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Influence of the resonator parameters and spatially nonuniform
amplification on the spatial structure of the fundamental mode

of stable resonator lasers

M.V. Gorbunkov, P.V. Kostryukov, V.G. Tunkin

Abstract. The combined influence of the resonator param-
eters and spatially nonuniform axially symmetric amplifica-
tion distribution in a four-level active medium on the spatial
structure of the fundamental mode of laser radiation is
studied numerically by the Fox — Li method. The model of two
beams interacting due to the spatial amplification nonun-
iformity is used to obtain simple analytic estimates. The
transition of the spatial structure of the fundamental mode
from the Gaussian one to the structure formed by a set of
Laguerre — Gaussian beams is studied. It is shown that near
the degenerate configurations of the resonator a decrease in
the diameter of the pump beam leads to an increase in the
number of Laguerre— Gaussian beams forming the funda-
mental mode. It is found that the range of detunings from the
strong degeneracy within which substantial differences of the
spatial structure of the fundamental mode from the Gaussian
structure are realised, increases with increasing the gain.

Keywords: longitudinal pumping, degenerate resonators, multibeam
modes.

1. Introduction

At present longitudinal diode pumping of solid-state lasers
has found wide application [1—4]. It is known that the
lasing efficiency increases in a four-level active medium
when the pump beam radius w, is smaller than the radius
w,m of the zero mode of an empty resonator
(¢ = wym/w, > 1), i.e. upon spatially nonuniform amplifi-
cation [5, 6]. It was shown in [7] that when pump saturation
is taken into account, there exist optimal values &, to
obtain the maximal efficiency and the minimal lasing
threshold. For the most wide-spread active media with Nd
ions, &y, > 2. It was demonstrated experimentally in [8]
that for £ > 1 the spatial structure of radiation noticeably
differs from the structure of individual Laguerre —Gaussian
(LG) beams in the case of the so called critical configura-
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tions of the resonator with g,g, = 0.25, 0.5, 0.75, where
g12 = 1—L/R;, (L is the resonator length and R, , are the
radii of curvature of mirrors). Authors of [8] explained this
fact by the appearance of the frequency degeneracy of
empty resonator modes, which takes place if the condition

arccos /g8, = nd (1)
s

is fulfilled, where ¢/s is the irreducible fraction.

It was pointed out in [9] that the reason for the existence
of critical configurations is the resonance coupling of the
zero mode of an empty resonator with a high-order mode,
which appears under conditions of degeneracy. Based on the
assumptions on the interaction of only two modes, it was
shown within the phenomenological model in [9] that the
resonance width depends both on the ratio of losses of high-
order modes and the zero mode and on the coupling
coefficient between them. However, this paper did not study
the relation of the spatial structure of the fundamental mode
with the pump and resonator parameters.

The effect of the nonuniform gain distribution, in
particular, upon axially symmetric pumping on the funda-
mental mode of a semiconfocal resonator was studied in
[10]. It was shown by using the Fox —Li method [11] that for
a small gain (Gy = 1.2) and ¢ > 0.67 the intensity distribu-
tion noticeably differs from the Gaussian one. When ¢ is
decreased, the parameters of the laser beam approach the
parameters of the eigenbeam of the empty resonator and
when G, increases (up to 64) — to the parameters determined
by the size of the equivalent Gaussian aperture. Papers [12—
15] were devoted to the study of the spatial structure of
radiation in a number of plane-spherical resonators of
critical configurations.

In [16] the influence of the resonator configuration
(g1,8>) on the spatial structure of the fundamental mode
was considered by using the Fox—Li method. Lasers with
stable resonators and a thin active medium with a Gaussian
transverse profile of the field gain of the type

2
K(r) =1+ (Ky— 1)exp (— 2’—2) 2)
wéll’l]
were studied. The parameters of the nonuniform pumping
were fixed: Ky = 1.5, which corresponds to amplification
realised in a picosecond diode-pumped Nd: YAG generator
controlled by negative and positive feedbacks [4] and & = 3,
which is close to the assumed optimal value. It was shown
that the number of critical configurations, i.e. the regions in
the stability diagram in which multibeam (formed by a set
of LG beams) fundamental mode is present, decreases with
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decreasing the Fresnel number NF:a2/(Li) (a is the
radius of the resonator mirrors, A is the radiation wave-
length). For Ng = 9, the configurations with ¢/s = 1/2, 2/5,
3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, 1/10 were distinguished.
The amplitude and phase distributions in several reference
planes were presented for characteristic configurations of
the resonator.

