
Abstract. The mode parameters of a rectangular cavity of a
semiconductor laser emitting in the range from 850 to 880 nm
are numerically calculated and analysed. Nearly quadratic
microcavities with a side of length �10 lm are considered. It
is shown that, unlike a Fabry ëPerot cavity, a rectangular
cavity has a much more dense system of nonequidistant
modes, which in principle cannot be interpreted as modes of
an `efécient' Fabry ëPerot cavity or a ring cavity. The
maximum Q factor of modes in the cavities under study can
exceed 105, which corresponds to the reduced intracavity loss
�3 cmÿ1. The radiation éeld of the cavity can be interpreted
as the éeld of four coherent sources located at the cavity
corners.

Keywords: semiconductor rectangular cavity, mode Q factor.

1. Introduction

Dielectric cavities for optical éelds corresponding to the
waves propagating along closed trajectories and experienc-
ing total internal reêection from the cavity boundaries
occupy a special place among optical cavities of all other
types. This is explained by their comparatively high Q
factor along with a comparatively small size. The most
spectacular representatives of such cavities are, for example,
spherical microcavities (see [1 ë 3] and references therein).
Another widespread conéguration of such cavities is
rectangular semiconductor structures [4 ë 6].

These cavities attract interest mainly because they can be
used as small narrowband optical élters. Nevertheless,
studies were reported in which such cavities containing
an amplifying medium were used in lasers. One of the érst
studies of lasers with a spherical cavity was performed in [7].
The earlier studies of semiconductor lasers were performed
for rectangular cavities.

However, rectangular cavities were widely used in semi-
conductor lasers only at the initial stage of their
development; later, interest in these lasers was virtually

lost because of their low eféciency. A rectangular cavity is
fabricated in a simpliéed way by the face cleavage. The
threshold lasing current of such a laser virtually coincides
with the transparency threshold of a heterostructure due to
a high Q factor of its cavity. At present rectangular cavity
lasers are mainly used to test rapidly the emission properties
of heterostructures at the intermediate stage of fabrication
of lasers from them. The mode structure of the cavity is not
important for such applications and is not considered, as a
rule. It seems that for this reason, as far as we know, the
mode spectrum of a rectangular cavity of a semiconductor
laser has not been investigated in detail so far.

Nevertheless, it would be premature to exclude the
possibility of other than technological applications of
rectangular cavity lasers. In particular, they can be used
in cases when the main characteristic is radiation coherence
rather than the output power, for example, as probe
oscillators, for optical heterodyning, etc.

In connection with the mode structure of the spectrum of
such lasers, it is pertinent to point out papers [8, 9] in which
the unproved analysis of the mode structure of a rectangular
(square) cavity was performed in terms of an equivalent
Fabry ë Perot cavity with an efécient length, which was
larger by a factor of

���
2
p

than the cavity side. Based on his
analysis, the author of papers [8, 9] made a conclusion that
an active semiconductor medium possesses `the self-induced
supertransparency'. In this connection we believe that it is
necessary to study resonances of a rectangular cavity of a
semiconductor laser more consistently and in more detail.
Earlier papers [5, 6] report the results of numerical calcu-
lations of the mode spectrum of a rectangular cavity, but
parameters used in these papers and the neglect of the
refractive index dispersion complicate the application of
these results for analysis of a rectangular cavity of a
semiconductor laser with typical parameters. The aim of
our paper is to calculate and analyse the mode spectrum of a
rectangular cavity of a semiconductor laser similar to that
used in [8, 9] and emitting in the spectral range from 850 to
880 nm. We considered érst of all nearly square micro-
cavities with a square side of �10 mm. Such cavities are not
too small yet and can be easily fabricated, but at the same
time they are too large for their mode spectrum to be quasi-
continuous.

