
Abstract. The combined inêuence of the resonator param-
eters and spatially nonuniform axially symmetric ampliéca-
tion distribution in a four-level active medium on the spatial
structure of the fundamental mode of laser radiation is
studied numerically by the Fox ëLi method. The model of two
beams interacting due to the spatial ampliécation nonun-
iformity is used to obtain simple analytic estimates. The
transition of the spatial structure of the fundamental mode
from the Gaussian one to the structure formed by a set of
Laguerre ëGaussian beams is studied. It is shown that near
the degenerate conégurations of the resonator a decrease in
the diameter of the pump beam leads to an increase in the
number of Laguerre ëGaussian beams forming the funda-
mental mode. It is found that the range of detunings from the
strong degeneracy within which substantial differences of the
spatial structure of the fundamental mode from the Gaussian
structure are realised, increases with increasing the gain.

Keywords: longitudinal pumping, degenerate resonators, multibeam
modes.

1. Introduction

At present longitudinal diode pumping of solid-state lasers
has found wide application [1 ë 4]. It is known that the
lasing eféciency increases in a four-level active medium
when the pump beam radius wp is smaller than the radius
wam of the zero mode of an empty resonator
(x � wam=wp > 1), i.e. upon spatially nonuniform amplié-
cation [5, 6]. It was shown in [7] that when pump saturation
is taken into account, there exist optimal values xopt to
obtain the maximal eféciency and the minimal lasing
threshold. For the most wide-spread active media with Nd
ions, xopt > 2. It was demonstrated experimentally in [8]
that for x > 1 the spatial structure of radiation noticeably
differs from the structure of individual Laguerre ëGaussian
(LG) beams in the case of the so called critical conégura-

tions of the resonator with g1g2 � 0:25, 0.5, 0.75, where
g1;2 � 1ÿL=R1;2 (L is the resonator length and R1;2 are the
radii of curvature of mirrors). Authors of [8] explained this
fact by the appearance of the frequency degeneracy of
empty resonator modes, which takes place if the condition

arccos
���������
g1g2
p � p

q

s
(1)

is fulélled, where q=s is the irreducible fraction.
It was pointed out in [9] that the reason for the existence

of critical conégurations is the resonance coupling of the
zero mode of an empty resonator with a high-order mode,
which appears under conditions of degeneracy. Based on the
assumptions on the interaction of only two modes, it was
shown within the phenomenological model in [9] that the
resonance width depends both on the ratio of losses of high-
order modes and the zero mode and on the coupling
coefécient between them. However, this paper did not study
the relation of the spatial structure of the fundamental mode
with the pump and resonator parameters.

The effect of the nonuniform gain distribution, in
particular, upon axially symmetric pumping on the funda-
mental mode of a semiconfocal resonator was studied in
[10]. It was shown by using the Fox ëLi method [11] that for
a small gain (G0 � 1:2) and x > 0:67 the intensity distribu-
tion noticeably differs from the Gaussian one. When x is
decreased, the parameters of the laser beam approach the
parameters of the eigenbeam of the empty resonator and
when G0 increases (up to 64) ë to the parameters determined
by the size of the equivalent Gaussian aperture. Papers [12 ë
15] were devoted to the study of the spatial structure of
radiation in a number of plane-spherical resonators of
critical conégurations.

In [16] the inêuence of the resonator conéguration
(g1, g2) on the spatial structure of the fundamental mode
was considered by using the Fox ëLi method. Lasers with
stable resonators and a thin active medium with a Gaussian
transverse proéle of the éeld gain of the type

K�r� � 1� �K0 ÿ 1� exp
�
ÿ x 2 r 2

w 2
am

�
(2)

were studied. The parameters of the nonuniform pumping
were éxed: K0 � 1:5, which corresponds to ampliécation
realised in a picosecond diode-pumped Nd :YAG generator
controlled by negative and positive feedbacks [4] and x � 3,
which is close to the assumed optimal value. It was shown
that the number of critical conégurations, i.e. the regions in
the stability diagram in which multibeam (formed by a set
of LG beams) fundamental mode is present, decreases with
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decreasing the Fresnel number NF � a 2=(Ll) (a is the
radius of the resonator mirrors, l is the radiation wave-
length). For NF � 9, the conégurations with q=s � 1=2, 2/5,
3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, 1/10 were distinguished.
The amplitude and phase distributions in several reference
planes were presented for characteristic conégurations of
the resonator.

