
Abstract. The problem of light propagation in a layered
periodic medium with a step refractive index proéle is
considered. The exact solution of this problem is presented in
the form of a nonuniform wave, for which the éeld amplitude
distribution is written in an analytic form and the shape of its
wave surfaces is determined. The reêection coefécient is
obtained for a plane wave incident from the homogeneous
medium at the boundary of a semi-inénite layered periodic
medium and exciting a Floquet ë Bloch wave. Critical
conditions are found in which the Floquet ëBloch wave is
inénite in the semi-inénite layered medium and exponentially
decays in the adjacent homogeneous medium. Dispersion
equations and éeld distributions of surface waves (modes)
localised near the boundary of the semi-inénite layered
medium are derived and conditions of their appearance are
determined. The boundaries of admissible values of the
refractive index of the adjacent medium depending on the
parameters of the layered periodic medium are established.
Dispersion relations for the surface modes in the semi-inénite
layered periodic medium (bounded by a system of coupled
waveguides) are obtained upon changing the thickness of the
boundary layer.

Keywords: layered periodic structure, coupled waveguides, photonic
crystal, Floquet ë Bloch waves.

1. Introduction

A medium, whose properties are constant on each plane
perpendicular to the éxed direction, is called a layered
medium. The problem of light propagation in a layered
medium has been long known. As an example, recall the
work of Stokes [1] written more than 150 years ago and
devoted to the study of light scattering in a medium
consisting of N layers, as well as work of Rayleigh [2]
devoted to the study of the light reêection phenomenon in
crystals. The history of this issue is described in detail in
review [3]. Multilayered systems consisting of thin plane ë
parallel élms play an important role in optics. The methods
for their deposition are well elaborated and the composition

and thickness of some layers can be controlled with a high
accuracy [4, 5]. The simplest example of practical realisa-
tion of such a system is an ordinary multilayer dielectric
interference mirror, which, under certain conditions, can be
used to élter certain spectral regions [6]. Another example is
a multilayer structure consisting of a large number of
coupled planar waveguides [7] or a grating of channel
waveguides produced in a planar waveguide élm lying on a
substrate with a lower refractive index. Interest in the
problem of light propagation, ampliécation and generation
in a system of tunnel-coupled waveguides is explained, érst
of all, by the practical need for the improvement of the
radiation power and quality of ébre and semiconductor
lasers [8, 9].

The system of tunnel-coupled waveguides is called
homogeneous if it is formed by the same equidistantly
spaced waveguides, whose light propagation constants are
independent of the longitudinal and transverse coordinates.
The light propagation in homogeneous systems of channel
waveguides was studied earlier in [10 ë 16]. Note, in partic-
ular, that a homogeneous system of coupled waveguides can
be considered as a one-dimensional photonic crystal where
the light propagation is conveniently described by the
Floquet ëBloch waves [16]. If the structure period is
comparable with the wavelength of optical radiation, the
so-called photonic forbidden bands (frequency regions or
angles of incidence in which the propagation of radiation
into the depths of the structure is forbidden) appear in a
photonic crystal. In the absence of absorption the appear-
ance of forbidden bands is caused by coherent interference
of waves multiply reêected at interlayer boundaries.

It has been shown recently [17, 18] that one-dimensional
periodic structures (photonic crystals) can provide total
reêection of radiation in a given frequency range for all
angles of incidence and polarisation states, which explains
an increasing interest in the study of propagation of optical
radiation in one-dimensional periodic structures [19 ë 25].
To describe this propagation, the Floquet ëBloch approach,
the theory of coupled waves or the transfer matrix method
are usually used. Among these methods the standard theory
of coupled modes [26] is the most physically illustrative and
in a limited number of cases yields simple analytic results.
Unfortunately, this theory contains a number of omissions
[26 ë 28], which often lead to incorrect results.

The rigorous theory of coupled modes [29, 30], taking
into account all diffraction waves in periodic structures,
leads to a system of equations consisting of the inénite
number of differential equations of the second order and
solvable numerically with the retention of a limited number
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of diffraction waves. In this sense, it is similar to the
approach, in which Floquet ë Bloch waves are used, and
at present it is well elaborated to solve speciéc problems but
not to determine laws of wave propagation in periodic
structures.

The matrix method for one-dimensional periodic struc-
tures presented in [31, 32] and based on the Bloch theory
[33] is exact. In particular, the use of this method allows one
to study the optical surface waves in restricted multilayer
structures with a periodic distribution of the refractive index
[34, 35]. The investigation of surface waves in spatially-
limited multilayer structures is important for determining
the necessary surface properties providing the elimination of
possible losses caused by emission in surface modes
[24, 36, 37] as well as for their application as sensors
[38 ë 40].

Unfortunately, the use of complex matrices often means
numerical calculations and does not demonstrate physically
the processes being studied [41, 42]. This is explained by the
fact that the general expressions for the éeld distribution
and eigenvalue equations for transverse electric (TE) and
magnetic (TM) modes are derived only for particular cases

of a symmetric layered periodic medium [43], and total
dispersion curves for the surface electromagnetic modes are
known only for the case, when the tunnel coupling of
waveguide layers of a structure is realised by neglecting the
change in the parameters of the érst layer (cell) of a periodic
medium [44]. In this case, numerical methods are used. For
example, in [45] dispersion relations are derived for the
surface modes upon changing the parameters of the érst cell
calculated by the supercell method.