2. Calculation of frequencies
and mode Q factors

We calculate a heterostructure consisting of layers in the
plane xy with refractive indices providing the propagation
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of the TE and TM waves whose éeld h(z) exp (ikxx� ikyyÿ
iot) admits the separation of variables. The electromagnetic
éeld of these waves can be completely described by
considering only the magnetic éeld amplitude (Hz for the
TE modes) or the electric éeld amplitude (Ez for the TM
modes) and the two-dimensional wave vector k whose
modulus is related to the frequency through the effective
refractive index jkj � no=c (hereafter, simply `refractive
index'). In the general case a monochromatic éeld in such a
structure can be represented in the form of a superposition
of such waves as h(z)F(x; y) exp (ÿ iot). The function F(x; y)
is normalised so that the maximum of its modulus is equal
to unity. The refractive index in our calculations has a
linear dispersion n(l) � n(l0)� qn=qljl�l0 (lÿ l0), where
l � c=o. If the structure size is not limited along the x
axis and limited along the y axis (jyj < b=2), the exact
solution of Maxwell's equations gives modes for a wave-
guide formed by the jump in the refractive index at the
boundaries y � �b=2. The éeld

F�x; y� � �C1 exp�ikxx� � C2 exp�ÿikxx��u�y�

of these modes is formed by the two waves counter-
propagating along the x axis. The amplitude of the waves is
described by the expressions

u�y� �
cos�kyyÿ fy�; jyj4 b=2;
cos�kyb=2ÿ fy� exp�ÿgy�yÿ b=2��; y > b=2;
cos�ÿkyb=2ÿ fy� exp�gy�y� b=2��; y < ÿb=2:

8<:
Here, k 2

x � k 2
y � n 2k 2

0 ; k 2
x ÿ g 2y � k 2

0 ; tan� 12 (kybÿ pm)� �
Zgy=ky; C1 and C2 are arbitrary constants, which are
determined in principle by the conditions for x � �1; k0 �
o=c is the wave vector modulus in vacuum; m is the mode
index; fy � 0 and p=2 for even and odd m, respectively;
Z � n 2 and 1 for the TE and TM modes, respectively.
Figure 1a shows schematically the propagation of these
waves.

The exact solution for a structure unlimited along the y
axis and limited along the x axis (jxj < a=2, Fig. 1b) can be
found similarly. The éeld of modes in such a waveguide has
the form

F�x; y� � �C3 exp�ikyy� � C4 exp�ÿikyy��v�x�.

The amplitude of the waves is

v�x� �
cos�kxxÿ fx�; jxj4 a=2;
cos�kxa=2ÿ fx� exp�ÿgx�xÿ a=2��; x > a=2;
cos�ÿkxa=2ÿ fx� exp�gx�x� a=2��; x < ÿa=2:

8<:
Here, k 2

x � k 2
y � n 2k 2

0 ; k 2
y ÿ g 2x � k 2

0 ; tan� 12 (kxaÿ pn)� �
Zgx=kx; n is the mode index; fx � 0 and p=2 for even
and odd n, respectively.

Now we can compose from these two exact solutions the
approximate solution for the structure in Fig. 1c limited
along the x and y axes (jxj < a=2 and jyj < b=2) and
corresponding to a rectangular cavity. For this purpose,
by using the boundary conditions for x � �a=2 and
y � �b=2, we énd the coefécients C1 � C4. As a result,
we obtain the éeld F(x; y) in the cavity:

F�x; y� �
cos�kxxÿ fx� cos�kyyÿ fy�; jxj4 a=2; jyj4 b=2;

cos�kxa=2ÿ fx� cos�kyyÿ fy� exp�ÿgx�xÿ a=2��; x > a=2; jyj < b=2;

cos�ÿkxa=2ÿ fx� cos�kyyÿ fy� exp�gx�x� a=2��; x < ÿa=2; jyj < b=2;

cos�ÿkxxÿ fx� cos�kyb=2ÿ fy� exp�ÿgy�yÿ b=2��; jxj < a=2; y > b=2;

cos�kxxÿ fx� cos�ÿkyb=2ÿ fy� exp�gy�y� b=2��; jxj < ÿa=2; y < ÿb=2;
0; jxj > a=2; jyj > b=2;

8>>>>>>>>><>>>>>>>>>:
(1)

where k 2
x � k 2

y � n 2k 2
0 ; k 2

x ÿ g 2y � k 2
0 ; k 2

y ÿ g 2x � k 2
0 ;

kx tan (
1
2
kxaÿ fx) � Zgx; ky tan (

1
2
kybÿ fy) � Zg; the val-

ues of fx;y are equal to 0 or p/2 for the even or odd mode
index, respectively, in the direction of x or y (the mode
index is equal, as usual, to the number of zeroes of the
distribution function); and Z � 1 and n 2 for the TM and TE
modes, respectively. Such an approach corresponds to the
Marcatili analysis of a rectangular dielectric waveguide [10].

