
Abstract. The spatial distributions of photoinduced electric
éelds are calculated based on the model of the current
mechanism of optical poling of isotropic media and the
eféciencies of the main poling schemes differing in the
geometry of crossing beams are estimated. It is shown that
the volume optical poling in a certain interval of small angles
of crossing beams is the most promising for producing
homogeneously distributed photoinduced electric structures of
a large size.

Keywords: optical poling, three-wave interactions, isotropic media,
coherent photogalvanic effect.

1. Introduction

The optical poling (OP) is the formation of a long-lived
spatially periodic electrostatic polarisation P(r) in a medium
upon interaction of mutually coherent radiations with
multiple frequencies [1]. It is known that in isotropic
centrally symmetric media the OP leads to a reversible
change in the symmetry by transforming the medium into
optically uniaxial material in which nonlinear three-wave
interactions become possible. Changes in the optical
properties of the medium are present in many phenomena
found experimentally, for example, photoinduced second
harmonic generation (SHG) [2 ë 4] and parametric light
ampliécation [5] in gratings with the nonlinear susceptibility
w �2�, which appear due to the optical poling of the isotropic
medium; Bragg self-diffraction and Raman light scattering
from induced modulations Dn of the refractive index due to
the OP [6, 7]; light-electric instability and stimulated
increase in the anisotropy due to the OP, etc. [8, 9].
Processes of radiation conversion in media transformed
during the OP attract attention of scientists both from the
point of view of fundamental scientiéc research and due to
the possibility of obtaining new broadband optoelectronic
elements [10].

One of the microprocesses lying in the base of the OP
medium is the appearance of the spatial asymmetry of

optical transitions in it upon interaction of mutually
coherent radiation with multiple frequencies. The asymme-
try of transitions in the case of the OP upon the local [3] or
spatial [due to coherent photogalvanic (CPG) current] [11,
12] separation of excited charge carriers leads to the increase
in the spatially periodic electric éeld strength E(r) distrib-
uted inside the sample in time (in the region of interaction of
poling radiations) and the medium polarisation P(r) corre-
sponding to it. In weakly conducting media the appearing
éelds can achieve substantial quantities (no less than
106 V cmÿ1) and remain for a long time by producing a
stable quasi-stationary polarisation [9, 13].

The possibility of the OP of different isotropic media
(glasses and waveguides [2, 4, 14, 15], polymer and hybrid
organic and nonorganic élms, etc. [10, 16, 17]) has been
shown by now. The eféciency of the OP process, which is
determined by the value of the éeld formed due to the OP
and by its resultant distribution in the medium, is the key
problem for applications. Two components contribute to
the OP eféciency. The érst one is related to the characteristic
microscopic mechanisms of the spatial asymmetry of
excitation in the medium. The second component is
determined by the external OP conditions of the medium:
parameters of the poling light, interaction geometry upon
the OP, optical and electric properties of the medium. Under
conditions of the predominant inêuence of the CPG current
mechanism, the second component plays a signiécant role
[12, 13]. The OP eféciency in this case depends not on the
spatial asymmetry of local optical transitions but on the
following redistribution of excited charge carriers, which
leads to the formation of the resultant distribution of the
induced OP éeld.

In this paper we studied theoretically the current
mechanism of the optical poling of the isotropic medium.
The spatial distributions of electric éelds formed due to the
OP are calculated within the framework of the phenom-
enological model of the appearance of the CPG effect in
media. The OP eféciencies in the main geometries of the
experiment are estimated and the possibility of realisation of
different types of the optical poling is discussed.

2. Formulation of the problem

The current mechanism of the medium OP is based on the
CPG effect [12, 13]. In the classical variant, the optical
poling of the sample is performed by using high-power two-
frequency mutually coherent radiation at the fundamental
(E1 � e1E1(r)exp�i(k1r ÿ ot � c1)�) and doubled (E2 � e2
�E2(r)exp�i�k2rÿ 2ot� c2��) frequencies. It is assumed
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that due to this effect on the medium, a spatially modulated
CPG current with the density j(r) and inverse vector
Dk � 2k1 ÿ k2 appears inside the medium in the region of
interaction of radiations:

j�r� � ejE
2
1 �r�E2�r�cos�Dkr� Dc�;

