
Abstract. The effect of the phase difference of the coupling
coefécients on relaxation frequencies in the emission
spectrum of a solid-state ring laser operating in the self-
modulation regime of the érst kind is studied theoretically. A
strong dependence of one of the frequencies of relaxation
oscillations on the phase difference of coupling coefécients is
found. The stability of the self-modulation regime is studied
analytically.
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1. Introduction

Quantum and technical êuctuations can result in the
appearance of resonance peaks in the emission spectra of
lasers [1]. Khandokhin and Khanin were the érst to
formulate and study the role of relaxation frequencies in
the emission spectrum a solid-state ring laser. They found
three relaxation oscillations in the spectrum of the solid-
state ring laser generating two counterpropagating waves
with considerably unequal constant intensities in the
stationary regime [2 ë 5].

Later, relaxation oscillations were studied in the emis-
sion spectrum for one of the most widely used lasing regimes
of the solid-state ring laser, i.e. the self-modulation regime
of the érst kind, which is characterised by the out-of-phase
sinusoidal self-modulation of the intensities of counter-
propagating waves. The analysis of the relaxation
oscillations is very important to solve the problems of
nonlinear dynamics, where the parametric interaction of
self-modulation and relaxation oscillations takes place, and
to study the stability of the self-modulation regime in
problems related to the increase in the stability of output
parameters of radiation (see, for example, review [6] and
references therein). Previously, relaxation oscillations in the
self-modulation regime were studied theoretically and exper-
imentally in papers [7 ë 10]. As is known, the spectrum in the
self-modulation regime contains two relaxation frequencies

(the fundamental or and additional or1 frequencies). In the
absence of the frequency nonreciprocity of the resonator,
expressions for the relaxation frequencies or and or1 have
the form [7]

or �
�
oe

Q

Z
T1

�1=2
, (1)

or1 �
1���
2
p
�
oe

Q

Z
T1

�1=2
, (2)

where oe is the eigenfrequency; Q is the resonator Q factor;
Z is the pump excess over the threshold; T1 is the relaxation
time of the inverse population.

The frequency ratio or1=or measured in experiment [7] is
in agreement with expressions (1) and (2), i.e. is equal to
1=

���
2
p

. However, the ratio or1=or measured in [8] differed
from 1=

���
2
p

. One of the possible reasons is the different
polarisations of counterpropagating waves [8, 9]. We con-
sider here another factor affecting the frequency ratio
or1=or, namely, the phase difference of coupling coefé-
cients.

2. Theoretical analysis of relaxation frequencies

The numerical and analytic investigations were performed
based on the standard model of a solid-state ring laser [6]
by using a system of equations
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for the complex amplitudes E1;2 of the éelds of counter-
propagating waves and the spatial harmonics N0 and N� of
the inverse population. Here, a is the saturation parameter;
T is the round-trip time of light in the resonator; s is the
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stimulated emission cross section for the laser transition; l is
the resonator perimeter; ~m1;2 � m exp (� iy1;2) are complex
coupling coefécients; m and y1;2 are the modulus and
phases of coupling coefécients;
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is the threshold inverse population. It is assumed in Eqns
(3) that the resonator Q factors and moduli of the coupling
coefécients for counterpropagating waves are equal, the
frequency nonreciprocity of the resonator is absent and the
relative frequency detuning from the gain line centre is
small and can be neglected.

The relaxation frequencies in the self-modulation regime
are studied in this paper by the method similar to that used
in [7]. Let us brieêy describe the method. First, we pass in
the initial system of equations to new variables:

I1;2 � ajE1;2j2, U � Re �aE1E
�
2 �, V � Im �aE1E

�
2 �,

Nr � ReN�, Ni � ImN�.

Then, we consider small perturbations with respect to the
periodic solution:

i1;2 � I1;2 ÿ I 0
1;2, u � UÿU 0, v � Vÿ V 0,

n0 � N0 ÿN 0
0 , nr � Nr ÿN 0

r , ni � Ni ÿN 0
i .