The system of equations (1) was earlier used in papers
[5, 6] to calculate a square cavity with a side of �2 mm and
the refractive index n � 3. Despite its intricate form, system
(1) can be easily solved numerically. Figure 2 shows one of
the éeld intensity distributions near the corner of a cavity of
size 13614.

The obtained solution is not exact because it is not
deéned, in particular, in regions Oi (Fig. 1c) for i � 1, 3, 7, 9.
But if the characteristic size of the cavity is large enough
compared to the wavelength in the medium and the modes
under study are located far away from the cut-off mode, we
can assume that the éeld energy in regions Oi for i � 1, 3, 7,
9 is small compared to that in regions Oi for i � 2, 4, 5, 6, 8
where Maxwell's equation are fulélled exactly. In this case,
the estimate of the relative measurement error of cavity
mode frequencies and Q factors by using the perturbation
theory [11] shows that it is insigniécant for our problem.
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Figure 1. Schematic representation of the formation of a rectangular
two-dimensional waveguide (c) from two one-dimensional waveguides
(a, b); Oi (i � 1ÿ 9) are different regions of the two-dimensional
waveguide.
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These considerations are also conérmed by the results
obtained in paper [5] in which the solutions of system
(1) were compared with the solutions of Maxwell's equa-
tions obtained by the direct numerical FDTD method in the
entire plane x, y for less favourable conditions due to a
considerable smaller size of the cavity (a � b � 2 mm).

Modes of the type under study can be interpreted as
standing waves caused by the closed motion of plane waves
which experience total internal reêection from the cavity
boundaries. Such waves are characterised by the propaga-
tion angle f (for example, with respect to the x axis:
tanf � ky=kx) falling into the region of angles of total
internal reêection from faces x � � a=2 (sinf < 1=n) and
faces y � � b=2 (cosf < 1=n).

Equations (1) were solved numerically for each pair of
indices, thereby determining the frequency of this mode. We
considered only modes falling into the typical ampliécation
range of semiconductors emitting in the range from 850 to
880 nm. The Q factors of these modes were determined by
calculating the radiation loss by neglecting, for example,
scattering losses and intracavity absorption. The far-zone
éeld can be obtained from the éeld and its normal derivative
at some contour:

F�r;f� � exp�i�k0rÿ 3p=4��������������
8pk0r

p
�
�
C

exp�ÿik0� q; e��
�
qF� q�
qn

� ik0�n; e�F� q�
�
dl, (2)

where e is the unit vector in the direction f; C is the
integration contour (shown by the dashed contour in
Fig. 1c); n is the normal to its contour and q is the
integration variable. Now the emitted power is

P �
� 2p

0

c

4p
jF�r;f�j2rdf,

and the energy stored in the cavity is

W � n 2

Z

� �
1� ng=n

8p
jF j2dxdy,

where ng is the group refractive index. The mode Q factor is
determined from the quantities obtained above:

Q � 2p
W

PT
� o

W

P
,

where T is the oscillation period and o is the mode
frequency. Note, however, that such a deénition of the Q
factor is not correct in a particular case of a square cavity
where even higher Q modes exist, representing a super-
position of two frequency-degenerate modes with certain
coefécients [6].

3. Radiation éeld of modes

Let us now énd from the far-zone éeld of modes [integral in
(2)] the effective sources producing this éeld. The amplitude
F(R) of the far-zone éeld produced by sources A(r) can be
written in the form

F�R� �
�
A�r� exp�ikjRÿ rj���������������jRÿ rjp d2r

� 1����
R
p

�
A�r� exp�ikjRÿ rj�d 2r,

where R and r are coordinates in the far and near (in the
region of sources) zones, respectively. By expanding the
exponential as a power series in r=R, we obtain

F�R� � exp�ikR�����
R
p

�
A�r� exp�ÿikr cos y�d2r � exp�ikR�����

R
p K�f�,

where y is the angle between vectors r and R, and the angle
f determines the direction of the vector R. Let us now pass
to the Cartesian coordinates:

K�f� �
�
A�x; y� exp�ÿik�x cosf� y sinf��dxdy.