However, the data on the effect of the ampliécation
parameters K0 and x on the fundamental mode in the entire
stability region, which are necessary for developing longi-
tudinally-diode-pumped lasers, are absent in the literature.
In this paper, which is the continuation of [16], the
combined inêuence of the resonator parameters and sta-
tionary nonuniform axially symmetric gain distribution
(ampliécation K0 on the resonator axis and relative non-
uniformity x) on the parameters of the fundamental mode is
studied. In particular, the range of detunings from the
degeneracy and parameters of the gain distribution, which
lead to the formation of a multibeam mode, are determined.

2. Results of numerical calculations
by the Fox ëLi method

The Fox ëLi method was used to determine the ampli-
tude distribution u(r) of the fundamental mode. The
calculation procedure in the case of cylindrical symmetry
is described in detail in [16]. Calcualtions were performed
for stable resonators (0 < g1g2 < 1). The radii a of mirrors
were selected equal. A thin active medium was placed on one
of the mirrors. The amplitude distribution was calculated in
two planes: at the input and output of the active medium.
The gain proéle per round trip of the active medium was
speciéed in form (2). The difference of the spatial structure
of the fundamental mode from the structure of the zero
mode of the empty resonator uLG

0 (r; m), where m is the
complex parameter of LG beams, whose value in some plane
is determined by the resonator length and parameters g1, g2,
was characterised as in [16] by the parameter

jb0j2 �
����2p � u�r��uLG

0 ���r; m�rdr
����2. (3)

This parameter represents a fraction of energy contained in
the zero mode of the empty resonator for the normalised
amplitude distribution (2p

� ju(r)j2rdr � 1).
Quite illustrative are the dependences of jb0j2 in the

input plane of the active medium on g1 (or g2) for symmetric
resonators (g2 � g1). For NF � 9, x � 3 and K0 � 1:05, 2.0,
3.0 such dependences are presented in Fig. 1a. A signiécant
decrease in jb0j2 and, hence, the multibeam mode are
realised in the vicinity of a set of degenerate conégurations
of the resonator. In the case of strong degeneracy, the
multibeam mode is realised even at small K0. One can see
from Fig. 1a that the regions within which a multibeam
mode is formed, decrease with decreasing K0. The values of
jb0j2 between them approach unity with decreasing K0, i.e.
the mode approaches the Gaussian mode of the empty
resonator.

Figure 1a also shows the dependence of jb0j2 on g1 for
x � 3 Ë NF � 9 [curve ( 4 )] in the case when a Gaussian
aperture with the transmission function KGA(r) �
exp (ÿx 2r 2=w 2

am) is mounted near the mirror instead of
the active medium. The dependence of jb0j2 on g1 has a
qualitatively different character for the Gaussian aperture:
critical conégurations do not appear.

The effect of x on the dependence of jb0j2 on g1 for
symmetric resonators (g2 � g1) is illustrated in Fig. 1b. A
rise in x leads to an increase in the number of critical
conégurations and a decrease in jb0j2 for each of them.

