at the middle nodes zk of the grid.
By substituting the reéned solution into (6), we obtain
again the linear system of algebraic equations (7) for
coefécients ak. It is not necessary to calculate (8) with a
high accuracy because the addition r(b; z) can be further
reéned by solving again linear system (7) with the same
matrix Mki but with different right-hand sides ck. In this
case, the solutions A(b; z) and B(b; z) obtained at the
previous step are substituted into addition (8).

Let us summarise the above discussion. The problem of
the propagation and scattering of an inhomogeneous wave
in a waveguide with an inclined reêector is considered in the
spectral representation by using the theory of coupled
waves. By introducing additional analytic functions, the
system of inénite integro-differential equations for coupled
waves can be transformed to a low-dimensional algebraic
linear system and the main part of the general solution can
be expressed in terms of the linear combination of the

introduced functions. It became possible because in the case
of a reêector with plane boundaries in a homogenous
waveguide, the integral functions P and Q can be repre-
sented analytically exactly. In fact, the functions P and Q
are the integrated `parts' of system (1), on which all the
further solution, including the addition r (8), is based.
Linear system (7) is constructed from equation (6) for
the amplitude A0 of the incident TE0 wave, which is
represented in the form of simple piecewise linear function
(4) with the slope ak determined from (7) self-consistently
with the amplitudes of all the above-mentioned types of the
waves entering the right-hand side of (6). The general
solution for the functions A(b; z) and B(b; z) is represented
in the form of the main part of the solution (written as a
linear combination of analytic functions P and Q with a
énite number of the same coefécients as in A0(z) and some
addition r (8), which is expressed in terms of the functions P
and Q and can be found by different methods and
interpolated.

The reêection coefécient R and transmission coefécient
for the guided modes can be found exactly by solving
equation (1) for z � 0 and z � zmax. The side reêection
coefécient R0 for the radiation waves can be found from the
Poynting vector or from the overlap integral for the found
éeld and the incident-wave éeld.

Thus, we have managed to consider completely the self-
consistent transformation of waves on an inclined reêector
involving the modes of the inénite spectrum without using
any approximations and have obtained in fact analytic
solution. This provides not only the high calculation
accuracy and rate, which cannot be achieved by other
numerical (énite-difference) methods, but also makes pos-
sible selective and separate construction of the optical éelds
of incident and reêected waves (guided, radiation, and
evanescent) only at the required site at a speciéed distance
from the reêector. The spectral representation, in our
opinion, has certain advantages over énite-difference meth-
ods. The énite-difference methods solve the problem of light
propagation by direct simulations, step-by-step, inside a
énite region. The direct simulation of wave processes,
including light propagation, is performed with rapidly
oscillating functions. To avoid the `lost of the phase',
numerical integration should be performed by using small
enough steps both in time and spatial coordinates. This
requirement leads to the increase in the calculation time,
resulting in the increasing error at a large number of steps.
For this reason, numerical methods are not so efécient for
solving wave problems as they are for electrostatic, gravita-
tional or ballistic problems. The coefécients in the spectral
representation are smooth functions separated from rapidly
oscillating wave cofactors, and the requirement of the
restriction of the interaction region is removed.

2.2 Results of numerical simulation for a élm waveguide

Consider as an example the reêection of the TE0 mode
from an inclined reêector (h � 0:25 mm, the angle a � 658,
n3 � 1:33) in a four-mode waveguide (H � 3 mm, n1 � 2,
n2 � 2:2). Figure 3a shows the exact solution of system (1)
for discrete modes. The upper curve, corresponding to the
incident TE0 mode, is the smoothest one, with
A0(z � 0) � 1 at the beginning of the interaction region.
The curves and dots indicate the solutions corresponding to
different numbers N (50 and 25) of sites zk, respectively.
One can see that the number N � 25 is sufécient. After the
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propagation of the TE0 wave through the inclined reêector,
the forward and reêected TE1, TE2, TE3 modes and the
scattered éeld of the continuous-spectrum modes appear, as
shown schematically in Fig. 1a. The amplitudes of forward
discrete modes at the end of the interaction region are
modulo 0.8239, 0.0378, 0.0136, and 0.0075 and for back-
ward waves at the beginning of the interaction region they
are 0.0019, 0.0020, 0.0069, and 0.0030, respectively, in the
order of increasing mode number. These values remain
invariable to the left and right of the interaction region. The
deécient energy (�32%) after propagation through the
inclined reêector is compensated by the continuous-
spectrum modes forming the scattered éeld. Figures 3b
and 3c show the exact solution of system (1) for some
amplitudes (real part) of the continuous spectrum: radiation
and evanescent, forward (for which A(b; 0) � 0) and
backward (B(b; zmax) � 0). One can see that all they
represent smooth functions.