From this point of view, to describe the propagation of
electromagnetic waves in one-dimensional photonic crystals,
it is desirable to develop an analytic theory providing more
exact results than the standard theory of coupled modes in
the case of a high-contrast refractive index. In this con-
nection, the theoretical description of light propagation in a
one-dimensional crystal without the use of complex matrix
formalism is developed in this paper. The aim of the paper is
to demonstrate that in the simplest case of a periodic
medium consisting of a pair of alternating layers of trans-
parent materials with different refractive indices an exact
solution of a wave equation can be derived in an explicit
analytic form.

2. A Floquet ëBloch wave in an inénite layered
periodic medium

To describe processes of light propagation in a homoge-
neous system of coupled waveguides, it can be represented
(Fig. 1a) as a one-dimensional layered periodic medium
composed of alternating f- and s-type layers of thickness h
and s with the refractive indices nf and ns and the refractive
index proéle

n�x� � n f; Lm < x < Lm� h; m � 0; �1; �2; :::;
ns; Lm� h < x < L�m� 1�; L � h� s:

�
(1)

For a TE wave with the frequency o polarised along the y
axis and propagating in the positive direction of the z axis,
the éeld distribution can be written in the form

E�x; z; t� � E�x; z�exp� iot� � E�x�exp�i�otÿ bz��; (2)

where b is the wave propagation constant in the direction z;
t is the time. Inside the system layers, the function E(x)
satisées the Helmholtz equation:

d2E�x�
dx 2

ÿ E�x�� b 2 ÿ k 2
0 n

2�x�� � 0; (3)

where k0 � o=c is a wave vector of radiation in vacuum.
Considering a layered periodic medium as a one-dimen-
sional crystal formed by the repetition of a cell from f and s
layers, the electric éeld distribution inside each homoge-
neous layer of the mth crystal cell can be represented as a
sum of an incident and reêected plane wave with complex
amplitudes am; bm and cm; dm in f and s cell layers, res-
pectively (according to the Brillouin concept these wave are
called partial waves):

where kf and ks are propagation constants of plane waves
in the direction of the x axis for f and s layers of the
medium, respectively. If the conditions nf > ns > 0 and
k0nf > b > 0 are fulélled, the propagation constant kf can
take only real values, while ks ë both real (in the case of
radiation coupling of f layers through s layers of the
medium, when k0ns > b) and imaginary values (in the case
of tunnel coupling, when k0ns < b). In the case of tunnel
coupling it is convenient to use a decay constant gs so that
ks � igs; gs > 0. The complex amplitudes am; bm, cm and dm
of plane waves are coupled by the continuity condition at
the boundaries of layers; for x � Lm

am � bm � cmÿ1 exp�ÿiksL� � dmÿ1�exp iksL�;
(5a)

kf �am ÿ bm� � ks�cmÿ1 exp�ÿiksL� ÿ dmÿ1�exp iksL��;

for x � Lm� h

am exp�ÿikf h� � bmexp�ikf h� � cm exp�ÿiksh� � dmexp�iksh�;

kf �am exp�ÿikf h� ÿ bmexp�ikf h�� (5b)

� ks�cm exp�ÿiksh� ÿ dmexp�iksh��:

For a periodic medium according to the Floquet (Bloch)
theorem, the light propagation can be represented as a
Floquet ëBloch wave (Bloch wave)

E�x; z; t� � EK�x� exp�ÿiKx�exp�i�otÿ bz��;
�6�

EK�x� Lm� � EK�x�; m � 0;�1; :::;

E�x; z� �
fam exp�ÿikf �xÿmL�� � bmexp�ikf �xÿmL��g exp �ÿibz�; Lm < x < Lm� h;

kf � �k 2
0 n

2
f ÿ b 2 �1=2;

fcm exp�ÿiks�xÿmL�� � dmexp�iks�xÿmL��g exp �ÿibz�; Lm� h < x < L�m� 1�;
ks � �k 2

0 n
2
s ÿ b 2 �1=2;

8>><>>: (4)
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where EK(x) is a periodic function depending on the K
constant whose period is equal to the period L of the
structure. The K constant known as a Bloch wave number
can be derived from a dispersion relation [27, 28]

cosKL � cos�kf h� cos�kss� ÿ
1

2

�
ks
kf
� kf
ks

�

� sin�kf h� sin�kss�; b < k0ns; (7a)

cosKL � cos�kf h� cosh�gss� �
1

2

�
gs
kf
ÿ kf

gs

�

� sin�kf h� sinh�gss�; k0ns < b < k0nf: (7b)

In those cases when according to (7a) and (7b) the
inequality jcosKLj < 1 is fulélled, the obtained quantity of
K is real and corresponds to waves propagating without a
decay. If the right-hand side of Eqns (7a) and (7b) with
respect to modulus exceeds unity, the quantity of K becomes
complex and we deal with a decaying wave.

Note that a wave decribed by expression (6) is an
inhomogeneous wave and in this case not only data on
éeld amplitude distribution in a cell of a periodic medium
but also on the shape of the wave surface are important. At
the same time, authors of known papers restrict themselves
to the calculation of the phase KL of the wave determining
the band edges of a periodic medium, while the wave front
of the wave is not calculated. To calculate the wave front it
is necessary to perform additional investigations.

