
Abstract. A neural network with radius basis functions is
trained by using the evolution approach to recognise the mode
characteristics of a Fabry ëPerot resonator. It is shown that
the network is capable of determining simultaneously the
qualitative and quantitative characteristics of nonstationary
lasing. The eféciency of the approach for determining the
amplitudes of the fundamental and érst modes on passing
from single-mode to two-mode lasing is demonstrated by the
example of a network with the response time shorter than the
resonator round-trip transit time. The eféciency of a new
scheme, in which éeld-amplitude detectors are located inside
the resonator outside of the output aperture, is also
demonstrated.

Keywords: laser, Fabry ëPerot resonator, lasing dynamics, nume-
rical simulation, neural network.

1. Introduction

The development of methods for controlling nonstationary
multimode lasing is of current interest because this provides
the relation between the theory of such lasing [1 ë 3] and
experimental data and also because higher-order modes are
often used in modern laser technologies [4]. In [5], it was
proposed to use a classical three-level neural network for
determining qualitative characteristics of lasing. A part of
an optical beam in a scheme used in [5] was directed to
éeld-amplitude detectors. The output data set was obtained
after the normalisation of signals from Ni detectors to their
maximum value. As a result, the three-level network was
capable of recognising passages between regimes with
different numbers of generated modes (single-mode or
two-mode lasing). The passage could be recognised when
the pump rate only slightly exceeded the threshold rate for
the given type of lasing. Such a scheme for lasing control
can be useful when an autonomous device is required for
determining the number of generated modes.

The scheme used in [5] has a number of disadvantages.
First, it does not allow the measurement of mode ampli-
tudes, which is important for theoretical studies and

practical applications. Second, a beamsplitter in this scheme
is located in the near-éeld radiation zone, whereas it is
preferable to place into the beam only elements controlling
radiation. Third, this scheme has a considerable training
time, especially in the case of many situations to be
recognised by the network (in the case of many network
outputs).

This study eliminated these disadvantages to a great
extent. As in [5], it is assumed in this paper that transverse
radiation intensity distributions in the output aperture plane
have speciéc features from which the number of generated
modes, their amplitudes, and phase relations can be
determined. The construction of a neural network capable
of recognising both qualitative and quantitative parameters
(amplitudes of generated modes) of lasing is considered.
Thus, information on mode phases is excluded from
consideration, which simpliées training by retaining the
general approach. In the general case the number of
situations recognised by the network can be estimated as
the number of generated modes multiplied by the number of
discretization levels of the éeld amplitude and the number of
discretization levels of the phase of each of the modes.

In this paper, a new arrangement of éeld-amplitude
detectors was used. Unlike [5], they were placed inside the
resonator in the output aperture plane outside the aperture
(Fig. 1).
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Figure 1. System for controlling the mode composition of laser radi-
ation: ( 1 ) highly reêecting mirror and active medium layer; ( 2 ) output
mirror; ( 3, 4 ) éeld-amplitude detectors (located symmetrically and non-
equidistantly); F (x;L; t) is the amplitude of a wave incident on the
output mirror and detectors.



A neural network with radius basis functions (NRBF)
was selected as an object for training. This choice was made
because this network can be rapidly trained [6] and can be
expanded to recognise new situations without changing
previously determined weight factors. The evolution training
algorithm was used which is based on the recognition of
predetermined distributions by the NRBF (controllable
training) [5, 6]. The training set was constructed in [5] by
using the eigenfunctions of a Fabry ë Perot resonator with-
out an active medium, which were found numerically. This
simpliécation gave good results because it was necessary to
recognise only qualitative parameters of lasing. However,
the NRBF training for determining quantitative lasing
parameters (mode amplitudes) based on the eigenfunctions
of the empty resonator proved to be unsatisfactory. The
training set was constructed in the present paper by using
the eigenfunctions of the Fabry ë Perot resonator, which
were obtained by solving a separate problem of the develop-
ment of generation in a laser with a medium having an
instant nonlinear response. Although this approach is also
simpliéed, it led to satisfactory results.