3. Matrix representation of interaction of beam
modes upon spatial nonuniform ampliécation

To interpret the dependences obtained in numerical
calculations, it is expedient to represent the fundamental
mode in the form of superposition of LG beams (see, for
example, [17]). The complex amplitude distribution u(r) is
represented in this case as a sum:

u�r� �
X
p

bpu
LG
p �r; m�, (4)

the coefécients bp being determined by the expression

b
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Figure 1. Dependences of jb0j2 on g1 for symmetric (g1 � g2) resonators for NF � 9, x � 3, K0 � 1:05 ( 1 ), 2.0 ( 2 ), 3.0 ( 3 ) and intracavity Gaussian
aperture ( 4 ) (a) as well as for NF � 9, K0 � 2:0, x � 1:5 ( 1 ), 2.5 ( 2 ), 3.5 ( 3 ) (b). The values of q=s are presented, which correspond to the most
strongly pronounced degenerate conégurations of the resonator.
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bp � 2p
�
u�r��uLG

p ���r; m�rdr, (5)

where uLG
p (r; m) is the complex amplitude distribution of the

LG beam with the radial index p. The quantities jbpj2
represent a fraction of energy concentrated in the LG beam
with the radial index p.

The active medium with the spatial gain proéle is an
element redistributing amplitudes in the system of LG
beams. After a passage through the active medium, the
expression for the éeld u 0(r) has the form

u 0�r� � K�r�u�r� �
X
p1

b 0p1u
LG
p1 �r; m�, (6)

where

b 0p1 �
X
p2

tp1 p2bp2 , (7)

and quantities tp1 p2 are determined by the relation [17, 18]

tp1 p2 � 2p
�
�uLG

p2 ���r; m�K�r�uLG
p1 �r; m�rdr (8)

and represent matrix elements characterising the active
medium with the proéled gain. For the gain proéle
described by expression (2), expression (8) has the form

tp1 p2�dp1 p2��K0ÿ1�
�
�uLG

p ���r� exp�ÿx 2r 2=w 2
am�uLG

p2 �r�rdr.(9)

If the amplitude distribution in the input plane of the
active medium is normalised to the unit power, i.e.

2p
�
j(u(r)j2rdr �

X
p1

jbp1 j2 � 1,

then after the passage through the active medium the
emission power is increased by

X
p1

jb 0p1 j2 �
X
p1

����X
p2

tp1 p2bp2

����2
times. The complex quantity tp1 p2bp2 is an addition to the
amplitude bp1 of the LG beam with the radial index p1 from
a beam with the index p2, which is related to the amplitude
redistribution during the passage through the active
medium. For the gain proéle described by real transmission
function (2), the matrix ktp1 p2k is symmetric and real and
for moderate ampliécations (K0 4 2) has the form close to
the diagonal one, i.e. jtp1 p2 j5 jtp1 p1 j for p1 6� p2.

Figure 2 shows tp 0, tp 5, and tp p corresponding to the
gain proéles with x � 3 and different K0. One can see that
the relative values of the nondiagonal elements increase with
increasing K0 but the set of interacting beams remains
constant. Figures 2a, b show tp 0 Ë tp 5 in the case of a
Gaussian aperture with the same x � 3. The expression for
the elements of the matrix corresponding to the Gaussian
aperture can be derived if we set K0 equal to 2 and exclude
the Kronecker symbol from Eqn (9).

Figure 3 demonstrates the effect of x on matrix elements
tp 0, tp 5, and tp p for K0 � 1:5 and different x. For each LG
beam, the number of LG beams with which it eféciently
interacts increases with increasing x.

The matrix elements tp1 p2 determine the interaction of
beam modes due to the spatially nonuniform ampliécation.
The amplitude redistribution leads in this case to the
additional phase shift cp of individual LG beams upon
their passage through the active medium:
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Figure 2. Matrix elements tp 0 (a), tp 5 (b) and tp p (c) for the gain proéle with x � 3, K0 � 1:1 (&), 1.2 (*), 1.5 (~) and the Gaussian aperture (!).
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Figure 3. Matrix elements tp 0 (a), tp 5 (b) and tp p (c) for K0 � 1:5 Ë x � 1 (&), 2 (*), 3 (~).
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cp1
� arg

X
p2

tp1 p2bp2 ÿ arg bp1 . (10)

Note that the quantity cp1
depends on bp2 , i.e. on the

amplitude distribution u(r) at the input to the active
medium.