Let us take advantage of periodicity condition (6) valid
for the Floquet ë Bloch waves and rewrite Eqn (5a) in the
form

exp�ÿiKL��am � bm� � cm exp�ÿiksL� � dmexp�iksL�;
(8)

kf exp�ÿiKL��am ÿ bm� � ks�cm exp�ÿiksL� ÿ dmexp�iksL��:

By considering Eqns (5b) and (8) together, for kf 6� 0 and
ks 6� 0 we can derive two equations relating complex
amplitudes am and bm of partial waves inside the f layer,
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Figure 1. Schematic representation of the inénite (a) and semi-inénite (b) layered periodic medium.
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�ks � kf�am sin
1

2
�kf h� kssÿ KL�

� �ks ÿ kf�bm sin
1

2
�kf hÿ kss� KL�exp�ikf h�;

(9)

�ks ÿ kf�am sin
1

2
�kf hÿ kssÿ KL�

� �ks � kf�bm sin
1

2
�kf h� kss� KL�exp�ikf h�;

and two analogous equations relating complex amplitudes
cm and dm of partial waves inside the s layer:

�ks � kf �cm sin
1

2
�kf h� kssÿ KL�

� �ks ÿ kf �dm sin
1

2
�kf hÿ kssÿ KL�exp�iks�s� 2h��;

(10)

�ks ÿ kf �cm sin
1

2
�kf hÿ kss� KL�

� �ks � kf �dm sin
1

2
�kf h� kss� KL�exp�iks�s� 2h��.

The case when all the sines in Eqns (9) and (10) are
simultaneously equal to zero is special and requires a
separate consideration. In all other cases as is expected the
requirement of a simultaneous fuléllment of conditions (9)
or (10) results in dispersion condition (7). Besides, one can
see from (9) and (10) that the ratios of the complex
amplitudes and phase shifts for waves inside each layer are
independent of the number m of the medium cell. Equations
(5b) and (8) allow one to express amplitudes cm and dm in
terms of am and bm and then by using coupling equation (9)
to obtain the following analytic expressions for complex
amplitudes of partial plane waves in f and s layers of a
periodic medium:

am � A exp�if0� exp�ikf h=2� exp�ÿiKLm�; m � 0; �1; :::;

bm � B exp�if0� exp�ÿikf h=2� exp�ÿiKLm�;
(11)

cm � C exp�if0� exp�iks�s� 2h�=2� exp�ÿiKL�2m� 1�=2�;

dm � D exp�if0� exp�ÿiks�s� 2h�=2� exp�ÿiKL�2m� 1�=2�;
where f0 is the initial phase of a wave. The amplitude
coefécients A, B, C, D, which are real quantities in the case
of real kf, ks and K, can be written in the form:

A � A0 sin
1

2
�kf hÿ kss� KL� sin 1

2
�kf h� kss� KL�;

B � A0

ks ÿ kf
ks � kf

sin
1

2
�kf hÿ kss� KL�

� sin
1

2
�kf hÿ kssÿ KL�; (12)

C � A0

ks � kf
2ks

sin
1

2
�kf h� kss� KL� sin kf h;

D � A0

ks ÿ kf
2ks

sin
1

2
�kf hÿ kss� KL� sin kf h;

where A0 is an arbitrary constant playing the role of the
Floquet ëBloch amplitude.

It is appropriate to present here the relations for the
squares of amplitude coefécients A, B and C, D, derived
from expressions (9) ë (12):

B 2

A 2
� cos kssÿ cos�kf hÿ KL�

cos kssÿ cos�kf h� KL� ;
(13)

D 2

C 2
� cos kf hÿ cos�kssÿ KL�

cos kf hÿ cos�kss� KL� :

If for the Floquet ë Bloch wave being considered, the time
averaged value of the transverse component of the energy
êux (directed along the x axis) is represented as a difference
of corresponding partial waves in f and s layers, from the
continuity condition of this component of the êux at
interlayer boundaries

kf A
2

�
1ÿ B 2

A 2

�
� ksC

2

�
1ÿD 2

C 2

�
(14)

and relations (13) one can readily derive a relation for the
squares of amplitude coefécients A and C:

C 2

A 2
� kf

ks

sin kf h
sin kss

cos kf hÿ cos�kss� KL�
cos kssÿ cos�kf h� KL� : (15)

It follows from (4), (9) ë (12) that the amplitude coefécients
of reêection rab; rcd and rba; rdc of partial waves at upper
and lower boundaries, respectively, are related by the
expressions:

rab � jrabjexp�ifab� �
1

r �ba
� exp�ifba�

jrbaj
� bm exp�ikf h�

am exp�ÿikf h�

� ks ÿ kf
ks � kf

sin 1
2
�kf hÿ kssÿ KL�

sin 1
2
�kf h� kss� KL� exp�ikf h�; (16a)

rcd � jrcdjexp�ifcd��
1

r �dc
� exp�ifdc�

jrdcj
� dm exp�iks�s� h��

cm exp�ÿiks�s� h��

� ks ÿ kf
ks � kf

sin 1
2
�kf hÿ kss� KL�

sin 1
2
�kf h� kss� KL� exp�ikss�: (16b)

One can see from (16) that the product of moduli of
reêection coefécients at the upper and lower boundaries of
each layer is equal to unity. In addition, the phase shift
appearing upon reêection of the partial wave at the layer
boundary is determined (with the accuracy to the term
2pm;m � 0, 1, ...) by the layer phase thickness equal to kf h
in the case of the f layer and to kss in the case of the s layer.
By using this, we can write the conditions for the transverse
resonance for partial waves in f and s layers of the medium:

2kf h � fab � fba � 2pmf � 2fab � 2pmf

� 2fba � 2pmf ; mf � 0; 1; ::: ;
(17)