However, the data on the effect of the amplification
parameters K, and ¢ on the fundamental mode in the entire
stability region, which are necessary for developing longi-
tudinally-diode-pumped lasers, are absent in the literature.
In this paper, which is the continuation of [16], the
combined influence of the resonator parameters and sta-
tionary nonuniform axially symmetric gain distribution
(amplification K, on the resonator axis and relative non-
uniformity &) on the parameters of the fundamental mode is
studied. In particular, the range of detunings from the
degeneracy and parameters of the gain distribution, which
lead to the formation of a multibeam mode, are determined.

2. Results of numerical calculations
by the Fox —Li method

The Fox—Li method was used to determine the ampli-
tude distribution u(r) of the fundamental mode. The
calculation procedure in the case of cylindrical symmetry
is described in detail in [16]. Calcualtions were performed
for stable resonators (0 < g;g, < 1). The radii a of mirrors
were selected equal. A thin active medium was placed on one
of the mirrors. The amplitude distribution was calculated in
two planes: at the input and output of the active medium.
The gain profile per round trip of the active medium was
specified in form (2). The difference of the spatial structure
of the fundamental mode from the structure of the zero
mode of the empty resonator utC(r,u), where u is the
complex parameter of LG beams, whose value in some plane
is determined by the resonator length and parameters g, g,
was characterised as in [16] by the parameter

2

1Bol* = 3)

2n J u(r) (ug S)* (r, ) rdr

This parameter represents a fraction of energy contained in
the zero mode of the empty resonator for the normalised
amplitude distribution (27 [ [u(r)[*rdr = 1).

Quite illustrative are the dependences of |fy|* in the
input plane of the active medium on g; (or g,) for symmetric
resonators (g, = g1). For Np =9, £ =3 and K, = 1.05, 2.0,
3.0 such dependences are presented in Fig. la. A significant
decrease in |ﬁ0|2 and, hence, the multibeam mode are
realised in the vicinity of a set of degenerate configurations
of the resonator. In the case of strong degeneracy, the
multibeam mode is realised even at small K,. One can see
from Fig. l1a that the regions within which a multibeam
mode is formed, decrease with decreasing K. The values of
|ﬁ0|2 between them approach unity with decreasing K, i.e.
the mode approaches the Gaussian mode of the empty
resonator.

Figure la also shows the dependence of |f,|” on g, for
=3 u Ng =9 [curve (4)] in the case when a Gaussian
aperture with the transmission function Kga(r) =
exp(fﬁzrz/wazm) is mounted near the mirror instead of
the active medium. The dependence of |[f0|2 on g, has a
qualitatively different character for the Gaussian aperture:
critical configurations do not appear.

The effect of ¢ on the dependence of |ﬁ0|2 on g, for
symmetric resonators (g, = g;) is illustrated in Fig. 1b. A
rise in ¢ leads to an increase in the number of critical
configurations and a decrease in |f,|* for each of them.

|2

3. Matrix representation of interaction of beam
modes upon spatial nonuniform amplification

To interpret the dependences obtained in numerical
calculations, it is expedient to represent the fundamental
mode in the form of superposition of LG beams (see, for
example, [17]). The complex amplitude distribution u(r) is
represented in this case as a sum:

u(r) = Bouy (r, ), )
V4

the coefficients f8, being determined by the expression
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Figure 1. Dependences of |,B(,|2 on g for symmetric (g, = g,) resonators for Np =9, ¢ =3, K, =1.05(17), 2.0 (2), 3.0 (3) and intracavity Gaussian
aperture (4) (a) as well as for Np =9, Ky =2.0, £ =1.5(1), 2.5(2), 3.5 (3) (b). The values of ¢/s are presented, which correspond to the most

strongly pronounced degenerate configurations of the resonator.
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where u S(r, p) is the complex amplitude distribution of the
LG beam with the radial index p. The quantities |ﬁp\
represent a fraction of energy concentrated in the LG beam
with the radial index p.

The active medium with the spatial gain profile is an
element redistributing amplitudes in the system of LG
beams. After a passage through the active medium, the
expression for the field u'(r) has the form

u'(r) = BpupC (), (6)
where :

B E:%mmf (7
and qudntmes o p, ar€ determined by the relation [17, 18]

tpe = 20 [ 1KY, ®)

and represent matrix elements characterising the active
medium with the profiled gain. For the gain profile
described by expression (2), expression (8) has the form
= (Ko 1) 059" (0) exp(= 22 [t 1)1 O

If the amplitude distribution in the input plane of the
active medium is normalised to the unit power, i.e.