Along with a change in the amplitudes and phases of LG
beams upon their passage through the active medium, an
additional Guoy phase shift takes place upon propagation
of radiation from the active medium to the opposite mirror
and back to the input to the active medium [19]:

yp � 2�2p� 1� arccos�� ���������
g1g2
p �. (11)

The presence of critical conégurations in the stability
diagram is caused by their property to retain phase relations
after the resonator round trip for arbitrary superpositions of
beams with certain values of p. The conservation of the
phase equality of LG beams forming the fundamental mode
from one resonator round trip to another leads to the
efécient energy accumulation in beams with large p during
the process of multiple amplitude redistribution of beams
upon ampliécation. The equilibrium energy distribution
over the LG beams, which corresponds to the fundamental
mode, is deéned by the redistribution coefécients tp1 p2 and
an increase in the diffraction losses on limiting apertures
with increasing p.

4. A two-beam model and formation
of multibeam modes

Let us estimate the parameters of the gain distribution at
which the Gaussian fundamental mode undergoes a
transition to the multibeam mode. In this case we will
use the approach similar to that proposed in [9]. We will
consider the fundamental mode as a superposition of two
LG beams with p � 0 and p � Dp, where Dp � s=2 or s for
even or odd s, respectively. In this case, b0 4 bDp. Then,
after a round trip in the resonator, b0 and bDp change as:

b 00 � g0�t00b0 � exp�ÿij�t0DpbDp�,
(12)

b 0Dp � gDp�t0Dpb0 � exp�ij�tDpDpbDp�,
where the matrix elements ktp1 p2k are the functions of the
parameters K0 and x; 1ÿ g 20 and 1ÿ g 2Dp are diffraction
losses of the LG beams; j � yDp ÿ y0 is the phase shift of a
beam with the radial index p � Dp with respect to the beam
with p � 0 upon radiation propagation from the active
medium to the opposite mirror and back to the input to the
active medium. If the combination of two beams under
study is a resonator mode, the relative energy distribution
over the beams per round trip is preserved: b 0=b 0Dp � b=bDp.
Taking into account that b0 4 bDp and t00 4 t0Dp, the term
t0DpbDp in (12) can be neglected and we obtain an
expression relating the beam amplitudes b0 and bDp:

bDp �
a

1ÿ b exp�ij� b0, (13)

where

a � t0Dp

t00

gDp
g0

; b � tDpDp

t00

gDp
g0

.

The phase difference of the beams in the input plane of the
active medium is speciéed by the expression

W � arcsin
b sinj

�1ÿ 2b cosj� b 2�1=2
. (14)

Under the condition of normalisation b0b
�
0 � bDpb

�
Dp � 1

from (13), we obtain also the fraction of energy contained
in the zero beam:

jb0j2 �
1

1� d 2
, (15)

where

d 2 � a 2

�1ÿ b�2 F�j�;

F�j� �
�
1� 4b

�1ÿ b�2 sin
2�j=2�

�ÿ1
is the Airy contour whose FWHM Dj, as is known,
depends only on the parameter b:

Dj � 2�1ÿ b����
b
p . (16)

The results obtained within the two-beam model cannot
claim to give an exhaustive description of the conégurations
in which a substantial decrease in jb0j2 is observed and the
fundamental mode consists of a large number of LG beams
(see, for example, [16]). However, this model is useful to
determine the threshold values of the resonator parameters
and the gain distribution for which a multibeam mode is
produced. In addition, the model allows one to estimate the
fraction of background beams whose existence was
observed in [16].