Propagation of light in a one-dimensional photonic crystal: analysis 455



2kss � fcd � fdc � 2pms � 2fcd � 2pms

� 2fdc � 2pmf ; ms � 0; 1; ::: :

Taking into account the phase shift determined for the
complex amplitudes of partial waves with the phase
thickness of each layer, it is convenient to use local
coordinates xf � xÿ h=2ÿ Lm and xs � xÿ s=2ÿ hÿ Lm
measured from the middles of the corresponding layers
when representing the éeld distribution in the mth cell of
the structure under study:

Here, the functions Ef (xf ) and Es(xs) describe the éeld
amplitude distribution of the Floquet ëBloch wave in f and s
layers of the mth cell, while the functions ff (xf ); fs(xs) ë the
shape of wave surfaces. The surfaces of the constant
amplitude speciéed by the conditions

Ef �xf � � const; Es�xs� � const; (19)

and surface of the constant phase

bz� ff �xf � � KLm � const,
(20)

bz� fs�xs� � KL�m� 1=2� � const

do not coincide, i.e. the Floquet ë Bloch wave is inhomoge-
neous.

Equations (2) ë (4) together with (9) ë (20) determine
completely the Floquet ë Bloch wave freely propagating
in an inénite layered periodic medium.

To describe the light propagation in an inénite homoge-
neous system of tunnel-coupled waveguides, it is necessary
to consider the case when ks is an imaginary quantity. For
the imaginary ks � igs and real kf ; K quantities, the coefé-
cients ¡ and £, according to Eqns (12) are as before real:

A � A0

2
�cosh�gss� ÿ cos�kf h� KL��;

(21a)

B � A0

4

�
kf
gs
� gs
kf

�
sin�kf h� sinh�gss�;

while coefécients C and D become complex:

C � D � � A0 sin kf h
2gs

��
kf sinh

gss
2
cos

kf h� KL
2

� gs sin
kf h� KL

2
cosh

gss
2

�
�i
�
gs sinh

gss
2
cos

kf h� KL
2

ÿ kf sin
kf h� KL

2
cosh

gss
2

��
� �C exp�ifc�; (21b)

where

�C�A0 sin�kf h�
2gs

�
1

2
�k 2

f �g 2s ��cosh�gss� ÿcos�kf h� KL��
�1=2

;

fc � arctan

��
gs tanh

gss
2
ÿ kf tan

kf h� KL
2

�

�
�
kf tanh

gss
2
� gs tan

kf h� KL
2

�ÿ1 �
:

In this case, when writing the éeld distribution in the mth
cell of the structure, one can use local coordinates
xf � xÿ h=2ÿ Lm and xs � xÿ s=2ÿ hÿ Lm, measured
from the middles of the corresponding layers. Thus, the
éeld amplitude distribution in the f layer is described by the
same functions as in (18). The éeld amplitude distribution in
the s layer can be written in the form:

E�x; z� � �C�exp�gsxs � ifc� � exp�ÿgsxs ÿ ifc��

� expfi�f0 ÿ KL�m� 1=2� ÿ bz�g � Es�xs�

� exp�ifs�xs�� expfi�f0 ÿ KL�m� 1=2� ÿ bz�g; (22)

Es�xs� � �Cf2�cosh�2gsxs� � cos�2fc��g1=2;

fs�xs� � arctan�tanfc tanh�gsxs��:

3. Reêection of a plane wave at the boundary
of a semi-inénite layered periodic medium

Consider a semi-inénite homogeneous medium (Fig. 1b)
with the refractive index na adjacent with a semi-inénite
layered periodic medium composed of alternating f and s
layers with the refractive indices nf and ns (for deéniteness
we assume below that the condition nf > ns > na is
fulélled). The refractive index proéle of this medium is

n�x� �
nf ; Lm < x < Lm� h; m � 0; 1; 2 ; :::;
ns; Lm� h < x < L�m� 1�; L � h� s;
na; x < 0:

8<: (23)

According to the model being considered, in a homoge-
neous region x < 0 at a propagation constant b < k0na, the
solution of Eqn (3) can be represented as a sum of the
incident and reêected homogeneous plane waves

E�x; z; t� � E�x� exp�i�otÿ bz�� � � ~Ca exp�ÿikax�

� ~Da exp�ikax�� exp�i�otÿ bz�� (24)

E�x; z��

�A exp�ÿikf xf � � B exp�ikf xf �� exp�i�f0 ÿ KLmÿ bz�� � Ef �xf � exp�ÿiff �xf �� exp�i�f0 ÿ KLmÿ bz��;
Ef �xf � � �A 2 � B 2 � 2AB cos�2kf xf ��1=2; ÿh=2 < xf < h=2;

ff �xf � � arctan

�
Aÿ B

A� B
tan�kf xf �

�
; ÿs=2 < xs < s=2; (18)

�C exp�ÿiksxs��D exp�iksxs�� expfi�f0 ÿ KL�m� 1=2� ÿ bz�g�Es�xs� exp�ÿifs�xs�� expfi�f0 ÿ KL�m� 1=2� ÿ bz�g;

Es�xs� � �C 2 �D 2 � 2CD cos�2ksxs��1=2; fs�xs� � arctan

�
CÿD

C�D
tan�ksxs�

�
:

8>>>>>>>>>><>>>>>>>>>>:
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with complex amplitudes ~Ca � Ca exp (ifc); ~Da � Da

exp (ifd) (where Ca, Da, fc, fd are real quanitites) and
with the transverse propagation constant ka � (k 2