Here, the superscript 0 refers to the solution describing the
self-modulation regime, and small letters denote perturba-
tions. A linear system of differential equations with
coefécients periodically depending on time is obtained
for these perturbations. As in [7], we neglect the time-
dependent coefécients, which is valid if the inequality
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is fulélled, where om is the self-modulation frequency. We
used the following analytic expression for om borrowed
from paper [11]:
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As a result, we obtain a system of equations with time-
independent coefécients. Its solution in the general case can
be written in the form

i1;2 � i 01;2 exp�iot�, u � u 0 exp�iot�, v � v 0 exp�iot�,

n0 � n 0
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r exp�iot�, ni � n 0
i exp�iot�, (5)

where i 01;2, u 0, v 0, n 0
0 , n 0

r , and n 0
i are time-independent

coefécients. By substituting (5) into a system of linear
differential equations, we obtain a homogeneous system of

linear algebraic equations. This system is rather cumber-
some to solve it directly. Therefore, let us make further
simpliécations. In [7] all the terms proportional to
m(oe=Q)ÿ1 were neglected, i.e. it was assumed that
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We neglect only the terms of the second-order smallness,
i.e. assume that the inequality�
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is valid. The derived system will have a solution if its
determinant is equal to zero:

D � D0 �D1 � 0, (8)

where

D0 � o 2
m

�
oÿ �o

0
r1�2
o

��
oÿ �o

0
r �2
o

�
; (9)

D1 � ÿ2
�
1� Zeff

2

�
o 4

m

o 2T 2
1

tan 2 y1 ÿ y2
2

; (10)

Zeff � Zÿ m

oe=Q

���� sin y1 ÿ y2
2

����; (11)

o 0
r �

�
oe

Q

Zeff
T1

�1=2
, (12)

o 0
r1 �

1���
2
p
�
oe

Q

Zeff
T1

�1=2
. (13)

Determinant (8) differs from that obtained in [7] by the
presence of an additional term in (10).

Let us solve Eqn (8), which determines the relaxation
frequencies, by two ways. In the érst case, we neglect the
term in (10). Then, the solution of Eqn (8) will be expressed
by Eqns (12), (13) similar to equations (1), (2) from [7]. The
difference is that instead of the pump excess Z over the
threshold, the effective excess Zeff, which is determined by
(11), enters relations (12), (13). This can substantially affect
the relaxation frequencies in the case of large phase differ-
ences of coupling coefécients. For the small phase difference
(y1 ÿ y2 ! 0) and Zeff ! Z, expressions (1) and (2) are valid.
For the large phase differences (jy1 ÿ y2j ! p) of coupling
coefécients, expressions for relaxation frequencies differ
signiécantly from expressions (1) and (2).

In the second case, we énd the exact analytic solution of
(8) without neglecting the term in (10). Equation (8) is
reduced to a biquadratic equation of the fourth power. Its
solution has the form:
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The obtained expressions describe the inêuence of the phase
difference of the coupling coefécients on the relaxation
frequencies.

We solved numerically the initial system of equations (3)
and compared the results obtained by using Eqns (14) ë (17)
with the results of the numerical simulation for the
parameters typical of ring chip Nd :YAG lasers [1]. Figure 1
shows the dependences of the fundamental and additional
relaxation frequencies on the pump excess over the thresh-
old Z for m=(2p) � 1000 kHz, y1 � 2:74 rad, y2 � 0,
T1 � 240 ms, oe=Q � 1:1� 108 sÿ1. For these parameters
expression (4) yields m=(2p) � 200 kHz.

Figure 1 shows the results of the numerical solution of
equations (3) and calculations based on the derived analytic
expressions. One can see that expressions (14), (15) well
approximate the solution of Eqns (3) for the large phase
differences of the coupling coefécients (for any Z), while
expressions (12), (13) yield low accuracy for small pump
excesses over the threshold (Z! 0).