(1)

ej � s1e1�e1e2� � s2e2;

where s1 and s2 are the CPG constants; Dc � 2c1 ÿ c2.
The appearance of the light-induced current leads to the
charge separation and formation of a spatially inhomoge-
neous distribution of the electric éeld E(r) inside the
medium in time. The formation of the éeld in the medium is
described by electrodynamic equations:

qr
qt
� div� j� jc� � 0, div�eE � � 4pr;

where r is the density of the induced charge in the OP
region; jc � sE; s and e are the effective conductivity and
permittivity of the medium, respectively. Under zero initial
conditions the kinetics of the éeld increase due to the OP is
described by the characteristic dependence E�t� � t�1ÿ
exp (ÿt=t)�, where t � e=(4ps) and its spatial distribution
E(r) � ÿgradf(r) in the medium is determined by the
Poisson equation for the potential f(r):

Df�r� � 1

s
div j; D � q 2

qx 2
� q 2

qy 2
� q 2

qz 2
: (2)

The appearance of the éeld E causes a reverse change in the
optical properties of the medium. Thus, the spatially
modulated anisotropic addition to the refractive index
Dn � w �3�E 2 [6] [w �3� is the third-order nonlinear suscep-
tibility] and induced second-order polarisability w �2� � w �3�E
[2] appear in the lowest orders of the éeld expansion of
induced polarisation in the isotropic medium. It is obvious
that the eféciency of the processes of linear and nonlinear
light conversion observed in experiments on gratings Dn
and w �2� directly depends on the OP eféciency of the
medium determined by the quantity and distribution of the
induced OP éeld.

In the following section of this paper we present the
results of calculations of typical OP schemes used in
experiments. The spatial distributions of the electric éeld
induced due to the OP are theoretically analysed, the
characteristics of different OP schemes are compared and
their eféciencies are estimated.

3. Optical poling in the band geometry

Consider the simplest case. Let the light beams propagate
due to the OP in the direction of the y axis, be unlimited
along the x axis and have a Gaussian proéle along the z
axis:

E1�r� � E10 exp

�
ÿ z 2

2w 2
1

�
; E2�r� � E20 exp

�
ÿ z 2

2w 2
2

�
; (3)

where w1 and w2 are the radii of the beams of poling
radiations at the half-maximum intensity level in the focal

plane. This situation appears in the experiment upon
focusing collimated beams by a cylindrical lens. The OP
region has the form of a thin extended band.

For the CPG current density j, we obtain the expression
in the band OP geometry:

j�r� � ejE
2
10E20 exp

�
ÿ z 2

2w 2

�
cos�Dky�; (4)

where

w 2 � w 2
1w

2
2

2w 2
2 � w 2

1

;

ej z � s1 cos a1 cosj0 � s2 cos a2, ej x � s1 sin a1 cosj0 � s2
� sin a2 are the nonzero components; j0 is the angle
between the vectors e1 and e2; a1 and a2 are the angles
between the vectors e1 and e2 and the z axis, respectively.

For convenience of the solution, we introduced the
notations Z � Dkw, E0 � E 2

10E20 and pass to dimensionless
variables:

i! i

w
�i � x; y; z�; j�r� ! j�r�

E0

;

(5)

j�r� � ej exp

�
ÿ z 2

2

�
cos�Zy�, f�r� ! f�r� s

E0

.

Taking into account the periodicity of the grating of the
current density j(r), the solution for the potential is sought
for in the form f(r) � f(y; z) � f�z) cos (Zy) with the
boundary conditions f(z! �1) � 0. The function f(z)
is found from the solution of the equation�

q 2

qz 2
ÿ Z 2

�
f�z� � ÿej zz exp

�
ÿ z 2

2

�
(6)

and has the form

f�z� � ej z

���
p
8

r
exp

�
Z 2

2

��
exp�ÿZz�erf

�
Zÿ z���

2
p

�

ÿ exp�Zz�erf
�
Z� z���

2
p

��
: (7)

The function erf (x) is determined by the expression

erf �x� � 2���
p
p
� �1
x

exp�ÿx 2�dx: (8)

The énal expressions for the distribution of éeld compo-
nents in the medium, which correspond to the potential
f(y; z), have the form in the model of the OP band
geometry

Ey�y; z� � f�z�Z sin�Zy�;

Ez�y; z� � ÿ
q
qz
�f�z�� cos�Zy� (9)