2.3 Comparison of the obtained results with FDTD
numerical experiments

The correctness of our approach is convincingly conérmed
by a comparison of calculations performed by the method
of coupled waves and the FDTD method. We have
analysed many variants of the propagation of light in
optical waveguides containing inclined reêectors of different
thicknesses with different refractive indices. As an example,
Fig. 4 presents the results of calculation of the transmission
(T0) and reêection (R0) coefécients for the fundamental
mode in a single-mode waveguide in the silicon-on-insulator
structure at a wavelength of 1.5 mm. The waveguide width
was H � 3 mm, the refractive indices of the waveguide and
environment were n2 � 2:81 and n1 � 2:8. The FDTD
calculations were performed by using the FullWave
software package developed by RSoft Design Group Inc.
[14] for photonics. One can see that both these methods
correctly describe the interference nature of inclined
reêectors; however, the method of coupled waves provides
the one ë two orders of magnitude higher calculation rate.
For example, the time required to calculate one dot in
Fig. 4 by the method of coupled waves is about 12 s
compared to 2.1 or 36 min for the FDTD method with the
énite-difference step of 0.02 or 0.01 mm, respectively.

It is fundamentally important that the method of
coupled modes provides the high accuracy of determining
scattering losses (aloss � 1ÿ T0 ÿ R0), which cannot be
achieved in the best énite-difference methods, including

commercial FDTD packages. Unlike analytic methods,
the FDTD method has a énite error, which is inherent
to different extents in all direct simulation methods. In
simulations of the propagation of light in media, this error
gives the absolute error of measuring the coefécients T0 and
R0 of the order of one percent; however, this accuracy is
insufécient for describing the operation of multibeam
éltering elements having hundreds of reêectors and using
multiple interference effects [3 ë 6].

Thus, the new numerical-analytical realisation of the
method of coupled modes is not only interesting in the
scientiéc respect, but can be used also in many applies
optical problems. In particular, due to its clearness, high
accuracy and fast response, this method is convenient for
the quantitative description of a new class of multibeam
acoustooptic and thermooptic elements in devices for optical
data processing [3 ë 6].

3. Conclusions

We have analysed in the two-dimensional case the
propagation of the guided TE0 mode through a homoge-
neous strip reêector tilted an angle to the axis of a élm
optical waveguide. The propagation of an inhomogeneous
optical beam through the inclined reêector and reêection of
the beam from the reêector have been considered for the
érst time semi-analytically by using the theory of coupled
modes taking into account the interrelation and trans-
formation of energy between all the waves of the discrete
and continuous spectra of the optical waveguide (even and
odd guided, radiation, and evanescent modes). By intro-
ducing additional analytic functions, we have managed to
transform the system of inénite integro-differential equa-
tions for coupled waves to the low-dimensional algebraic
linear system and have expressed the main part of the
general solution in terms of a linear combination of the
introduced functions. The results of calculations of the
propagation of light through an inclined reêector obtained
by our method and the FDTD method with the help of the
commercial FullWave software package [14] are in excellent
quantitative agreement. The calculation rate provided by
our method considerably (by one ë two orders of magni-
tude) exceeds that of the FDTD method and our method
has a better accuracy. We have proposed the unique
algorithm for calculating complex optical elements with
inclined nanoreêectors (including an important case of very
low reêection coefécients for a single reêector), which has
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Figure 4. Transmission coefécient T0 of the TE0 mode and the coefécient of reêection upward R0 from a strip reêector tilted at an angle of 458 to the
waveguide axis as functions of the refractive index n3 of the reêector (h � 150 nm) (a) and thickness h of the reêector (n3 � 2:4) (b). CM: calculation by
the method of coupled modes; FDTD: calculation by the FDTD method.
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no so far analogues in the eféciency, accuracy, and speed of
simulation.
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