2. The model of lasing

The NRBF operation was investigated based on the
numerical model of nonstationary lasing [5, 7]. In a planar
geometry in the small-angle approximation of the scalar
diffraction theory, the electric éeld E in the resonator was
represented in the form of counterpropagating plane waves
modulated by smooth envelopes:

E�x; z; t� � �F�x; z; t� exp�ik0z�

�B�x; z; t� exp�ÿik0z�� exp�ÿio0z�: (1)

Here, o0 is the carrier frequency; k0 � o0=c; the z axis is
directed along the beam propagation, and the x axis is
perpendicular to this direction. The dynamics of the
envelopes of the forward [F (x, z, t)] and backward
[B (x, z, t)] waves was described by the equations

2ik0

�
1

c

qB
qt
ÿ qB

qz

�
� q2B
qx 2
ÿ ik0gB � 0; (2)

2ik0

�
1

c

qF
qt
� qF

qz

�
� q2F
qx 2
ÿ ik0gF � 0; (3)

where g is the radiation gain. Because éeld-amplitude
detectors were located in the z � L plane in the region
jxj > R, where R is the radius of resonator mirrors, it is
convenient to solve equations (2) and (3) by the spectral
method (in [5], the éeld was determined only on resonator
mirrors by calculating the Fresnel ëKirchhoff integral). The
number of elements was 8192, while the number of elements
on the mirror was 512. The waves on resonator mirrors
satiséed the reêection conditions:

F�x; 0; t� � ÿB�x; 0; t�r1; (4)

B�x;L; t� � ÿF�x;L; t�r2: (5)

Here, r1 and r2 are the amplitude reêectances of the highly
reêecting and output mirrors, respectively. The equation for
the radiation gain g in the active medium included processes
of simulated emission and relaxation with the time con-
stant t:

t
qg
qt
� g0 ÿ g�1� jF j2 � jBj2�: (6)

Equation (6) was solved by using the implicit scheme of the
second-order approximation.

As the initial condition for determining the mode
composition of the unélled resonator, the superposition
of distributions found with the help of analytic expressions
was used [8], while the initial condition for problem (2) ë (6)
was the superposition of the eigenfunctions found for the
medium with an instant nonlinear response.

The normalised eigenfunctions Uj of the resonator were
determined in the output mirror plane with an error of
dj910ÿ14 according to the criterion dj � jjP̂Uj ÿ gjUjjj [9].
Here, gj are the eigenvalues of the operator P̂ of the round-
trip transit for radiation in the resonator. The transition
from single-mode to two-mode lasing was simulated by
specifying the initial condition for the forward wave with the
amplitude F(x, 0, 0) with the help of the distribution of the
fundamental mode U0(x) of the resonator. The initial
condition for the backward wave with the amplitude
B (x, 0, 0) was determined after a round-trip transit of
radiation in the resonator.

The complex amplitudes of the fundamental and érst
mode were found by expanding F in the z � L plane:

F�x;L; t� � a�t�U0�x� � b�t�U1�x�: (7)

Time-dependent coefécients a(t) and b(t) were found by
integration within the aperture, i.e. from ÿR to R:

a�t� �

� R

ÿR
F�x;L; t�U �0 �x�dx� R

ÿR
U0�x�U �0 �x�dx

;

(8)

b�t� �

� R

ÿR
F�x;L; t�U �1 �x�dx� R

ÿR
U1�x�U �1 �x�dx

:

The centre of gravity of the far-éeld angular power
distribution was calculated from the expression

Ef�t� �

�1
ÿ1

WW�W; t�dW�1
ÿ1

W�W; t�dW
; (9)

where

W�W; t� � k0
2p

���� �1ÿ1F�x;L; t� exp�ÿik0Wx�dx
����2: (10)

Calculations were performed for a Fabry ë Perot reso-
nator with parameters coinciding with those of the
resonator used in [5, 7]. The radius R of the resonator
mirrors was 1 cm, the distance between the mirrors was
L � 150 cm, and mirror reêectances were r1 � 1 and
r2 � 0:8. The Fresnel number of the resonator was
NF � 6:25. The active medium was a thin layer adjacent
to the highly reêecting mirror and had the relaxation time
t � 6:0� 10ÿ6 s. Figure 2a shows the dependences ja(t)j and
jb(t)j obtained for the pump excess over the threshold

1034 V.I. Ledenev



k � g0=gt � 1:4801 (the small-signal gain g0 exceeded the
threshold gain for the third mode). For this set of param-
eters, the fundamental mode had time to relax to the
stationary state during the érst 40 ms of lasing. By the
instant t � 44 ms, the amplitude of the érst mode achieved a
noticeable value and relaxation oscillations of both modes
appeared, resulting in the establishment of the regime of
beating of the fundamental and érst transverse modes. The
dependence of Ef (t) is presented in Fig. 2b. The centre of
gravity of the far-éeld angular power distribution in the
beating regime oscillated with a period of 0.39 ms (Fig. 2c).
A comparison of the envelope in Fig. 2b with the depend-
ence jb(t)j in Fig. 2a shows that they have close shapes.