0 n
2
aÿ

b 2)1=2. For b > kna the solution of Eqn (3) is an
inhomogeneous wave

E�x; z; t� � ~Fa exp�gax� exp�i�otÿ bz��;
(25)

~Fa � Fa exp�iff �;
whose amplitude is maximal at the boundary x � 0 and
exponentially decreases with the decay coefécient ga �
(b 2 ÿ k 2

0 n
2
a )

1=2 as it moves away from it. The relation of the
coefécients Ca; Da (or Fa) with the amplitude coefécients A,
B, C, D of the Floquet ë Bloch wave excited in the layered
periodic medium is set from the continuity conditions at the
boundary x � 0:

A exp�ikf h=2� � B exp�ÿikf h=2�

� Ca exp�ifc� �Da exp�ifd�;
(26)

ÿikf �A exp�ikf h=2� ÿ B exp �ÿikf h=2��

� ÿika�Ca exp�ifc� ÿDa exp�ifd��:

Here, the initial phase of the Floquet ëBloch wave,
without the loss of generality, was set equal to zero
(f0 � 0). In the case of real kf ; ks; ka boundary conditions
(26) are readily represented in the form of a system of
equations with real quantities only:

�A� B� cos�kf h=2� � Ca cosfc �Da cosfd;

kf �A� B� sin�kf h=2� � ka�Ca sinfc ÿDa sinfd�;
(27)

�Aÿ B� sin�kf h=2� � Ca sinfc �Da sinfd;

kf �Aÿ B� cos�kf h=2� � ka�Ca cosfc ÿDa cosfd�:
When solving system (27) it is easy to derive the equations

4k 2
a C

2
a � �ka � kf �2A 2 � �ka ÿ kf �2B 2

� 2AB�k 2
a ÿ k 2

f � cos�kf h�; (28)

4k 2
a D

2
a � �ka ÿ kf �2A 2 � �ka � kf �2B 2

� 2AB�k 2
a ÿ k 2

f � cos�kf h�
to determine the amplitude coefécients Ca and Da of the
incident and reêected waves in a homogeneous medium.

Equations (28) agree with the continuity condition at the
boundary x � 0 of the transverse component of the optical
êux ka(C

2
a ÿD 2

a ) � kf (A
2 ÿ B 2). Then, the modulus of the

reêection coefécient of a plane wave at the boundary of a
semi-inénite layered periodic structure has the from:

jraj �
Da

Ca

�
� �ka ÿ kf �2A2 � �ka � kf �2B 2 � 2AB�k 2

a ÿ k 2
f � cos kf h

�ka � kf �2A2 � �ka ÿ kf �2B 2 � 2AB�k 2
a ÿ k 2

f � cos kf h

�1=2
:

(29)

For cos (kf h=2) 6� 0, the phase coefécients fc; fd have the
from:

fc � arctan

� �ka � kf �Aÿ �ka ÿ kf �B
�ka � kf �A� �ka ÿ kf �B

tan�kf h=2�
�
;
(30)

fd � arctan

� �ka ÿ kf �Aÿ �ka � kf �B
�ka ÿ kf �A� �ka � kf �B

tan�kf h=2�
�
:

The difference in coefécients fd and fc determines the
phase shift quantity of a plane wave upon its reêection at
the boundary of a semi-inénite layered periodic medium. In
the case of its complete reêection for A 2 � B 2, ~Ca � ~D �a
according to (29), (30).

In the cases especially interesting from the point of view
of practical realisation, when ka � kf �na � nf � or ka � ks
(na � ns), the phase shift is determined by the phase thick-
ness kf h or kss respectively. In this case, taking (13) into
account, the reêection coefécient has the form:

4. A critical Floquet ëBloch wave
in a semi-inénite layered periodic medium

Consider the critical case when the wave éeld occupies
the entire semi-inénite layered periodic medium and expo-
nentially decays in a homogeneous semi-inénite medium. In
the region x < 0 the éeld is represented by distribution (25)
and the time average from the Poynting vector projection on
the x axis is zero. In this case, the Floquet ë Bloch wave
(critical wave) transfers the energy only along the z axis and
the squares of amplitude coefécients of partial waves in
periodic medium layers are pairwise equal: A 2 � B 2,
C 2 � D 2. According to (13) this is possible, for example,
when the Bloch wave vector is located at the edge of the
forbidden band:

KL � pl; (32)

where l � 0, 1, ... is the order of the forbidden band. For
A � B and real kf , ks, according to (18) the éeld amplitude
distribution in f layers is speciéed by the symmetric
function 2A cos (kf xf ) and for A � ÿB ë by the antisym-
metric function 2A sin (kf xf ). Similarly, for C � D
(C � ÿD) symmetric (asymmetric) éeld amplitude distri-
bution in s layers is given by the symmetric function
2C cos (ksxs) [antisymmetric function 2C sin (ksxs)]. In the
case ks � igs, to determine the éeld amplitude distribution
in f and s layers, it is enough to substitute sin (ksxs)
! i sinh (gsxs) and cos (ksxs)! cosh (gsxs). While choosing
the possible combinations of symmetric and antisymmetric
distributions in the f and s cell layers of the medium one

ra �

�
B 2

A 2

�1=2

exp�ikf h� �
�

cos kssÿ cos�kf hÿ KL�
cos kssÿ cos�kf h� KL�

�1=2
exp�ikf h�; na � nf ;�

D 2

C 2

�1=2

exp�ikss� �
�

cos kf hÿ cos�kssÿ KL�
cos kf hÿ cos�kss� KL�

�1=2
exp�ikss�; na � nf :

8>>>><>>>>: (31)
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should take into account the order of the forbidden band
under study. The éeld in adjacent cells should be in-phase
for even l and out-of-phase for odd l.