2 [ o) Prar = Sl =1,

then after the passage through the active medium the
emission power is increased by

2
Z‘ﬁl’l _Z Z Plpzﬁliz

4 P P2

times. The complex quantity ¢, , B, is an addition to the
amplitude 8, of the LG beam with the radial index p; from
a beam with the index p,, which is related to the amplitude
redistribution during the passage through the active
medium. For the gain profile described by real transmission
function (2), the matrix ||z, ,, || is symmetric and real and
for moderate amplifications (K, < 2) has the form close to
the diagonal one, i.e. |1, ,,| <|t, | for p; # p,.

Figure 2 shows ¢,, t,s, and t,, corresponding to the
gain profiles with £ = 3 and different K,. One can see that
the relative values of the nondiagonal elements increase with
increasing K, but the set of interacting beams remains
constant. Figures 2a, b show 7,0 u 7,5 in the case of a
Gaussian aperture with the same & = 3. The expression for
the elements of the matrix corresponding to the Gaussian
aperture can be derived if we set K, equal to 2 and exclude
the Kronecker symbol from Eqn (9).

Figure 3 demonstrates the effect of & on matrix elements
tho» Ips, and t,, for Ky = 1.5 and different ¢. For each LG
beam, the number of LG beams with which it efficiently
interacts increases with increasing &.

The matrix elements #, ,, determine the interaction of
beam modes due to the spatially nonuniform amplification.
The amplitude redistribution leads in this case to the
additional phase shift ¢, of individual LG beams upon
their passage through the active medium:
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Figure 2. Matrix elements #,, (a), 7,5 (b) and #,, (c) for the gain profile with ¢ = 3, Ky = 1.1 (1), 1.2 (0), 1.5 (») and the Gaussian aperture ().
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Figure 3. Matrix elements #,, (a), 7,5 (b) and 1, (c) for Ky =1.5u ¢ =1(0), 2 (0), 3 (»)-
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ll,l’l = argz Zplpzﬁl’z - argﬁpl’ (10)
P2

Note that the quantity ¥, depends on f,, i.e. on the
amplitude distribution u(r) at the input to the active
medium.

Along with a change in the amplitudes and phases of LG
beams upon their passage through the active medium, an
additional Guoy phase shift takes place upon propagation
of radiation from the active medium to the opposite mirror
and back to the input to the active medium [19]:

6, =2(2p + 1) arccos(+4/g1g2 )- (11)

The presence of critical configurations in the stability
diagram is caused by their property to retain phase relations
after the resonator round trip for arbitrary superpositions of
beams with certain values of p. The conservation of the
phase equality of LG beams forming the fundamental mode
from one resonator round trip to another leads to the
efficient energy accumulation in beams with large p during
the process of multiple amplitude redistribution of beams
upon amplification. The equilibrium energy distribution
over the LG beams, which corresponds to the fundamental
mode, is defined by the redistribution coefficients ¢, , and
an increase in the diffraction losses on limiting apertures
with increasing p.

4. A two-beam model and formation
of multibeam modes

Let us estimate the parameters of the gain distribution at
which the Gaussian fundamental mode undergoes a
transition to the multibeam mode. In this case we will
use the approach similar to that proposed in [9]. We will
consider the fundamental mode as a superposition of two
LG beams with p =0 and p = Ap, where Ap = s/2 or s for
even or odd s, respectively. In this case, i, > f,,. Then,
after a round trip in the resonator, ff, and B,, change as:

Bo = voltooBo + exp(—i@)toapBap)s
(12)

ﬁgp ="Vap [IOApﬁO + exp(iq))tApApﬁApL

where the matrix elements ||z, ,,|| are the functions of the
parameters K, and & 1 —7y5 and l—yip are diffraction
losses of the LG beams; ¢ = 0, — 0, is the phase shift of a
beam with the radial index p = Ap with respect to the beam
with p =0 upon radiation propagation from the active
medium to the opposite mirror and back to the input to the
active medium. If the combination of two beams under
study is a resonator mode, the relative energy distribution
over the beams per round trip is preserved: '/, = B/fa,-
Taking into account that f, > Ba, and foy > ), the term
toapBa, in (12) can be neglected and we obtain an
expression relating the beam amplitudes f, and f,,:

a

- % 1
ﬁAp 1 — beXp(qu) ﬁ(b ( 3)
where
o onn Tap o Tapap T

oo Yo foo Yo

The phase difference of the beams in the input plane of the
active medium is specified by the expression

bsin ¢
(1 —2bcos g+ b))/

9 = arcsin

(14

Under the condition of normalisation fyfg + fa,Ba, = 1
from (13), we obtain also the fraction of energy contained
in the zero beam:

» 1
|ﬁ0| 1+527 (15)
where
2
8% = (1 ib)z (P(@)s
4 . -
D(p) = +msmz(q)/z)

is the Airy contour whose FWHM A¢g, as is known,
depends only on the parameter b:

2(1 - b)
g

The results obtained within the two-beam model cannot
claim to give an exhaustive description of the configurations
in which a substantial decrease in |f,|* is observed and the
fundamental mode consists of a large number of LG beams
(see, for example, [16]). However, this model is useful to
determine the threshold values of the resonator parameters
and the gain distribution for which a multibeam mode is
produced. In addition, the model allows one to estimate the
fraction of background beams whose existence was
observed in [16].

Let the condition |fy)* = 0.9 be the criterion for the
formation of the multibeam mode. Then, expression (15) is
simplified:

Ap = (16)

2 2
ol = 162, (17)
Let us determine, first, the sensitivity of the fundamental
mode to the amplification parameters & and K|, in the case
of exact degeneracy (¢ = 0). In this case, it is convenient to
rewrite expression (17) in the form

[a} P— -2

Bl =1- (i+u’°—°> : (18)
0o Yap  loap

where 62, = tozAp/(too — tApAp)z. Let us estimate the value of
¢ for which |By|* = 0.9. In the case of mirrors of a large
enough diameter, y, ~ y,, and the second term in brackets
in (18) can be neglected. Taking into account the selected
criterion we derive an equation

foo — tApAp o 1

= =1
1-09 vio

(19)

ly Ap

with respect to &, the root of it being the value &4, so that
IBol?= 0.9 for &=¢&o. It follows from (9) that
tOApNK0_19 IOO—IN Ko—l and tApAp_lN Ko—l
One can see here that equation (19) does not contain K.
The numerical calculations demonstrate a weak dependence
of &9 on K,. The parameters ;9 for a number of
degenerate configurations obtained by the Fox—Li method
for Ng = 30 and K = 2.0 and calculated by using (19) are
presented in Table 1.

The presented values of &g allow one to determine how
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Table 1.

Parameters of &;¢ obtained by the Fox—Li method and
calculated by using expression (19) for different ¢/s.

Ap a/s ngx—Li method) [Ceopfpression (19)]
2 1/4 1.26 1.26
3 1/3,1/6 1.75, 1.75 1.73
4 1/8,3/8 2.11,2.12 2.09
5 1/5,1/10, 3/10 242,243,242 2.40
6 1/12, 5/12 275,270 2.67
7 1/7,2/7 2.97,2.93 2.92
8 3/16, 5/16 3.17,3.17 3.15
9 1/9,2/9 3.53,3.37 3.36

large the diameter of the pump beam should be to exclude
(& < &yg) or provide (¢ > &yq) the appearance of some
critical configuration. One can see from Table 1 that &;q
increases with increasing Ap, i.e. a decrease in the diameter
of the pump beam results in the appearance of critical
configurations with large s.

Figure 4 presents the composition of the fundamental
mode for & > &y9. It also shows the values of |ﬁ17|2 and
arg B, in the input plane of the active medium and intensity
distributions on the opposite mirror for a degenerate
resonator with ¢/s=1/4 (g8, =0.5) for Ng=09,
Ky = 2.0 and different &. When ¢ is increased, the number

V()_VA[) tOO g
Tap loap  Ooo

we can expect a decrease in 6> by more than 20 % due to
the dependence of 8> on K, and a corresponding increase in
|/30|2. Because for small K, — 1 the estimate 7y, ~ 1 is valid
and taking into account the expression #,, = 2(Ko—
1EM )2 + &Y™ we obtain that |f,|* = 0.9 for

2 SNAp+L
(KO_I)(),Q:\/E( +Q) Yo /AI’. (20)

25 2A1) yAp

70 and y,, can be estimated as follows:
‘LG 2
To(ap) = 2T [0 |ug(ap) (r, )| “rdr. (21)

Table 2 presents the values of (K — 1), calculated by (20)
at ¢ = 3 and different Ng for configurations with ¢/s = 1/4,
1/3, 3/8 and 3/10. One can see that in the case of exact
degeneracy the effect of K, on the formation of the
multibeam mode takes place only for strongly diaphragmed
resonators (small Ng).