The determination of lasing parameters in this case was a
complicated test problem for the NRBF: in the case of
single-model lasing, the recognition of the oscillation
amplitude of the fundamental mode required a great
number of neural network outputs, while in the case of
two-mode lasing the recognition of the oscillation amplitude
of one mode occurred for comparable variations in the
oscillation amplitude of another mode.

The extrapolation of distributions of the eigenfunctions
Uj, deéned for z � L and jxj < R, to the region jxj > R was
found by calculations per a round-trip transit in the
resonator. The éeld-amplitude detectors were mounted so
that the moduli of superpositions japU0(xd� � bqU1(xd�j �
jUdj required for the network training were maximally
different in the locations x � xd of detectors for the chosen
values (classes) ap > 0, bq 5 0, where p � 1; 2; :::;Np,
q � 1; 2; :::;Nq, Np, Nq where Np and Nq are the numbers
of discretization levels of the amplitude. As a result,
detectors were arranged non-equidistantly along the x
axis, but symmetrically with respect to the z axis of the
resonator. The ranges of values of ap and bq covered the
ranges of variation of ja(t)j and jb(t)j, respectively. The
discretization with a constant step Da�ap�1ÿ ap� const,
Db � bq�1 ÿ bq � const was used.

One of the training sets is shown in Fig. 3. Detectors
with numbers i � 1ÿ 12 were mounted over the output
mirror, while detectors with i � 13ÿ 24 were located under
this mirror. The training to recognise lasing at one
fundamental mode and to determine ja(t)j was performed
by using symmetric distributions. In this case, signal
intensities on detectors closest to the output mirror differed
by � 35%, this difference decreasing with distance from the
mirror (Fig. 3a). The training to recognise two-mode lasing
and to determine ja(t)j and jb(t)j was performed by using
asymmetric distributions. Signal intensities on the upper
detector closest to the output mirror differed by � 44%,
this difference increasing away from the mirror (Fig. 3b).
Signal intensities on detectors located under the mirror
strongly varied depending on the detector number (Fig. 3b).

The problem facing the NRBF is to determine ja(tn)j and
jb(tn)j from the values of jF (xd;L; tn)j for jxdj > R for each
the tnth round-trip transit of radiation in the resonator. In
the case of two-mode lasing, the NRBF should in fact solve
the inverse problem of determining the moduli of complex
amplitudes from the modulus of the sum of their complex
distributions at detector locations.
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Figure 2. Transition from single-mode to two-mode lasing: amplitudes
of the fundamental ( 1 ) and érst ( 2 ) modes calculated by expressions (8)
(a); the time dependence of the position of the centre of gravity of the far-
éeld angular power distribution calculated by expressions (9) and (10)
(b); and oscillations of this centre of gravity established at the 109th
microsecond from the beginning of the establishment process (c).

a � 7:94

a � 10:06

a � 12:18

b � 1:52

b � 3:61

b � 5:94

a

b

0 4 8 12 16 20 i

0 4 8 12 16 20 i

0.02

0.04

0.06

jUdj

jUdj

0.08

0.04

Figure 3. Elements of the training set for the fundamental mode in the
cases of single-mode lasing (different distributions correspond to diffe-
rent outputs of the neural network) (a) and two-mode lasing (all tree
distributions should have the same output of the neural network,
corresponding to the fundamental-mode amplitude 7.67) (b).
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3. Neural network with radius basis functions

The NRBF (Fig. 4) consisted of three layers: the input or
detector layer (with elements numbered by the subscript i),
the example layer (with elements numbered by subscripts m
or l ), and the summation layer (with elements numbered by
the subscript k). The number of neurons at the input is
Ni � 24. Radiation detectors in the input layer were
assumed point detectors. The number of neurons in the
second layer was equal to the number of examples, while
the number of neurons in the summation layer (the number
of classes) was equal to the number of amplitude
discretization levels. The weights wim of the mth neuron
in the example layer were set equal to the components of
the input vector of the corresponding example. The weights
wmk of the kth neuron in the summation layer were
determined during training. The kth output of the network
should give the value 1 if the distribution corresponding to
the class being determined is supplied to the input. The rest
of the outputs should give in this case the value 0.