Let the condition jb0j2 � 0:9 be the criterion for the
formation of the multibeam mode. Then, expression (15) is
simpliéed:

jb0j2 � 1ÿ d 2. (17)

Let us determine, érst, the sensitivity of the fundamental
mode to the ampliécation parameters x and K0 in the case
of exact degeneracy (j � 0). In this case, it is convenient to
rewrite expression (17) in the form

jb0j2 � 1ÿ
�

1

d1
� g0 ÿ gDp

gDp

t00
t0Dp

�ÿ2
, (18)

where d 2
1 � t 20Dp=(t00 ÿ tDpDp)

2. Let us estimate the value of
x for which jb0j2 � 0:9. In the case of mirrors of a large
enough diameter, g0 � gDp and the second term in brackets
in (18) can be neglected. Taking into account the selected
criterion we derive an equation

t00 ÿ tDpDp

t0Dp
�

���������������
1

1ÿ 0:9

r
�

�����
10
p

(19)

with respect to x, the root of it being the value x0:9, so that
jb0j2 � 0:9 for x � x0:9. It follows from (9) that
t0Dp � K0 ÿ 1, t00 ÿ 1 � K0 ÿ 1 and tDpDp ÿ 1 � K0 ÿ 1.
One can see here that equation (19) does not contain K0.
The numerical calculations demonstrate a weak dependence
of x0:9 on K0. The parameters x0:9 for a number of
degenerate conégurations obtained by the Fox ëLi method
for NF � 30 and K0 � 2:0 and calculated by using (19) are
presented in Table 1.

The presented values of x0:9 allow one to determine how
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large the diameter of the pump beam should be to exclude
(x < x0:9) or provide (x > x0:9) the appearance of some
critical conéguration. One can see from Table 1 that x0:9
increases with increasing Dp, i.e. a decrease in the diameter
of the pump beam results in the appearance of critical
conégurations with large s.

Figure 4 presents the composition of the fundamental
mode for x > x0:9. It also shows the values of jbpj2 and
arg bp in the input plane of the active medium and intensity
distributions on the opposite mirror for a degenerate
resonator with q=s � 1=4 (g1g2 � 0:5) for NF � 9,
K0 � 2:0 and different x. When x is increased, the number
of LG beams forming the fundamental mode increases,
remaining in this case limited by a value determined by NF.
A similar effect of x on the composition of the fundamental
mode is observed for other degenerate conégurations.

In the case of weak gains and/or énite dimensions of the
mirrors the second term in brackets in (18) cannot be
neglected. Indeed, for

g0 ÿ gDp
gDp

t00
t0Dp

>
0:1

d1

we can expect a decrease in d 2 by more than 20% due to
the dependence of d 2 on K0 and a corresponding increase in
jb0j2. Because for small K0 ÿ 1 the estimate t00 � 1 is valid
and taking into account the expression t0Dp � 2(K0ÿ
1)x 2Dp=(2 � x)Dp�1 we obtain that jb0j2 � 0:9 for

�K0 ÿ 1�0:9 �
�����
10
p �2� x�Dp�1

2x 2Dp

g0 ÿ gDp
gDp

. (20)

g0 and gDp can be estimated as follows:

g0 �Dp� � 2p
� a

0

��uLG
0 �Dp��r; m�

��2rdr. (21)

Table 2 presents the values of (K0 ÿ 1)0:9 calculated by (20)
at x � 3 and different NF for conégurations with q=s � 1=4,
1/3, 3/8 and 3/10. One can see that in the case of exact
degeneracy the effect of K0 on the formation of the
multibeam mode takes place only for strongly diaphragmed
resonators (small NF).

Table 1. Parameters of x0:9 obtained by the Fox ëLi method and
calculated by using expression (19) for different q=s.

Dp q=s
x0:9
(Fox ëLi method)

x0:9
[expression (19)]

2 1/4 1.26 1.26

3 1/3, 1/6 1.75, 1.75 1.73

4 1/8, 3/8 2.11, 2.12 2.09

5 1/5, 1/10, 3/10 2.42, 2.43, 2.42 2.40

6 1/12, 5/12 2.75, 2.70 2.67

7 1/7, 2/7 2.97, 2.93 2.92

8 3/16, 5/16 3.17, 3.17 3.15

9 1/9, 2/9 3.53, 3.37 3.36

I (rel. units)

d e f
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Figure 4. The values of jbpj2 (columns) and arg bp (dots) calculated by the Fox ëLi method in expansion (4) of the fundamental mode in the input
plane of the active medium (a ë c) and intensity distributions I on the opposite mirror (d ë f) for a degenerate resonator with q=s � 1=4 (g1g2 � 0:5) for
NF � 9, K0 � 2:0, x � 1:3 (a, d), 2 (b, e), 4 (c, f).