Let us write the boundary conditions on the plane x � 0
by using relations (4), (11), (25) and assuming that ff � 0:

�A exp�ikf h=2� � B exp�ÿikf h=2�� exp�if0� � Fa;
(33)

ÿ ikf �A exp�ikf h=2� ÿ B exp�ÿikf h=2�� exp�if0� � gaFa:

In the case of symmetric (A � B) or antisymmetric
(A � ÿB) éeld distribution in f layers of the periodic
layered medium, by selecting f0 � 0 or ÿp=2, respectively,
we derive from (33)

ga � kf tan�kf h=2�; Fa � 2A cos�kf h=2�; A � B;
(34)

ga � ÿkf cot�kf h=2�; Fa � 2A sin�kf h=2�; A � ÿB
for sin (kf h) 6� 0.

Two different eigenvalues, kf � kl� and kf � klÿ , deter-
mined by condition (32) correspond to two boundaries of
each of the l forbidden bands; equalities (34) are respectively
fulélled for na � nl� and na � nlÿ :

na �
�
n 2
f ÿ

k 2
f

k 2
0 cos

2�kf h=2�
�1=2

; A � B;

(35)

na �
�
n 2
f ÿ

k 2
f

k 2
0 sin

2�kf h=2�
�1=2

; A � ÿB;

where eigenvalues kl� or klÿ are chosen for the transverse
wave vector kf. In this case, the effective refractive index
n � � b=k0 of the Floquet ë Bloch wave propagating in a
semi-inénite layered medium along its layers, according to
expressions (34), (35), takes the form:

n � � �n 2
f sin

2�kf h=2� � n 2
a cos

2�kf h=2��1=2; A � B;
(36)

n � � �n 2
f cos

2�kf h=2� � n 2
a sin

2�kf h=2��1=2; A � ÿB:
Let us denote them by kf � kl� and kf � klÿ for n �l� and n �lÿ ,
respectively. Note that for the wave under study the
amplitude coefécients A, B, C and D are constant in all cells
of the layered periodic medium and the exponential decay
of the éeld amplitude is observed only in the homogeneous
region for x < 0.

5. A surface wave at the boundary
of a semi-inénite layered periodic medium

Consider the range of values kf, for which the condition
jcosKLj > 1 is fulélled and the Bloch wave vector
according to (7) becomes complex:

K � l�p=L� ÿ iKi; l � 0; 1; ::: : (37)

Photonic forbidden bands, whose order is determined by
the parameter l (it can take any integral nonnegative
values), are related to these ranges of complex values of the
Bloch wave vector. In an inénite periodic medium the
existence of waves with the complex values of the Bloch
wave vector are forbidden. If the layered periodic medium
is semi-inénite, the exponentially decaying waves exist near
its boundary.

For real kf ; ks (the case of radiation-coupled layers of
the periodic medium), by substituting (37) into (12) one can
obtain the expression

A � A0

2
�cos�kss� ÿ �ÿ1�l cos�kf h� cosh�KiL�

ÿ i�ÿ1�l sin�kf h� sinh�KiL�� � jAj exp�ifa�;

jAj � A0

2

�
cos 2�kss� �

1

2
�cosh�2KiL� � cos�2kf h��

ÿ 2�ÿ1�l cos�kf h� cos�kss� cosh�KiL�
�1=2

;
(38)

fa � arctanfsin�kf h� sinh�KiL�

��cos�kf h� cosh�KiL� ÿ �ÿ1�l cos�kss��ÿ1�g;

B � A0

4

�
kf
ks
ÿ ks
kf

�
sin�kf h� sin�kss� � jBj exp�ifb�;

fb � 0 �B > 0�; fb � p �B < 0�
for amplitude coefécients A and B (hereafter, Ki > 0),
where B, fa, fb are real quantities and A is a complex
quantity, and as follows from (13) and (17), jAj � jBj and
jCj � jDj. This allows one to represent the amplitude
coefécients in the form:

C � �C exp (ifc);D � ÿ �C exp (ifd);

�C � A0 sin (kf h)
ks � kf
2ks

�
1

2
�cosh�KiL� ÿ �ÿ1�l

� cos�kf h� kss��
�1=2

� ÿA0 sin�kf h�
ks ÿ kf
2ks

(39)

�
�
1

2
�cosh (KiL)ÿ �ÿ1�l cos�kf hÿ kss��

�1=2

;

fc � ÿ arctan

�
tanh

KiL
2

cot
kf h� kss� pl

2

�
;

fd � ÿ arctan

�
tanh

KiL
2

cot
kf hÿ kss� pl

2

�
:

By applying relations (11), (38), (39) to distribution (4), we
will write the éeld amplitude distribution E(x) in the f and s
layers of the mth cell of the layered medium in the form

E�x� �
2�ÿ1�mljAj exp�ÿKiLm� cos��fb ÿ fa�=2� kf xf � expfi�f0 � �fa � fb�=2�g;
xf � xÿ h=2ÿ Lm; Lm < x < Lm� h; m � 0; 1; ::: ;

2�ÿ1�ml �C exp��ÿKiL��m� 1=2�� sin��fd ÿ fc�=2� ksxs� expfi�f0 � �fc � fd ÿ pl �=2�g;
xs � xÿ hÿ s=2ÿ Lm; Lm� h < x < L�m� 1�:

8>><>>: (40)
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The substitution of (40) into boundary conditions (33)
for x � 0 leads to relations

ga � kf tan��kf h� fa�=2�; B � jBj;

ga � ÿkf cot��kf h� fa�=2�; B � ÿjBj; (41)

Fa � 2�ÿ1�mljAj cos��kf h� fa ÿ fb�=2�;

which are fulélled inside each of the l forbidden bands for
values of kf in the range from kl� to klÿ . Equalities (41) are
fulélled only for those values of the refractive index of the
homogeneous medium, which satisfy the conditions from
(41):

na �
�
n 2
f ÿ

k 2
f

k 2
0 cos

2��kf h� fa�=2��
�1=2

; B � jBj;
(42)

na �
�
n 2
f ÿ

k 2
f

k 2
0 sin

2��kf h� fa�=2��
�1=2

; B � ÿjBj:

The admissible values of the refractive index na at which
surface waves localised near the boundary of the layered
medium exist, are in the range from nl� to nlÿ , while the
values of the effective refractive index n�a are in the range
from n�l� to n�lÿ :

n� � fn 2
f sin

2��kf h� fa�=2�

� n 2
a cos

2��kf h� fa�=2�g1=2; B � jBj;
(43)

n� � �n 2
f cos

2��kf h� fa�=2�

� n 2
a sin

2��kf h� fa�=2�g1=2; B � ÿjBj:
By using the relation n�2 � n 2

f ÿ k 2
f =k

2
0 fulélled for kf and

n� � b=k0 in the f layer, we will write the dispersion
equations for surface waves at the boundary of the semi-
inénite periodic layered medium in the form:

k 2
f � k 2

0 �n 2
f ÿ n 2

a � cos 2��kf h� fa�=2�; B � jBj;
(44)

k 2
f � k 2

0 �n 2
f ÿ n 2

a � sin 2��kf h� fa�=2�B � ÿjBj:

For real kf and imaginary ks � igs (the case of tunnel-
coupled waveguide layers of a periodic medium), by
substituting (37) into (12) for the amplitude coefécients
A and B we can obtain

A � A0

2
�cosh�gss� ÿ �ÿ1�l cos�kf h� cosh�KiL�

ÿi�ÿ1�l sin�kf h� sinh�KiL�� � jAj exp�ifa�;

jAj � A0

2

�
cosh2�gss� �

1

2
�cosh�2KiL� � cos�2kf h��

ÿ2�ÿ1�l cos�kf h� cosh�gss� cosh�KiL�
�1=2

; (45)

fa � arctanfsin�kf h� sinh�KiL�

��cos�kf h� cosh�KiL� ÿ �ÿ1�l cosh�gss��ÿ1g;

B � A0

4

�
kf
gs
� gs
kf

�
sin�kf h� sinh�gss� � jBj exp�ifb�;

fb � 0 �B > 0�; fb � p �B < 0�;

where B, fa, fb are still real quantities; A is the complex
quantity; and jAj � jBj. The amplitude coefécients C and D
are written in the form:

C � �C exp�ifc�; �C � A0 sin�kf h�
2gs

�f�cosh�gssÿ KiL� ÿ �ÿ1�l cos�kf h���g 2s � k 2
f �=2g1=2;

fc � arctan
gs tanh��gssÿ KiL�=2� ÿ kf tan��kf h� pl �=2�
kf tanh��gssÿ KiL�=2� � gs tan��kf h� pl �=2� ;

(46)

D � �D exp�ifd�; �D � A0 sin�kf h�
2gs

�f�cosh�gss� KiL� ÿ �ÿ1�l cos�kf h���g 2s � k 2
f �=2g1=2;

fd � ÿ arctan
gs tanh��gss� KiL�=2� ÿ kf tan��kf h� pl�=2�
kf tanh��gss� KiL�=2� � gs tan��kf h��=2�

:

Now we will write the éeld distribution in the mth cell of
the structure by using local coordinates xf � xÿ h=2ÿ Lm
and xs � xÿ s=2ÿ hÿ Lm, measured from the middles of
the corresponding layers:

E�x; z� � 2�ÿ1�mljAj exp�ÿKiLm� cos��fb ÿ fa�=2� kf xf �

� expfi�f0 � �fa � fb�=2ÿ bz�g; ÿh=2 < xf < h=2;

E�x; z� � �ÿ1�mlEs�xs� exp�ifs�xs�� exp�ÿKiL�m� 1=2��
(47)

� expfi�f0 � �fc � fd�=2ÿ pl=2ÿ bz�g; ÿs=2 < xs < s=2;

Es�xs� � � �C 2 exp�2gsxs� � �D 2 exp�ÿ2gsxs�

� 2 �C �D cos�fcÿfd��1=2;

fs�xs� � arctan

� �C exp�gsxs� ÿ �D exp�ÿgsxs�
�C exp�gsxs� � �D exp�ÿgsxs�

tan
fc ÿ fd

2

�
:

By using (25), (33) and (47), it is easy to ascertain the
validity of Eqns (41) ë (44) and, in this case, of the tunnel-
coupled waveguide layers. The only difference consists in
the fact that the coefécient A and phases fa, fb are
calculated not from (38) but from (45).