When a éeld distribution Xi, produced, for example,
during nonstationary lasing, was incident on detectors, the
input of the mth neuron in the example layer was deter-
mined from the expression

dm �
�������������������������������XNi

i�1
�wim ÿ Xi�2

vuut : (11)

The output of the mth neuron in this layer was described by
the Gaussian

ym � exp�ÿd 2
m=sm�: (12)

The two variants of the NRBF were studied. In the érst
case, the radii sm of covers formed the matrix ŝml (m; l �
1; 2; :::;Nm):

ŝml � a

�������������������������������XNi

i�1
�wim ÿ wil�2

vuut ; ŝmm � min
m;l 6�m

ŝml; (13)

where a > 0 is a number speciéed before training. In the
second case, the radii of covers formed the vector s from m
elements. The input of the kth neuron in the summation
layer was described (in the érst case, for each column of the
matrix ŝml) by the expression

Xk �
XNm

m�1
wmkym ÿ y0k,

where y0k is the displacement at the input of the kth neuron.
The response of the kth neuron of the summation layer was
described by the sigmoid function [6]

yk �
1

1� exp�ÿXk�
.

In these two cases the neural networks with the same
number of outputs behaved differently during training. The
time during which the root-mean-square deviation of the
network outputs from samples achieved �10ÿ12 (training
time) for a5 1 in (13) for the érst variant of the neural
network was a few tens of seconds and was considerably
shorter than the training time for the second variant of the
neural network for small radii of covers. For a � 1, several
hours were required to train the NRBF. Because in the érst
case the neural network for the speciéed input set Xi could
produce Nm outputs by using different columns of the
matrix ŝml, all columns with l � 1; :::;Nm were used to
recognise lasing parameters and a variant with the output
closest to 1 was chosen.

In the second case, the NRBF for the speciéed input set
Xi had one output corresponding to the chosen values sm.
One can see from Fig. 4 that neural networks could also
differ in the number of examples combined to represent one
amplitude discretization level. We studied NRBFs with the
number of classes from 4 to 35. Below, the typical NRBF is
considered, which was constructed by parts, with the
number of elements Ni � 24, Nm � 35, Nk � 35 and
a � 1 for the fundamental mode in the case of single-
mode lasing; with Nm � 25, Nk � 25 and a5 1 for the
érst mode in the case of two-mode lasing; and with Nm � 20,
Nk � 4, a5 1 for the fundamental mode in the case of two-
mode lasing.

The training set for the NRBF consisted of three groups
of examples. The érst group included distributions
amjU0(xd)j (m � 1; 2; :::;Nm) intended for training the érst
part of the NRBF to recognise the generation of one
fundamental mode and to determine ja(tn)j. The second
group contained distributions jasU0(xd)� bm� U1(xd)j (as is
the stationary value of the fundamental mode amplitude) on
which the second part of the neural network was trained to
determine jb(tn)j in the case of two-mode lasing. The
fundamental mode amplitude was not recognised in this
case. Finally, the third group included distributions
jakU0(xd)� bqU1(xd)j (k � 1; 2; :::;Nk; q � 1; 2; :::;Nq, Nk �
4, Nq � 5) on which the third part of the neural network was
trained to determine ja(tn)j in the case of two-mode lasing.
The érst mode amplitude was not recognised in this case.
Each of the parts of the network was trained independently
of other parts.

i � 1

1 2 3

wim wmk

k � 1m � 1

m � 2

i � 2 k � 2

Ni

Nm

Nm�1

Nk

Figure 4. Neural network with radius basis functions: ( 1 ) detector layer;
( 2 ) example layer; ( 3 ) summation layer; element Nm�1 has the output
equal to ÿ1 and is used to produce a displacement in neurons of layer 3.
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The combination of the parts to one network was
performed by combining successively examples and combin-
ing outputs in the corresponding layers. No new connections
were established in this case. Thus, we can assume that each
of the parts of the NRBF completed the already trained
network, and the recognition of lasing parameters by the
entire network did not differ from the recognition of these
parameters by each of its parts.