Table 2. Values of �K0 ÿ 1�0:9 for x � 3 and different NF calculated by
using expression (20) for some q=s.

q=s
NF

2 3 4 6

1/4 0.40 0.023 9:3� 10ÿ4 7:0� 10ÿ7

1/3 0.48 0.027 7:9� 10ÿ4 2:0� 10ÿ7

3/8 0.61 0.068 0.029 1:0� 10ÿ6

3/10 0.43 0.29 0.055 2:6� 10ÿ4
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Let us estimate the range of detunings from the
degeneracy within which the multibeam mode is realised.
If the degeneracy turns weak (for example, for x close to
x0:9), the FWHM Dj of the contour (16) can be treated as
the resonance width. Taking into account the relation
between the relative phase shift of two beams per resonator
round trip (without the active medium) and detuning from
the degeneracy in coordinates g1, g2 for critical conégura-
tions inside the stability region (0 < g1g2 < 1), we have

Dj � q
q�g1g2�

�
Dp arccos

���������
g1g2
p �

D�g1g2�

� 2DpD�g1g2�
f�1ÿ �g1g2�deg ��g1g2�degg1=2

, (22)

where (g1g2)deg � cos 2 (pq=s) is the value corresponding to
the degeneracy. Taking into account (22), we obtain from
(16) the expression for the width of the region in which the
multibeam mode appears on the stability diagram:

D�g1g2� �
sin�2pr=s�

2Dp�t00g0tDpgDp�1=2
�
1ÿ gDp

g0

tDpDp

t00

�
. (23)

Expression (23) gives a quantitative description of the
dependence of the resonance width on the parameters of the
resonator and nonuniform ampliécation mentioned in [9].

In pronounced critical conégurations the two-beam
model can be used only for a sufécient detuning from
exact degeneracy, when the fundamental mode is mainly
formed by two beams. In this case, it is expedient to
determine by the level jb0j2 � 0:9 the width of the region
where the multibeam mode appears. The expression for this
width is obtained from (15) by taking (22) into account:

D0:9�g1g2� �
�����
10
p

sin�2pq=s�
2Dp

�
t 20Dp

t00tDpDp

gp
g0

ÿ�t00g0 ÿ tDpDpgp�2
10t00tDpDpg0gp

�1=2
. (24)

The dependences of D0:9(g1g2) on K0 for different coné-
gurations obtained by the Fox ëLi method and calculated
by expression (24) are presented in Fig. 5. One can see that
D0:9(g1g2) increases with increasing K0.

5. Conclusions

The combined inêuence of the parameters of a spatially
nonuniform axially-symmetric intensity distribution in a
four-level active medium and resonator parameters on the
composition of the fundamental mode has been studied.
Analytic estimates obtained within the framework of the
model of two beams interacting due to the spatially
nonuniform ampliécation agree well with the results of
calculations by the Fox ëLi method. Under the conditions
of exact degeneracy, a decrease in the pump beam diameter
leads to an increase in the number of beams forming the
mode and the effect of ampliécation on the mode
composition is noticeable only at small Fresnel numbers
and/or at large enough values of K0. A decrease in the
pump beam diameter at the éxed Fresnel number results in
the appearance of critical conégurations of the resonator
with large values of the determinator in the fraction
characterising the degeneracy. On the stability diagram the
region of detuning from the strong degeneracy, within
which a multibeam mode is realised, expands with
increasing the gain.
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Figure 5. Dependences of D0:9�g1g2� on K0 for conégurations with
q=s � 1=4 (1), 1/3 (2), 3/8 (3) calculated by the Fox ëLi method (dots)
and by expression (24) (curves).
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