� ej z

� ����
p
8

r
Z exp

�
Z 2

2

��
exp�ÿZz�erf

�
Zÿ z���

2
p

�
�
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� exp�Zz�erf
�
Z� z���

2
p

��
ÿ exp

�
ÿ z 2

2

��
cos�Zy�:

Before analysing the obtained expressions, note the
following. For the typical experimental values w �
1ÿ 100 mm, which reêect the effective width of the OP
region [see expression (4)], and the modulus of the inverse
vector Dk � 0:1ÿ 50 mmÿ1 of induced gratings, we have
Z � 0:1ÿ 5� 103. Gratings of a small size with a low
number of periods correspond to low Z and gratings of
the largest size with the maximum number of periods
correspond to large Z. It is obvious that induced gratings
obtained at relatively large values of Z are more high-
contrast ones. The mentioned fact will be taken into account
in the following analysis.

Figure 1 shows the distributions of the éeld components
Ey and Ez along the z axis derived from expressions (9) for
Z � 0:1, 1, 5 and 10, which correspond in the experiment to
the éeld-induced gratings with the transverse size up to
� 100 mm. One can see that the component Ez (in the
direction perpendicular to the propagation direction of the
poling radiation) is maximal in the centre of the OP region
for z � 0 and rapidly decreases with moving away from the
centre. The component Ey (in the direction parallel to the
propagation direction of the poling radiation) is, on the
contrary, equal to zero in the centre of the OP region and
increases with moving away from the centre. For Z! 0, the
component Ey ! 0, while Ez ! 1. Therefore, the region of
low values Z is the most optimal for the éeld component Ez,
while for the component Ey it is the region Z � 1.

The éeld components Ey and Ez decrease with increasing
Z and tend to zero for Z!1. Taking into account the
asymptotics of the function erf (x) at large values of its

argument, we have Ey � Zÿ1; Ez � Zÿ2. One can see that the
induced éeld quickly decreases with increasing Z; however,
the component Ey decreases signiécantly slower than Ez.
The main disadvantage of the OP band geometry is the
impossibility of producing contrast gratings with Z large
enough. When Z substantially increases, the OP region
broadens and the charges induced by poling begin to
accumulate along the boundary of this region. As a result,
the éeld is concentrated near the boundary and quite rapidly
(proportionally to 1=Dk) decreases inside the OP region
(Fig. 1, the curve for Z � 10). In this case, the OP eféciency
drastically decreases. It obvious that the decrease in the OP
eféciency with increasing Z has an effect on linear and
nonlinear optical conversions taking place in the gratings Dn
and w �2� induced in the medium. For example, when the
component Ez is used in the experiment the intensity
Ig � (w �2�)2 � (w �3�Ez)

2 of the three-wave interaction will
decrease proportionally to Zÿ4.

Note, however, that the OP band geometry can be
efécient due to a large length of the éeld-induced gratings.
Thus, by illuminating the grating with light propagating in
the plane xy, it is possible to obtain the Bragg diffraction
and harmonic generation at the maximum interaction
length. The band scheme also has a wide spectral range
of the radiation conversion. When the incidence angle of
radiation with the speciéed frequency O is selected in the xy
plane so that the condition 2kO ÿ k2O � Dk is fulélled [thus
compensating for the phase detuning for the harmonic
generation with the frequency 2O due to the in-phase
variations in w �2� � w �3�E ], the required angle of incidence
turns low due to the smallness of the ratio Dk=kO and the
region of the efécient frequency conversion is rather broad if
the visible and near-IR radiation is used.

ÿ3 ÿ2 ÿ1 0 1 2 3 z

ÿ0:25

ÿ0:50

ÿ0:75

0.25

Z � 10

Z � 0:1

Z � 1

Z � 5

Ey;Ez (rel. units)

Ey

Ez

Figure 1. Distribution of the electric éeld components in the medium induced by the OP in the band geometry.
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4. Optical poling in the cylindrical geometry

Let the coaxial radiation beams at the fundamental and
doubled frequencies propagate due to the OP along the y
axis and focus in the extended region with waist centre for
y � 0. We assume that the radiation is polarised along the z
axis and the beam divergence is neglected. This type of the
OP is typical of the waveguide and ébre materials and, for
example, was studied experimentally in photoinduced SHG
in glass waveguides [2, 3] and in bulky samples [4, 10, 14].
The OP region in this case has the form of a cylinder.

The expression for the CPG current density in dimen-
sionless variables (5) for the selected OP cylindrical
geometry has the form

j�r� � ej z exp

�
ÿ r 2?

