
Abstract. A new method for the wavefront reconstruction is
described which is based on measurements of the beam
intensity distributions in two cross sections and of wavefront
tilts by a Hartmann sensor in one of these cross sections and
makes it possible to énd the éeld phase distribution taking
into account possible phase jumps. The iteration algorithm for
énding this distribution is developed and its mathematical
description based on the calculation of the éeld in the Fresnel
approximation is presented. The algorithm is studied numeri-
cally. Relations are obtained to estimate the optimal
parameters of a measurement system, in particular, the dis-
tance between the cross sections and the number of
subapertures of the Hartmann sensor depending on the
mode composition of laser radiation.

Keywords: éeld phase distribution in a laser beam, Hartmann
sensor, wavefront, radiation intensity distribution.

1. Introduction

The properties of a Hartmann sensor (HS) were studied in
papers [1 ë 4] and the problem of the most efécient recon-
struction of the spatial distribution of the laser radiation
phase by using this sensor was analysed in [5 ë 9]. The main
attention in these papers was devoted to the minimisation
of errors in the determination of the centres of gravity of
light spots [1, 4, 8] and the development of an accurate and
fast algorithm for the recon-struction of the phase
distribution of radiation [1, 5, 9].

The accuracy of the wavefront reconstruction in HS
measurements is limited by the discreteness of subapertures.
A Hartmann sensor can be used to obtain information on
the wavefront tilts, i.e. on the gradient of the phase
distribution function. However, information on possible
phase jumps (ordinary discontinuities) is lost in this case.
The corresponding errors also remain when the number of
HS subapertures is increased. As a result, the error of HS
measurements of the laser beam divergence can be as high as
20%ë60%.

Phase jumps are inherent in laser radiation even in the
case of an ideal optical system (with plano-spherical optics)
[10]. For example, all the modes of an open resonator,
except the TEM00 mode, have phase jumps by p rad. This is
explained by the fact that the éeld of these modes can be
both positive and negative. The change of the éeld sign is
equivalent to the phase jump by p rad.

Note that to reconstruct the wavefront in HS measure-
ments, additional information on laser radiation is required
because phase reconstruction only by two intensity distri-
bution is ambiguous in the general case. For example, let the
intensity distribution in the érst cross section along the
beam path be an even function I0(q) � I0(ÿ q) of coor-
dinates ( q is the coordinate of points in the érst cross
section). We will describe the beam propagation in the
Fresnel ëKirchhoff approximation and will take into
account that phase conjugation does not change the éeld
intensity distribution in both cross sections. Then, it can be
easily shown that beams with phase distributions j0(q) and
ÿj0(ÿ q)ÿ r 2k=z (k is the wave number and z is the
distance to the second cross section along the beam
path) form the same intensity distribution Iz(q) in the
second cross section along the beam path. The ambiguity
can be excluded by using additional information on the
phase distribution in one of the cross sections obtained from
HS measurements.

In this paper, we propose a new method for wavefront
reconstruction based on HS measurements by using addi-
tional information on the beam intensity distribution in two
cross sections. The algorithm allows us to énd the phase
distribution taking into account its possible jumps.

2. Foundation of the algorithm and basic
calculation relations

Let us compare the calculated intensity distribution in the
focus of an optical scheme obtained from the real éeld
distribution at the input of the optical system with the
distribution obtained from HS measurements by using the
modal algorithm [6, 7]. Figures 1 and 2 present the far-éeld
intensity distributions for modes TEM11 and TEM22. One
can see that the far-éeld intensity distribution calculated by
reconstructing the phase distribution by using the modal
algorithm (Figs 1b and 2b) considerably differs from the
real distribution (Figs 1a and 2a).

Algorithms for reconstructing phase distributions
[1, 6 ë 8], based on measurements of local wavefront tilts,
cannot take into account jumps in the phase distribution.
The beam diameter calculated in the focus of the optical
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system by using such reconstruction algorithms is 1.5 ë 2
times smaller that the real beam diameter.

Consider the possibility of the radiation wavefront
reconstruction by measuring éeld characteristics in the
two cross sections of the beam separated by distance z.