Table 2. Values of (Kj — 1)y, for £ =3 and different N calculated by
using expression (20) for some ¢/s.

of LG beams forming the fundamental mode increases, Ng
remaining in this case limited by a value determined by Ng. a/s 2 3 4 6
A similar effect of ¢ on the composition of the fundamental P 7
. . 1/4 0.40 0.023 9.3 x 10~ 7.0 x 10~
mode is observed for other degenerate configurations. 1/3 0.43 0.027 7o x 0 20 x 10~
In the case of weak gains and/or finite dimensions of the / ' ’ ' ;9 o s
mirrors the second term in brackets in (18) cannot be 38 0.61 0.068 0.0 1.0 1074
neglected. Indeed, for 3/10 0.43 0.29 0.055 2.6 x 10
1Bol* arg f, /rad 1Bl arg 8, /rad 1Bl argf, /rad
1.0 1.0 1.0
[ ] [ ] [ ] [ ) 4T [ ] [ ] [ ] 4T [ ] [ ] [ ] [ 4T
05 o @ e o =40 05ief © e e o =40 0.5 te e o o =40
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Figure 4. The values of \/3,,\2 (columns) and arg 8, (dots) calculated by the Fox—Li method in expansion (4) of the fundamental mode in the input
plane of the active medium (a—c) and intensity distributions 7 on the opposite mirror (d—f) for a degenerate resonator with ¢/s = 1/4 (g;g, = 0.5) for

Ne =9, Ky=20,¢=13(a d),2(b,e),4 D
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Let us estimate the range of detunings from the
degeneracy within which the multibeam mode is realised.
If the degeneracy turns weak (for example, for & close to
£o9), the FWHM Ag of the contour (16) can be treated as
the resonance width. Taking into account the relation
between the relative phase shift of two beams per resonator
round trip (without the active medium) and detuning from
the degeneracy in coordinates g;, g, for critical configura-
tions inside the stability region (0 < g;g, < 1), we have

Ag ~ SPrs) (Ap arccos /g, )A(glgz)

2182)

_ 2ApA(g142) 22)

1/2
{[1 - (g1g2)deg](glg2)deg} /
where (£182)dee = cos? (ng/s) is the value corresponding to
the degeneracy. Taking into account (22), we obtain from
(16) the expression for the width of the region in which the
multibeam mode appears on the stability diagram:

sin(2mnr/s) (l
2Ap(t0070 lApVAp)l/z

T ’APAP)

(23)
Yo oo

Algi1gr) =

Expression (23) gives a quantitative description of the
dependence of the resonance width on the parameters of the
resonator and nonuniform amplification mentioned in [9].
In pronounced critical configurations the two-beam
model can be used only for a sufficient detuning from
exact degeneracy, when the fundamental mode is mainly
formed by two beams. In this case, it is expedient to
determine by the level |f,|* = 0.9 the width of the region
where the multibeam mode appears. The expression for this
width is obtained from (15) by taking (22) into account:

V10sin(2ng/s) [
2Ap

2
tOAp Tp

A = Yo
o.9(g1g2) foolapap Yo

L \271)2
1, —1
(0070 ApAp/p) ] . (24)

101‘00 tAp Ap’y(]yp

The dependences of Agq(g;g2) on K, for different confi-
gurations obtained by the Fox—Li method and calculated
by expression (24) are presented in Fig. 5. One can see that
Ago(g1g>) increases with increasing K.

Ago(g122)

0.10 -
0.08 -
0.06 -
0.04
0.02 -

0}

1
1.0 12 14

1
1.6 1.8 20 22 24 K,

Figure 5. Dependences of Agy(g1g2) on K, for configurations with
q/s=1/4 (1), 1/3 (2), 3/8 (3) calculated by the Fox—Li method (dots)
and by expression (24) (curves).

5. Conclusions

The combined influence of the parameters of a spatially
nonuniform axially-symmetric intensity distribution in a
four-level active medium and resonator parameters on the
composition of the fundamental mode has been studied.
Analytic estimates obtained within the framework of the
model of two beams interacting due to the spatially
nonuniform amplification agree well with the results of
calculations by the Fox—Li method. Under the conditions
of exact degeneracy, a decrease in the pump beam diameter
leads to an increase in the number of beams forming the
mode and the effect of amplification on the mode
composition is noticeable only at small Fresnel numbers
and/or at large enough values of K. A decrease in the
pump beam diameter at the fixed Fresnel number results in
the appearance of critical configurations of the resonator
with large values of the determinator in the fraction
characterising the degeneracy. On the stability diagram the
region of detuning from the strong degeneracy, within
which a multibeam mode is realised, expands with
increasing the gain.
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