2

�
cos�Zy�; r 2? � x 2 � z 2: (10)

By using expression (2) and taking the periodicity j(r) into
account, we will write the equation for the induced éeld
components E(r):�

q 2

qx 2
� q 2

qz 2
ÿ Z 2

�
Ex�x; z� � ÿej zxz exp

�
ÿ r 2?

2

�
;

�
q2

qx2
� q2

qz 2
ÿ Z 2

�
Ey�x; z� � ÿej zZz exp

�
ÿ r 2?

2

�
; (11)

�
q2

qx2
� q2

qz2
ÿ Z 2

�
Ez�x; z� � ej z�1ÿ z 2� exp

�
ÿ r 2?

2

�
;

where

Ex;z(x; y; z) � Ex;z(x; z) cos (Zy);Ey(x; y; z) � Ey(x; z) sin (Zy):

To solve expression (11), we use érst the Fourier transform
over x and z and then pass to the cylindrical variables in the
integrals. In this case, kx � k sin (y� j), kz � k cos (y� j),
where y is the angle between the vectors r? and k and j is
the angle between the vector r? and the axis z. As a result,
after integrating over y, the expression for the éeld
components can be derived in the integral form:

Ex�r?;j� � ÿ2ej z sin�2j�
�1
0

k 3 exp�ÿk 2=2�J2�kr?�
k 2 � Z 2

dk;

Ey�r?;j� � ÿej zZ cosj
�1
0

ik 2 exp�ÿk 2=2�J1�kr?�
k 2 � Z 2 dk; (12)

Ez�r?;j� � ej z

�
�1
0

k 3 exp�ÿk 2=2��J0�kr?� ÿ 2 cos�2j�J2�kr?��
k 2 � Z 2

dk:

Here, Jm(kr?) is the Bessel function of the corresponding
mth order (m � 0, 1, 2).

Solutions of system (12) in the analytic form are absent
and it is possible to study them by using only numerical
methods. However, it follows from (12) that similar to the
OP band geometry, in the case of the cylindrical geometry
the éeld component Ey is also zero in the centre of the OP
region, while the component Ez coinciding with the direction
of the CPG current is maximal. The dependence of Ez on Z

in the central OP region (on the beam axis) is described by
the integral exponential:

Ez�r? � 0� � ej z

�
1� Z2

2
exp

�
Z2

2

�
Ei

�
ÿ Z2

2

��
;

(13)

Ei�x� �
� x

ÿ1

e x

x
dx:

By using the asymptotics of the Ei�ÿZ 2=2� function for
large arguments, we obtain the characteristic dependence
Ez � Zÿ2. One can see that the poling eféciency also sharply
decreases with increasing Z in the OP cylindrical geometry,
which prevents the formation of contrast gratings of a large
size. This fact is conérmed in experiments. For example, in
the known research of the photoinduced SHG in wave-
guides, the radiation conversion eféciency already tends to
zero, when the diameter of the OP region exceeds 20 mm [2].
The recently performed studies of the three-wave inter-
action in induced gratings w �2� in different glass samples by
using the OP cylindrical geometry and preserving the
constant power density of poling radiations in the OP
region also show a characteristic decrease in the eféciency
with increasing the OP region.

5. Volume poling

Consider the most general case of the medium OP by
crossing Gaussian beams. This type of the OP was used by
us in recent experiments on observation of the diffraction of
light from volume Bragg refractive index gratings photo-
induced due to poling [6, 7] and parametric light
ampliécation [5] and photoinduced SHG [4] on gratings
w �2� produced upon optical poling in the volume medium.

We will show that compared to the above types of the
OP, the volume poling has an important advantage asso-
ciated with the possibility of changing the properties of the
grating produced in the medium.

We will write expressions for the period L � 2p=Dk of
the grating of the CPG current density j(r), which is
photoinduced due to the volume OP, and for the angle
b � d�k1;Dk� of its orientation with respect to the direction
of the fundamental radiation, which is used upon optical
poling:

L � h
l1
2n2

; b � arcsin�h sin a�;
(14)

h �
�
1�

�
n1
n2

�2
ÿ 2

n1
n2

cos a
�ÿ1=2

:

Here, l1 is the radiation wavelength at the fundamental
frequency; n1;2 are the refractive indices of the medium for
radiation at the fundamental and doubled frequencies,
respectively; a is the angle of beam divergence upon OP
inside the sample (the poling angle). Figure 2 shows the
dependences L(a) and b(a) for l1 � 1:06 mm, dn �
n2 ÿ n1 � 5� 10ÿ2, n1=n2 � 0:97 and n1;2 � 1:5, which
are typical for experiments on the OP in glass media.