Let only the intensity distribution I0(q) be measured in
cross section 1. The intensity distribution Iz(r) and angular
tilts Hz(r) of the wavefront are measured simultaneously
with a HS in cross section 2. The relation between these
éelds in the Fresnel approximation [11] can be written in the
form� �

�I0�q��1=2 exp�ij0�q��K�q; r�d2q

� �Iz�r��1=2 exp�ijz�r��, (1)

where j0(q) and jz(r) are éeld phase distributions in cross
sections 1 and 2, respectively; k � 2p=l is the wave number;
l is the radiation wavelength; and

K�q; r� � k

2ipz
exp

�
ik

2z
�q ÿ r�2 � ikz

�
is the kernel of the Fresnel integral. It is assumed in (1) that
jz(r) in cross section 2 is reconstructed from the tilt angles
Hz(r) � grad(jz(r))=k of the radiation wavefront.

The relation� �
�Iz�r��1=2 exp�ijz�r��K ��r; q�d2r �

� �I0�q��1=2 exp�ij0�q�� (2)

is also valid. Here, the asterisk means complex conjugation.
Expression (2) takes into account the principle of reversi-
bility of beam paths. It follows from (2) that���� � ��Iz�r��1=2 exp�ijz�r��K ��r; q�d2r

���� � �I0�q��1=2. (3)

Relation (3) is valid in the case of ideal measurements.
As mentioned above, under real conditions of discrete
measurements, the function jz(r) cannot be always recon-
structed from Hz(r). Therefore, (3) can be considered as the
equation for reéning the partially known éeld phase
distribution. In this case, it is reasonable to represent the
required phase distribution as the sum

jz�r� � jc�r� � js�r�, (4)

where jc(r) is a continuous function, which can be
reconstructed from wavefront tilts by using known
algorithms [6, 7]; js(r) is a discontinuous function taking
into account possible phase jumps and calculated taking
into account intensity distributions Iz(r) and I0(q) (3).

The problem of reconstruction of the phase jz(r) in cross
section 2 is solved by assuming that intensity distributions
Iz(q) and I0(r) are known from experiments, while the phase
jz(q) is known partially, with an accuracy to possible
jumps.
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Figure 1. Intensity distribution of a focused TEM11 beam (a) and this distribution obtained by using the traditional phase reconstruction algorithm
(b).
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Figure 2. Intensity distribution of a focused TEM22 beam (a) and this distribution obtained by using the traditional phase reconstruction algorithm
(b).
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Equation (2) is solved by using the iteration algorithm
realised by several steps:

(i) The éeld distribution �Iz(r)�1=2 exp�ijz(r)� in cross
section 2 is corrected by using the phase addition js(r)
taking into account possible phase jumps.

(ii) The éeld �I0(q)�1=2 exp�ij0(q)� in section 1 is calcu-
lated from (2).

(iii) The éeld calculated in step 2 is corrected so that a
new éled receives the measured intensity distribution, while
the phase distribution remains as in step 2.

(iv) The éeld in section 2 is calculated from (1).
(v) The parameter estimating the degree of similarity of

the éelds calculated in step 4 and used in step 1 is calculated.
(vi) If the compared éeld distributions are similar

enough, the search for solutions is terminated, and the
éeld obtained in step 4 is considered as the reconstructed
phase distribution.

(vii) If the compared éelds are substantially different,
step 1 is repeated. In this case, a new éeld in section 2 is used
in calculations, which has the phase distribution calculated
in step 4; the intensity of this éeld is equal to the measured
intensity Iz(r).

Then, we pass to the discrete representation of the
algorithm in relations (1) ë (4) taking into account the
parameters of the measurement system. Let us introduce
coordinates rm and rn of the centres of subapertures within
which laser beam parameters vary in cross sections 1 and 2,
respectively; n � 1, 2, . . . , N; m � 1, 2, . . ., M is the number
of subapertures.