To solve the problem formulated above, we should énd the
inverse transformation. Consider the transformation

~A�x; y� �
�
K�f� exp�ik�x cosf� y sinf��df. (3)

The function ~A(x; y) is related to the required source
function A(x; y) by the expression

~A�x; y� �
�
M�x; y; x 0; y 0�A�x 0; y 0�dx 0dy 0,

which is a convolution with the kernel

M�x; y; x 0; y 0� �
� 2p

0

expfik��xÿ x 0� cosf�

�� yÿ y 0� sinf�gdf � 2pJ0�kr�,

where r � �(xÿ x 0 )2 � (yÿ y 0 )2 �1=2. One can see that
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Figure 2. Field intensity distribution jF�x; y�j2 corresponding to the
approximate solution near one of the corners of the 13614-mm cavity;
the wavelength is 867.34 nm, the mode indices are mx � 76 and my � 80.
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transformation (3) solves the formulated problem accurate
to a convolution with the Bessel function with the
characteristic width of the order of the wavelength.

The visible image of the operating laser can be also
interpreted by using the theory of an ideal microscope with a
énite aperture for the case of coherent illumination, which
was considered, for example, in book [12]. According to this
theory, the éeld in the image plane in the two-dimensional
case is expressed in terms of the éeld in the object plane as

F�y 0� �
�
U�x� exp

�
ÿ ik0

y 0

D

�
dx

�
��

F�y� exp
�
ÿ ik0

x
f
y

�
exp

�
ik0
ÿy 0
D

�
dydx,

where x changes from ÿNA f to �NA f (NA is the
numerical aperture of the microscope); y and y 0 are
coordinates in the object and image planes, respectively;
and f is the focal distance of the microscope objective. The
obtained expression can be written in the form

F�Y� �
�
F�y� sin�k0NA�Yÿ y��

Yÿ y
dy, (4)

where Y � ÿy 0f=D.
The function F (Y ) determines the éeld conéguration in

the image plane of the microscope recalculated to the unit
magniécation. The square of the modulus of this function
gives the image of the cavity in the microscope adjusted to
the given object plane. As the object plane, a plane lying
between the cavity and microscope should be chosen,
because the theory assumes that the space between the
object plane and microscope objective is homogeneous.
Note also that because the object size is small, the micro-
scope aperture NA should be of the order of unity to obtain
a detailed image. The depth of focus of the microscope in
the case of such an aperture is measured by several
wavelengths, and therefore the object plane should be drawn
at a small distance of the order of a wavelength from the
cavity boundary. To solve the formulated problem, we
should énd the éeld in this plane. Due to the conditions
considered above, expression (2) determining the far-zone
éeld cannot be used for this purpose. However, we can use
the exact Kirchhoff expression for the two-dimensional case,
which describes the propagation of waves in a free space:

F�x; y� � i

4

�
C

�
F�x0; y0�

qH �1�0

�
k0
��xÿ x0�2 � �yÿ y0�2

�1=2	
qn

ÿH �1�0

�
k0
��xÿ x0�2 � �yÿ y0�2

�1=2	 qF�x0y0�
qn

�
dl. (5)

Here, H �1�0 (r) is the érst-order Hankel function of the érst
kind; x0 and y0 are coordinates of a current point on the
cavity boundary (C is the integration contour shown by the
dashed curve in Fig. 1c); x, y are coordinates of a spatial
point at which we seek the éeld (in our case, this is a
straight line in the object plane of the microscope); and n is
the external normal to the cavity boundary at the current
point. Thus, by calculating from (5) the éeld on a straight
line lying in the object plane of the microscope and not
intersecting the cavity boundary and taking then the square

of the éeld in the image plane calculated by expression (4),
we can obtain the conéguration of the visible image of the
cavity.

4. Results

We used in all calculations the values of the refractive index
n � 3:6 and the group refractive index ng � 4:8 at a central
wavelength of 0.86 mm. Dispersion over the entire spectral
region of calculations was assumed linear. Figure 3 shows
the dependences of mode wavelengths on the angle f
(tanf � ky=kx) for cavities of size 13613 and 13614 mm.
The curves resembling parabolas corresponds to the modes
with a constant sum of indices mx �my � const. One can
easily see that modes, especially near the tops of these
curves, are located very densely (the intermode distance is
�0:1 nm). The distance between the maxima of the curves
corresponds to that for a Fabry ë Perot resonator of length
equal to the resonator diagonal; however, the entire system
of nonequidistant modes cannot be treated as the system of
modes of some equivalent Fabry ë Perot resonator. In the
case of a square cavity, the double frequency degeneracy of
modes is observed, which corresponds to the symmetry of
coordinates x and y.