One can see from Fig. 2 that the distinct feature of the
volume OP in the region of small poling angles is a fast
change in the dependences L(a) and b(a) with increasing a.
By changing the poling angle a, the period L of the grating
of the current density j(r) appearing in the medium varies in
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a broad range (almost by two orders of magnitude): from
Lmax � l1=(2dn) � 104 nm to Lmin � l1=(4n1) � 170 nm
(tenth fractions of the light wavelength). One can also
see from Fig. 2 that the grating orientation in the medium
strongly depends on the poling angle. Indeed, when a varies
within several degrees near the zero, the angle b takes values
from ÿp=2 ÆÑ p=2. This means that upon the volume OP it
is possible to produce in the medium a grating with almost
any (from parallel to perpendicular) orientation of its planes
with respect to the direction j(r)*.

The most interesting in Fig. 2 is the marked region A of
small poling angles in which the condition b � p=2 is
fulélled and the vectors j(r) and Dk are virtually parallel
to each other. The charge carriers in this case are separated
mainly in the direction perpendicular to the planes of the
grating being produced in the medium, the separation being
accompanied by the accumulation of the effect near these
planes. It is obvious that this charge separation should
favour the formation of the volume periodic éeld structure
homogeneously distributed in the entire OP region. Note
that in the OP types considered above (in band and
cylindrical geometries) this possibility was absent because
the condition j(r)?Dk was always fulélled and only the
longitudinal CPG current, directed along the grating planes,
existed. In calculations below we will pay attention to the
case j�r�kDk in the region of small poling angles.

Consider the formation of the éeld in the medium upon
volume optical poling. We assume that the sample OP is
performed by two Gaussian beams of mutually coherent
radiations at the fundamental (o) and doubled (2o) freque-
ncies, the beams being focused inside the medium and inter-
secting at a small poling angle a (Fig. 3). We select the origin
of coordinates in the point of intersection of the beam axes,
which coincides with the centres of their waists. We assume
that the poling radiations with the wave vectors k1 and k2
propagate along the axes y1 and y2, respectively. In this case,
the inverse vector formed in the medium of the grating of
the CPG current Dk � 2k1ÿ k2 will be located in the plane
y1y2 (Fig. 3). We consider that the poling radiations are
linearly polarised and their polarisation vectors e1 and e2 are
directed along the axes x1 and x2, respectively. One can see

from Fig. 3 that the case j(r)kDk typical of the volume OP,
in which the CPG current will be mainly directed perpen-
dicular to the planes of the grating being formed in the
medium, appears under the condition that the polarisation
vectors e1 and e2 of poling radiations lie in the plane y1y2.

We select for calculations the coordinates system xy
related with the grating of the current: the x axis is directed
along the grating vector Dk, while the y axis ë along the
grating planes. We denote the angle between the axes y1 and
y by g � bÿ 908 (Fig. 3). In this case, the expression for the
CPG current density in the coordinate system of the grating
in dimensionless variables (5) will be written in the form

j�r� � ej exp

�
ÿ 1

2
�ax 2 � by 2 � cxy� z 2�

�
cos�Zx�; (15)

where

a � 1ÿ b; b � 2w2

w 2
1

sin2 g� w2

w 2
2

sin2�g� a�;
(16)

c � 2w 2

w 2
1

sin 2g� w 2

w 2
2

sin 2�g� a�:

Upon the volume OP, the components ej x � s1 cos g
cos a� s2 cos�a� g� and ej y � s1 sin g cos a� s2 sin�a� g�
are nonzero for the characteristic case j(r)kDk. In the range
of small angles a and g under study, a number of conditions
necessary for calculations is fulélled:

a; b; c > 0; b5 c5 a91; s � ej y
ej x
� g� as2

�s1 � s2�
5 1: (17)

Note also that at small poling angles a, the parameter Z,
nevertheless, should be large enough, so that at least several
grating periods étted the waist diameter in the OP region
(otherwise, it is unreasonable to speak about the presence
of the grating).