4. Determination of the qualitative
and quantitative lasing parameters

Figure 5 shows lasing parameters for one fundamental
mode recognised by the neural network. One can see that
the NRBF reliably determines the lasing amplitude up to
t � 44 ms. The deviation of the values determined by the
network from those obtained by expression (9) does not
exceed 6% (Fig. 5b). After that, all the outputs of the
network give zeroes, which means that lasing at one
fundamental mode ceases.

In the case of two-mode lasing, the neural network
reliably determines the large values of the érst mode
amplitude and less reliably ë small values (Fig. 6). This
is seen from the onset of the rise of the curve at t � 44 ms
and its minimum at t � 56 ms. Figure 6b shows the depend-
ence jb(t)j and the recognition results within a small time
range in the region t � 56 ms. One can see that the NRBF
determines sometimes amplitudes that differ from the real
value by two discretization intervals. When the values of
jb(t)j are close to zero, the NRBF can make even greater
mistake. The width of the region where the NRBF identiées
the amplitude is determined by the value of sm in expression
(12). However, the decrease in sm by a factor of 2 ë 32 did
not improve the situation.

Thus, we can conclude that recognition errors are related
to the use of the eigenfunctions in training, which were

obtained by solving the problem of the development of
lasing in the active medium with the instant nonlinear
response.

Figure 7 demonstrates the recognition of the presence of
the fundamental mode and its amplitude upon two-mode
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Figure 5. Determination of qualitative lasing parameters of one
fundamental mode (a) and the amplitude of this mode (b): the funda-
mental-mode amplitude calculated by expression (8) ( 1 ) and the
recognition of this amplitude by the neural network during relaxation
oscillations ( 2 ).
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the érst-mode amplitude calculated by expression (8) ( 1 ) and the
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blishment of two-mode lasing ( 2 ).
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Figure 7. Determination of qualitative lasing parameters for the
fundamental mode and the amplitude of this mode in the case of two-
mode lasing (a) and the NRBF output in the region t � 110 ms after the
lasing onset (b): the fundamental-mode amplitude calculated by expres-
sion (8) ( 1 ) and the recognition of this amplitude by the neural network
in the established two-mode lasing regime ( 2 ).
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lasing by the neural network. One can see that the neural
network satisfactorily determined the presence of the
fundamental mode, but failed to determine the amplitude
of this mode in the interval 44 ë 64 ms for large oscillation
amplitudes of the érst mode. The reason is the same as
above. Errors on the recognition of the fundamental-mode
amplitude in the case of stationary two-mode lasing were
� 7%.

The neural network used in [5] determined qualitative
lasing parameters for each round-trip transit of radiation in
the resonator. The NRBF determined quantitative lasing
parameters for each round-trip transit in the resonator only
for the fundamental mode (Fig. 5). The `pulsed' character of
the recognition of mode amplitudes in the case of two-mode
lasing (Figs 6b and 7b) is related to the choice of a5 1 and
to the fact that information on mode phases was neglected
during training.

5. Conclusions

It has been shown that mode amplitudes can be determined
during nonstationary lasing with an error of 5%ë 7%.
This error is quite sufécient for laser cutting and welding
because the modern models of these processes can give only
estimates even when they use complicated equations (for
example, in connection with initial approximations [10]).
The NRBF provides a compact description of lasing. The
total volume of information obtained from the network
outputs is less than 1 byte. If this information is delivered
to the NRBF with an interval of 10ÿ4 s, then, as can be
easily calculated, the description of 100 hours of continuous
lasing will occupy the volume less than 3.6 Gbyte. Such
information volumes can be easily processed in modern
computers, providing useful data (for example, about the
angular position of the beam) for comparison with the
results of synchronous recording of technological oper-
ations. However, the measurement error of ja(t)j and jb(t)j
equal to 5%ë7% is insufécient for comparison with the
results of analytic studies [1 ë 3]. Note in this connection
that NRBFs can be further developed because they can be
trained by using other sets of the eigenfunctions of the
resonator, for example, obtained for distributions g(x; tn)
with the values of tn corresponding to the local extrema of
dependences ja(t)j and jb(t)j (Fig. 2). In addition, the
description of the lasing dynamics can be improved by
reducing discretization steps Da and Db, and the neural
network can be supplemented with new groups of neurons,
including information on mode phases. Also, the NRBF
can be also developed by using neurons with the threshold
activation function and employing probability approaches
for determining the output values of the network [6].
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