Figure 4 shows the Q factors of these modes for a cavity
of size 13614 mm as functions of the propagation angle.
The TE modes propagating approximately along the cavity
diagonal have the highest Q factor. One can see that the Q
factor of modes can exceed 105, which corresponds to the
reduced intracavity volume loss �3 cmÿ1.
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Figure 3. Wavelengths and the propagation angles of modes lying in the
interval 0.85 mm< l < 0.88 mm for cavities of sizes 13613 mm (a) and
13614 mm (b).
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Figure 5 shows the dependences of the Q factor and
mode wavelengths on the cavity size. Figure 5d for a
13613-mm cavity corresponds to the limiting case. By
comparing the data presented in Figs 5d and 5a-c, we
can see how the double degeneracy of the modes occurs
in passing from a rectangular to square cavity.

Table 1 presents the highest-Q modes for different
branches shown in Fig. 5.

Figure 6 shows the far éeld of the mode with indices 76
and 80 along coordinates x and y, respectively, for the
13614 cavity and the far éeld produced by four coherent
sources of the same intensity with the same wavelength
located at the corners of a rectangle of the same size. The
similarity of these far éelds can be interpreted as if the
microcavity emits from its corners. This is conérmed by
Fig. 7 presenting the intensity distribution j ~A(x; y)j2 of
sources corresponding to the far éeld of this mode calcu-
lated for the given cavity from expression (3).

Figures 8 and 9 present calculated images produced in a
microscope by the output radiation of the microcavity. The
numerical aperture used in calculations was NA = 0.5. The
object plane was assumed to be located at a distance of d (in
micrometers) from the cavity boundary and turned around
the nearest angle with respect to the y axis through the angle

a. The coordinate origin in the object plane was selected in
the following way: if the object plane is parallel to one of the
coordinate axes (the angle a is a multiple of 908), the
coordinate origin coincides with the origin of the corre-
sponding axis; if the angle a is not a multiple of 908, the
coordinate origin corresponds to a point nearest to the
cavity corner. The corresponding axis is directed to the right
when looking at the plane from the cavity centre. Figure 7
shows that the intensity distribution has distinct peaks
corresponding to the cavity corners.
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Figure 4. Dependences of the Q factor of modes lying in the interval 0.85
mm < l < 0.88 mm on the propagation angle for the13614-mm cavity.
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Table 1. Q factors of some highest-Q-factor modes of nearly square cavities.

Indices (mx �my)
13613.3 mm 13613.2 mm 13613.1 mm 13613 mm

l
�
nm Q

�
105 l

�
nm Q

�
105 l

�
nm Q

�
105 l

�
nm Q

�
105

73+81=154 858.96 0.968 856.33 0.981 853.66 0.998 850.96 1.014

75+79=154 859.22 0.979 856.71 0.997 854.17 1.020 851.59 1.041

77+77=154 859.05 0.975 856.67 0.997 854.25 1.024 851.80 1.050

79+75=154 858.47 0.958 856.21 0.981 853.92 1.011 851.59 1.041

81+73=154 857.46 0.926 854.04 0.900 853.16 0.980 850.96 1.014

73+79=152 867.49 1.015 864.90 1.062 862.28 1.099 859.62 1.115

75+77=152 867.54 1.023 865.08 1.071 862.58 1.107 860.05 1.122

77+75=152 867.16 1.024 864.82 1.072 862.45 1.109 860.05 1.122

79+73=152 866.34 1.016 864.13 1.064 861.89 1.101 859.62 1.115

71+79=150 875.80 0.906 873.13 0.942 870.42 0.965 867.68 0.969

73+77=150 876.09 0.915 873.54 0.948 870.96 0.967 868.35 0.966

75+75=150 875.92 0.923 873.51 0.955 871.06 0.970 868.58 0.965

77+73=150 875.31 0.931 873.02 0.962 870.70 0.974 868.35 0.966

79+71=150 874.25 0.937 872.09 0.969 869.90 0.980 867.68 0.969
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Thus, the analysis of radiation waves corresponding to
the highest-Q modes of a rectangular cavity both in the far
and near zones shows that they correspond to the wave
emerging from the cavity corners. This completely corre-
sponds to the experimental data obtained for output
radiation of a semiconductor laser with a rectangular
(four-sided) cavity.