When the dimensionless variables are used in the
coordinate system of the grating, the expression for the
potential distribution f(r) in the medium for the case of the
volume OP under study is written in the form

Df�r� � ej xI�z�
�

q
qx
� s

q
qy

�
�I�x; y� cos�Zx��;

b
�
rad L

�
mm

Lmin � 170 nm

5

0

10

¡

0

p=4

ÿp=4

ÿp=2

p=2

0 p=2 p a
�
rad

Figure 2. Dependences of the period L and orientation angle b of the
grating of the CPG current upon the volume OP on the divergence angle
a of the radiation beams.

*Note that the direction j�r� in the medium is determined by the
polarisation of poling radiations [see expression (1)] and is virtually
perpendicular to the direction of light propagation at small poling angles.

g2k1

Dk

Dk

k2

b

e2

x2

x x1

e1 j2o

o

z
y2

0

y

y1
a

Figure 3. Formation of the éeld grating upon the volume OP.
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I�z� � exp

�
ÿ z2

2

�
; (18)

I�x; y� � exp

�
ÿ 1

2
�ax2 � by2 � cxy�

�
:

We seek for the solution of Eqn (18) with the help of the
three-dimensional Fourier transform successively over
coordinates z; y and x taking (17) into account. Upon
inverse transform in the case of integration over the
complex variables, we take into account that the small
vicinities of the points kx � 0;�Z make the main contri-
bution.

As a result, for the potential distribution f(r) in the
volume of the medium we obtain the expression

f�r� � ej xf�z; Z�I�x; y���gx� py� cos�Zx� ÿ Z sin�Zx��;

f�z; Z� �
���
p
2

r
1

Z
exp

�
Z 2

2
ÿ Zjzj

�
(19)

�
�
erf

�
Zÿ z���

2
p

�
ÿ erf

�
Z� z���

2
p

��
;

g � a� cs

2
; p � c

2
� bs:

Expressions for the distribution of the éeld components in
the medium corresponding to this potential have the form

Ex � ej xf�z; Z�I�x; y� sin�Zx� cx�

�
��

agx 2 �
�
ap� c

2
g

�
xy� c

2
py 2 � Z 2 ÿ g

�2

� Z 2s 2
�
by� c

2
x

�2�1=2

;

Ey � ej xf�z; Z�I�x; y� cos�Zx� cy�
(20)

�
��

c

2
gx 2 �

�
c

2
p� bg

�
xy� bpy 2 ÿ p

�2

� Z 2

�
by� c

2
x

�2�1=2

;

Ez � ej xI�x; y���gx� py� 2 � Z 2�1=2 cos�Zx� cz�

�
�
Zf�z; Z�Y�z� ÿ 2

Z
exp

�
ÿ z 2

2
ÿ Zjzj

�
cosh�Zz�

�
;

where Y(z) is the theta-function;

cx � arctan

�
agx 2 � �ap� cg=2�xy� cpy 2=2� Z 2 ÿ g

Zs�by� cx=2�
�
;

cy � arctan

�
Z�by� cx=2�

cgx 2=2� �cp=2� bg�xy� bpy 2 ÿ p

�
; (21)

cz � arctan

�
Z

gx� py

�
:

Analysis of expressions (20) for Z4 1 shows that
similarly to the OP in the band and cylindrical geometries
considered above, the éeld components Ey and Ez in the
case of the volume OP also rapidly decrease with increasing
Z (proportionally to Zÿ1). However, the behaviour of the
component Ex in the volume OP differs from its behaviour
upon the optical poling in the above-mentioned geometries.
It follows from the analysis of expressions for Ex in (20) for
Z4 1 at different points of the OP region that an increase in
Z with increasing the OP region does not lead to a signiécant
decrease in the éeld component Ex. Note that expressions
(20) were obtained for dimensionless variables and éeld
components normalised to the maximum value E0 � E 2

10E20,
which characterises the inêuence on the OP intensities of
interacting waves. In this case, changes in the calculated éeld
components according to (20) directly affect changes in the
éeld distribution in the OP region. Therefore, the volume
poling with the formation of the éeld component Ex is
optimal for creating large photoinduced éeld structures
homogeneously distributed in the OP region.