It follows from (14), (15) that the ratio o r
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Figure 2 presents the dependence of the quantity
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on the phase
difference of coupling coefécients for om=(2p) � 200 kHz,
o 0

r =(2p) � 60 kHz, T1 � 240 ms, Zeff � 0:3. For y1 ÿ y2 !
p, the ratio of relaxation frequencies signiécantly differs
from 1=
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. Thus, the difference of the ratio of the
relaxation frequencies from 1=

���
2
p

can be caused by the
inêuence of the phase difference of the coupling coefécients.
As was shown in [9], another reason for a change in the
ratio o r

r1=o
r
r is the difference of radiation polarisations of

counterpropagating waves. In a real laser the combined
action of both factors can take place.

3. Stability of the self-modulation regime

The analysis of expression (15) shows that for low enough
pump excesses over the threshold the additional relaxation
frequency o r

r1 vanishes. One can see from Fig. 1b that for
the above parameters of the laser this occurs when Z4 0:18.
In this case, the quantity (o r

r1)
2 changes its sign from

positive to negative. Physically this means that the self-
modulation regime becomes unstable. Indeed, for negative
values of the square of the relaxation frequency, two
imaginary roots of characteristic equation (8) with opposite
signs appear. The negative imaginary root corresponds to
the growth increment of perturbations (5), which leads to
the instability of the self-modulation regime.

Let us énd the boundary of the stability region of the
self-modulation regime. It appears when the relaxation
frequency in (15) is equal to zero: o r

r1 � 0. It follows
from here that c � 0. By solving this equation with respect
to the pump excess over the threshold Z and taking (7) into
account, we determine the boundary of the stability region
of the self-modulation regime:
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When the condition Z > Zb is fulélled, the self-modulation
regime is stable. Moreover, as follows from the parameters

F
u
n
d
am

en
ta
lf
re
q
u
en
cy
� kH

z
A
d
d
it
io
n
al

fr
eq
u
en
cy
� kH

z

b

0.15 0.20 0.25 0.30 0.35 Z
35

40

45

50

55

60

65

70

(3)
(12)
(14)

a

0.15 0.20 0.25 0.30 0.35 Z
0

5

10

45

(3)
(13)
(15)

15

20

25

30

35

40

Figure 1. Dependences of the fundamental (a) and additional (b)
relaxation frequencies on the pump excess over the threshold Z. Solid
curves are calculated by using expressions (14), (15), dashed curved are
calculated by using expressions (12), (13), and points are the results of
the numerical solution of equations (13).
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of the self-modulation regime found in [11], this condition
coincides with the condition of existence of the self-
modulation regime with account for inequality (7). Thus,
the condition Z � Zb determines the boundary of existence
and stability of the self-modulation regime. When the
opposite inequality is fulélled (Z < Zb), there exists the
stationary regime of a standing wave with equal intensities
of the counterpropagating waves. The inequality Z < Zb
coincides with the condition of the stability of the standing
wave obtained in [12]. Figure 3 shows the dependence of the
boundary of the stability region of the self-modulation
regime on the phase difference of the coupling coefécients.

4. Conclusions

Thus, relaxation oscillations in the emission spectrum of a
ring laser operating in the self-modulation regime have been
theoretically studied. The derived expressions for the
relaxation frequencies generalise the known expressions
for the case of arbitrary phases of the coupling coefécients.
The effect of the phase difference of the coupling
coefécients on the relaxation frequencies has been analysed.
The stability of the self-modulation regime has been
studied. The inêuence of the phase difference of the
coupling coefécients on the stability of the self-modulation
regime has been considered. The derived relations are valid
if the self-modulation frequency is signiécantly larger than
the fundamental relaxation frequency. The error of the
results does not exceed a few percent when the self-
modulation frequency exceeds the fundamental relaxation
frequency by more than three times.
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