After iterations p � 1, 2, . . . , P ( p is the number of a
current iteration, P is the number of the last iteration), the
éeld distribution U �p�z (r) becomes known. If the iteration
process is terminated, the reconstructed phase distribution
has the form

jz�r� � argU �p�z �r�. (5)

If the iteration process continues, the correcting phase
addition

j �p�1�s �rn� � argU �p�1�z �rn� (6)

is calculated in step p� 1 and the éeld U
�p�1�
0

U
�p�1�
0 �qm� �

XN
n�1

f �p�1�n �Iz�rn��1=2Knm�rn; qm� (7)

in cross section 1, where

f �p�1�n � exp
�
ij �p�1�s

��rn�;
Knm�rn; qm� � ÿ

ik

2pz

�
Sz�n�

exp�ÿikz��

� exp

�
ÿ ikHz�rn��rÿ rn� �

ik

2pz
�r� rn ÿ qm�2

�
d2r;

Hz(rn) is the measured vector of tilt angles and Sz(n) is the
subaperture area with the centre rn in cross section 2. It is
assumed in (7) that the approximation of the phase j �p�1�z

distribution within the nth subaperture is linear:

j �p�1�z �r� � j �p�1�s �rn� � kHz�rn��rÿ rn�. (8)

At the next step, the éeld U �p�1�z in section 2 is
calculated:

U �p�1�z �rm� �
XM
m�1

g �p�1�m �I0�qm��1=2Lnm�rn; qm�, (9)

where

g �p�1�m � argU �p�1�0 �qm�;

Lnm�rn; qm� �
ik

2pz

�
S0�m�

exp�ikz� exp
�
ik

2z
�q � qm ÿ rn�

�2
d 2r ;

and S0(m) is the subaperture area with the centre rm in cross
section 1. Then, the iteration process can be terminated or
continued taking into account (5) and (6), respectively.

It is necessary to specify the érst step of the iteration
process. The phase addition j �1�s (rn) at this step is speciéed
as a random quantity with the width of the region of values
no less than p rad. Further calculations are performed by
expressions (7) ë (9) for p � 0.

The criterion for the wavefront reconstruction quality is
the smallness of the least square of the phase difference
calculated in two successive iterations p and p� 1:

s 2
p �

XN
n�1
�Iz�rn��1=2

�
j �p�1�z �rn� ÿ j �p�z �rn�

�2.XN
n�1
�Iz�rn��1=2.

(10)

As the number of iterations is increased, the value of s 2
p

should approach zero.
The error of the phase distribution reconstruction by

using the iteration algorithm considered here is related to
the passage from integration in (1) ë (3) to summation in
(6) ë (9). In this case, no less than three measurement points
should correspond to each local maximum of the intensity
distributions I0(q) and Iz(r). To reconstruct the phase
distribution of the TEMkl laser mode, the condition

min
ÿ ����

N
p

;
�����
M
p �

5 3��k� 1��l� 1��1=2 (11)

should be fulélled, where N and M are the number of
subapertures in cross sections 1 and 2, respectively.
Relation (10) takes into account that the number of
local maxima of the intensity distribution for the TEMkl

mode is (k� 1)(l� 1).
In addition, the phase can be correctly reconstructed

only if subbeams (corresponding to subapertures in cross
sections 1 and 2) exchange their energy during propagation
from one cross section to the other. This requirement is
satiséed if the broadening of subbeams during diffraction
from subaperture edges exceeds the beam half-width, i.e.

l

a
����
N
p z5 2a, or z5

a 2

l
2����
N
p , (12)

where a is the subaperture size.
Relations (5) ë (10) completely describe the iteration

algorithm considered here. The accuracy and eféciency of
the algorithm were studied numerically.

3. Results of the computing experiment

The computing experiment was performed in the following
way. First, the éeld intensity distributions Iz(r) and jz(r)
were speciéed in cross section 2. Then, the éeld distribution
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U0(q) and intensity I0(q) � jU0(q)j2 were calculated in cross
section 1. We next assumed that, as in the real measurement
and phase reconstruction process, the discrete values of the
beam intensity I0(q) and Iz(r) in two cross sections and
discrete values of the wavefront tilts Hz(t) � kÿ1�
d�jc(r)�=dr in one of the cross sections are known. The
wavefront reconstruction quality was estimated from the
quantity characterising the deviation of the reconstructed
wavefront from the real one.