6. Experiment

To conérm the possibility of obtaining large éeld structures
with the help of the volume OP, we performed experiments
to study the Bragg diffraction and nonlinear transformation
of waves from the modulations Dn and w �2� formed due to
the volume OP. From the set of industrial glasses, we
selected oxide K8 glass, which exhibited the highest OP
eféciency. The volume optical poling of the sample was
performed for the poling angle a � 38ÿ 48 from the region
A in Fig. 2. Mutually coherent radiation beams at the
fundamental and doubled frequencies from a pulsed 1.079-
mm Nd3� :YAlO3 laser were focused in the region of size
� 250 mm and intersected at the angle a inside the sample.
Radiation polarisations were selected in accordance with
the above discussed condition of the volume OP. The
maximum pulse energy of the primary radiation was
� 18 mJ, the pulse duration was approximately 15 ns
and the pulse repetition rate was 12.5 Hz. The peak
radiation intensities at the fundamental and doubled
frequencies in the focus were � 109 and � 108 W cmÿ2,
respectively. Radiations appearing due to the Bragg
diffraction and SHG on gratings Dn and w �2� written by
the volume OP upon their irradiation at the fundamental
frequency were recorded in the far-éeld region by using a
photoelectronic multiplier. The used equipment allowed
real-time recording and processing of the pulse power of the
diffracted radiation and radiation at the second harmonic
frequency by using a PC. The threshold sensitivity of the
recording system was 1 mW pulseÿ1. The gratings Dn and
w �2� written in the glass by using the OP were stable and
remained for several hours in the absence of the external
action. The process of writing gratings was fully reversible
and was not accompanied by the structural changes in the
samples. The writing kinetics and relaxation of gratings as
well as the results of observations of radiations induced due
to SHG and Bragg diffraction are presented in [4, 5].

To diagnose the distribution homogeneity of induced
gratings during the observation of signals appearing due to
Bragg diffraction and SHG, the OP region was scanned with
a narrow beam from a 0.6327-mm HeëNe laser along the
length and width of the gratings [along the axes y1 and x1,
respectively (Fig. 3)]. The radiation from the HeëNe laser
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partially `erased' the grating of the éeld in the illuminated
region. As a result, dips were observed in signals appearing
upon diffraction and SHG. The scanning radiation intensity
was � 30 W cmÿ2. The irradiation time was � 2 min with
the interval of 10 min between irradiations, the diameters of
the beams from the He ëNe laser were � 200 and � 20 mm
upon scanning along the length and width of the grating,
respectively.

Figure 4 shows the dependences of the diffracted radi-
ation intensity upon scanning by the He ëNe-laser radiation
the region of the éeld grating in the medium produced by
the volume OP. One can see that the experimentally
obtained grating width is � 180 mm and its length is
� 7 mm. The inset in Fig. 4 presents the spatial intensity
distribution of the diffracted radiation in the plane x1y1 in
the direction perpendicular to the propagation direction of
the diffracted wave, which demonstrates that the diffraction
proceeds in the entire region of the grating and the intensity
distribution has a characteristic Gaussian proéle. Such
dependences were also obtained by studying a signal
appearing on the grating w �2� upon SHG due to the volume
OP. Note, énally, that when the polarisations of the poling
radiations were rotated by 908, the observed signals appear-
ing upon diffraction and SHG were �104 ÿ 105 times
weaker and were detected by scanning He ëNe-laser radi-
ation only near the boundary of the OP region. This
indicates that a homogeneous volume éeld grating is not
formed in the medium. The results obtained in the experi-
ment agree with the calculated data.

7. Conclusions

An analysis of the eféciencies of typical experimental OP
schemes has been performed in this paper by using the
model of the current mechanism of the OP of isotropic
media. It has been shown that the quantity and distribution
of the éeld induced in the medium substantially depend on
the interaction geometry during the OP. Spatial distribu-
tions of the electric éelds have been studied. It has been
shown theoretically and experimentally veriéed that under

certain condition it is possible to produce large induced
éeld structures distributed in the volume of the medium by
using the volume OP. The results have been obtained,
which can be hereafter used to study the OP of different
media and to develop optoelectronic devices.
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Figure 4. Dependences of the intensity Id of radiation diffracted in the
Bragg geometry upon scanning the region of the éeld grating by the He ë
Ne-laser radiation along the length (~) and width (*) of the grating. The
inset shows the intensity distribution of the diffracted light (xd is the
displacement from the beam axis along the direction lying in the plane
x1y1 and perpendicular to the diffraction direction).

730 M.K. Balakirev, L.I. Vostrikova, V.A. Smirnov