When dh of the f layer of thickness h in a zero cell of the
layered medium changes, the range of admissible values of
the refractive medium na of the homogeneous medium can
be expanded. In this case the condition for the appearance
of surface waves takes the form:
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ga � kf tan�fa=2� kf �h=2� dh��; B � jBj;
(48)

ga � ÿkf cot�fa=2� kf �h=2� dh��; B � ÿjBj:
In this case as in the case of (42), the values of the
transverse wave vector corresponding to the forbidden band
of the order l are selected, i.e. in the range from kl� to klÿ .
In this case the values of the effective refractive index n�

remain in the range from n�l� to n�lÿ :

n� � f�n 2
f sin

2��kf h� fa�=2�

� n 2
a cos

2��kf h� fa�=2�g1=2; B � jBj;
(49)

n� � f�n 2
f cos

2��kf h� fa�=2�

� n 2
a sin

2��kf h� fa�=2�g1=2; B � ÿjBj.
Nevertheless the range of admissible refractive indices
values of the homogeneous medium, for which surface wave
are possible due to a change in dh, changes according to the
condition from equalities (48):

na �
�
n 2
f ÿ

k 2
f

k 2
0 cos

2�fa=2� kf �h=2� dh��
�1=2

; B � jBj;
(50)

na �
�
n 2
f ÿ

k 2
f

k 2
0 sin 2�fa=2� kf �h=2� dh��

�1=2

; B � ÿjBj:

Upon changing the thickness of the boundary layer, the
dispersion equations for surface waves at the boundary of a
semi-inénite periodic layered medium have the form:

k 2
f � k 2

0 �n 2
f ÿ n 2

a � cos2�fa=2� kf �h=2� dh��; B � jBj;
(51)

k 2
f � k 2

0 �n 2
f ÿ n 2

a � sin2�fa=2� kf �h=2� dh��; B � ÿjBj:

To illustrate the use of data obtained in this paper, we
calculated for n� � 1:45975 the phase front (Fig. 2a) and the
transverse distribution of the éeld amplitude (Fig. 2b) of the
Floquet ëBloch wave propagating in an inénite layered
periodic medium with the parameters h � 1:1 mm, s � 1:3
mm, nf � 1:465 and ns � 1:46, which correspond to the
parameters of the structure studied in [15]. The shape of the
wave front is not plane even within the homogeneous layers
of the periodic medium, i.e. not only refraction of the wave
front at interlayer boundaries takes place but also distortion
of the wave surfaces. The éeld amplitude distribution is
presented in Fig. 3 for a critical Floquet ëBloch wave
propagating in a semi-inénite layered periodic medium
(Fig. 3a) and a surface wave (Fig. 3b). Figure 4 shows
the dependence of the square of the modulus of the
reêection coefécient of a plane wave incident from the
homogeneous medium with na � ns calculated by using
expression (31). One can see from Fig. 4 that in this case the
periodic layered medium can be characterised as a one-
dimensional photonic crystal in which the boundaries of
photonic forbidden bands correspond to the values of the
transverse wave vector ka of the incident wave, which are
equal to klÿ and kl� .

6. Conclusions

Thus, an exact solution of the wave equation for the case
of light propagation in a layered periodic medium with a

step proéle of the refractive index has been obtained in this
paper. The solution is represented in the form of an

E (rel. units)

z
�
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0.8

1.0

1.2

0 0.4 0.8 1.2 1.6 2.0 x
�
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h s
b

h s

ÿ0:12

ÿ0:08

ÿ0:04

0

0 0.4 0.8 1.2 1.6 2.0 x
�
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0.04

Figure 2. Phase front (a) and transverse distribution of the éeld
amplitude (b) of the Floquet ë Bloch wave propagating in the inénite
layered periodic medium with the parameters h � 1:1 mm, s � 1:3 mm,
nf � 1:465, ns � 1:46, n� � 1:45975.
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1.8
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Figure 3. Transverse distributions of the éeld amplitude of the critical
Floquet ëBloch wave in the semi-inénite layered periodic medium with
the parameters h � 1:1 mm, s � 1:3 mm, nf � 1:465, ns � 1:46, na �
1:46188, n� � 1:46251 (a) and the surface wave with the parameters
h � 1:1 mm, s � 1:3 mm, nf � 1:465, ns � 1:46, na � 1:46271, n� �
1:46278 (b).
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inhomogeneous wave (Floquet ëBloch), for which the éeld
amplitude distribution has been derived in an analytic from
and the shape of its wave surfaces has been determined. The
radiation and tunnel coupling between layers has been
considered. The obtained solutions have allowed us to
énd the reêection coefécient of a plane wave incident
from the homogeneous medium at the boundary of a
semi-inénite layered periodic structure and exciting the
Floquet ëBloch wave in it. The critical Floquet ëBloch
wave, which is an intermediate case between a freely
propagating and decaying Floquet ëBloch waves in the
semi-inénite periodic medium, has been selected and con-
sidered. The conditions for the appearance of a critical
Floquet ëBloch wave have been determined. Dispersion
equations and the éeld distribution for surface waves
(modes) localised near the boundary of the semi-inénite
layered medium have been written, the conditions for their
appearance have been deéned and the boundaries of
admissible values of the refractive index of the adjacent
medium have been determined as a function of the param-
eters of the layered periodic medium. Dispersion relations
for surface modes of the semi-inénite layered periodic
medium (limited system of coupled waveguides) have
been derived upon varying the thickness of the boundary
layer.
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Figure 4. Dependences of the square of the modulus of the reêection
coefécient ra on the transverse component ka of the wave vector of the
plane wave incident on the boundary of the semi-inénite layered periodic
medium with the parameters h � 1:1 mm, s � 1:3 mm, nf � 1:465, ns �
1:46, na � 1:46.
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