In the computing experiment, we varied Iz(r), jz(r), the
distance z between cross sections, the number of HS
subapertures, and the radiation intensity distribution in
cross section 1. The centres of subapertures were in the
nodes of a square network, the number of measurements in
both cross sections being the same (N �M). The éeld
distribution in cross section 2 was speciéed in the form

Uz�r� � Akl�r� exp�ijc�r��, (13)

Akl�r� � exp

�
ÿ 2

x 2 � y 2

b 2

�
Hk

�
x

b

�
Hl

�
y

b

�
, (14)

where Hk�l�(x, y=b) are Hermitian polynomials of the order
k, l � 0, 1, 2 . . .; r � (x, y); 2a � 4 mm is the size of the
square HS aperture; b � (0:7ÿ 1)a; and l � 1064 nm. The
phase distribution function jc(r) was written in the form of
a polynomial of (x; y) with the amplitude varying up to
� 10 rad. In this case, the jumps of the phase js(r) are
related only to a change in the sign of the function Akl(r)
depending on r, js(r) � arg (Akl(r)). Figures 3 ë 5 present
some results of calculations. The reconstructed intensity
distributions for the TEM11 and TEM22 modes coincide
with those presented in Figs 1a and 2a, respectively.
Figures 3c, 4b, and 5b present the reconstructed function
js(r). As follows from numerical calculations and Figs 3 ë
5, the reconstructed parameters of the laser beam agree
with the speciéed parameters.
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Figure 3. Speciéed (a) and reconstructed (b) TEM00 mode intensity distributions and the reconstructed distribution of the éeld phase js for the TEM00

mode (c).
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Figure 4. Speciéed mode intensity distribution (a) and reconstructed éeld phase distribution (b) for the TEM11 mode.
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We studied in the computing experiment the dependence
of Sp on the number of HS subapertures, the form of the
function Uz(r), and the number of iterations for different
dependences jz(r). Figure 6 shows that, as the number of
iterations is increased, the reconstruction error Sp begins to
êuctuate near a residual average level. The number P of
iterations required to achieve this level is � 100. The
residual error also depends on indices k and l: it decreases
with increasing the number of iterations and increases with
increasing indices k and l. These results conérm the correct-
ness of estimate (11). Note also that the convergence rate of
the algorithm strongly depends on the initial distribution
j �1�z (r). To increase the convergence rate, it is reasonable to
represent j �1�z (r) by a random function with the mean

statistical value equal to the `smoothed' phase distribution
function, which can be obtained in phase reconstruction by
using one of the known algorithms [1, 6, 7].

We also studied the dependence of the average Sp level
on the normalised distanceW, where W � zl=a 2 (Fig. 7). As
expected, the reconstruction error for small W � 2=

����
N
p

considerably exceeds the residual average level, which is
achieved for W � 0:3. This result is consistent with relation
(12).

It is reasonable to demonstrate the reconstruction
dynamics of the laser radiation phase distribution. The
phase distributions js(r) for the TEM22 laser mode for
n � 13 are presented in Fig. 8 (the number of iterations is 10
and 100) and Fig. 5b for P � 1000.
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The computing experiments have shown that the algo-
rithm developed in our paper takes into account the features
of a laser beam related to possible phase jumps and provides
the wavefront reconstruction quality that is sufécient for
practical applications.

4. Conclusions

A new method for the wavefront reconstruction has been
proposed. The method is based on measurements of the
wavefront tilts with a Hartmann sensor by using informa-
tion on the beam intensity distribution in two cross
sections. The main difference of the algorithm proposed
in the paper from algorithms developed earlier is that it
takes into account the possible phase jumps. We have
proposed the iteration algorithm for determining the phase
distribution, which is based on the calculation of the éeld in
the Fresnel approximation. The numerical study of the
algorithm gave relations for estimating the optimal
parameters of the measurement system, in particular, the
distance between the beam cross sections and the number of
HS subapertures depending on the mode composition of
laser radiation. Unlike the algorithms known previously,
which allow one to determine the radiation divergence with
an accuracy of up 20%ë60%, the algorithm proposed in
the paper has no systematic errors and provides the
reconstruction of the real éeld with the speciéed accuracy
by increasing the number of HS apertures.
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