5. Discussion and conclusions

Thus, the results of our paper lead to the following
conclusions:

(i) Unlike a Fabry ë Perot cavity, a rectangular cavity has
a very dense system of nonequidistant modes, which cannot
be in principle interpreted as modes of some `effective'
Fabry ë Perot resonator or a ring laser. The intermode
interval of a nearly square cavity can be arbitrarily small.
For example, the minimal intermode distance for any mode
pairs in the 13613.1-mm cavity was smaller than 0.01

�
A.

(ii) The Q factor of the modes related to the radiation
loss is maximal for the TE modes propagating along the
cavity diagonal, which is caused by the weaker exponential
`tails' of the éled for such modes. The Q factor for these
modes can exceed 105, which corresponds to the reduced
intracavity volume loss �3 cmÿ1.

(iii) The radiation éeld of a rectangular cavity can be
interpreted as the éeld of four coherent point sources
located at the cavity corners.

The results of our paper show that the analysis of the
mode structure of the spectrum of a rectangular cavity
performed in paper [9] in terms of a Fabry ë Perot resonator
is incorrect.
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Figure 6. Amplitude radiation patterns of the 13614-mm cavity and of
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Note also that the determination of the laser radiation
spectrum is a more complicate problem than the determi-
nation of intrinsic resonances. The matter is that analysis of
a laser regime is a substantially nonlinear problem, in which
not only the separation of mode resonances by the spectral
ampliécation band of a medium should be considered, but
also the saturation of this ampliécation by laser radiation.
To determine which of the allowed cavity modes can be
excited simultaneously, it is necessary to solve a problem of
the gain saturation taking into account the spatial `burning'
of inversion by énding the self-consistent distribution of the
éeld and carrier concentration. It seems that the surface
recombination of carriers along the cavity boundaries also
should be taken into account. These mechanisms determine
the effective spatial overlaps of the éeld of an individual
mode with inversion and, therefore, the effective amplié-
cation of this mode and its ability to be excited.

However, the calculation of the emission spectrum of a
laser is beyond the scope of our paper. Here, we point out
only that the presence or absence of equidistant or non-
equidistant modes in the emission spectrum of a laser with a
rectangular cavity does no allow one to make any con-
clusions about the value of the group refractive index, as has
been made in paper [9].

Acknowledgements. This work was supported by the
programs `Quantum Nanostructures' of the Presidium of
the Russian Academy of Sciences and `Coherent Optical
Radiation of Semiconductor Compounds and Structures' of
the Department of Physical Sciences of the Russian
Academy of Sciences, the Federal speciéc program `Studies
and Developments in the Priority Directions of the
Development of the Scientiéc and Technological Complex
of Russia in 2007 ë 2012' (State Contract No.
02.513.11.3168), and Grant No. NSh-6055.2006.02 of the
President of the Russian Federation for the Support of the
Leading Scientiéc Schools.

References
1. Oraevsky A.N. Kvantovaya Elektron., 32, 377 (2002) [Quantum

Electron., 32, 377 (2002)].
2. Braginsky V.B., Il'chenko V.S. Dokl. Akad. Nauk SSSR, 32, 307

(1987).
3. Gorodetsky M.L., Savchenkov A.A., Ilchenko V.S. Opt. Lett., 21,

453 (1996).
4. Poon A.W., Courvoisier F., Chang R.K. Opt. Lett., 26, 632

(2001).
5. Guo W.H., Huang Y.Z., Lu Q.Y., Yu L.J. IEEE J. Quantum

Electron., 39, 1563 (2003).
6. Guo W.H., Huang Y.Z., Lu Q.Y., Yu L.J. IEEE Photon. Technol.

Lett., 16, 479 (2004).
7. Garrett C.G.B., Kaiser W., Bond W.L. Phys. Rev., 124, 1807

(1961).
8. Strakhov V.P. Zh. Eksp. Teor. Fiz., 123, 1276 (2003).
9. Strakhov V.P. Zh. Eksp. Teor. Fiz., 126, 469 (2006).
10. Adams M. An Introduction to Optical Waveguides

(New York: Wiley, 1981; Moscow: Mir, 1984).
11. Landau L.D., Livshits E.M. Electrodynamics of Continuous

Media (Oxford: Pergamon Press, 1984; Moscow: Nauka, 1982).
12. Born M., Wolf E. Principles of Optics

(Oxford: Pergamon Press, 1969; Moscow: Nauka, 1973).

22 D.V. Batrak, A.P. Bogatov, A.E. Drakin, N.V. D'yachkov, D.R. Miftakhutdinov


