
Abstract. The formation and collisions of breathers excited
by laser radiation at the inhomogeneously broadened
J � 0! J � 1 quantum transition are studied by numerical
simulations in the slowly varying envelope approximation.
Conditions are obtained under which laser pulses with the
initial shape quite simply realised in experiments can be
transformed into elliptically polarised breathers in the
medium, each of the components of their éeld being a
breather described by the theory of self-induced transparency
at a nondegenerate quantum transition. It is shown that the
collision of such breathers is not elastic in the general case
and leads to the appearance of more general types of
resonance breather-like pulses. Taking into account relaxa-
tion processes, the possibility of the formation of a breather
at the 6p2 3P0 ! 6p7s 3P1 transition in the 208Pb isotope is
investigated. It is found that relaxation in some case not only
causes the pulse decay but also changes the eccentricity of its
polarisation ellipse.

Keywords: breather, degenerate transition, inhomogeneous broade-
ning, irreversible relaxation.

1. Introduction

An optical breather, which is one of the possible pulsed
structures in the self-induced transparency (SIT) theory,
was érst obtained as a particular solution of the sin-Gordon
equation in paper [1]. The properties of a resonance
breather observed in the case of SIT at a nondegenerate
transition (SIT NT) were studied in detail by the method of
inverse scattering problem in papers [2, 3]. The properties of
breathers produced from input pulses in the case of SIT NT
were also studied by this method [4 ë 9].

It was shown in [10, 11] that a breather obtained in
papers [1 ë 3] can be considered as the limiting case of a
more general double breather. In [12, 13], breathers in two-
component equilibrium and nonequilibrium media were
discussed outside the framework of the slowly varying
envelope approximation. Nonzero optical breathers in Stark
media were obtained in [14] also without using the slowly
varying envelope approximation. In [12 ë 14], it was assumed

that the energy levels involved in quantum transitions were
nondegenerate.

The consideration of the degeneracy of energy levels
became a new stage in the development of the SIT theory. In
particular, it was shown in [15 ë 17] that the systems of SIT
equations for arbitrarily polarised radiation at the 0$ 1,
1! 1, and 1=2! 1=2 transitions are integrable by the
method of inverse scattering problem. Breather-like pulses
(BLPs) at the 0$ 1 transition and arbitrarily polarised
radiation were discussed in paper [18]. These pulses differ
considerably from breather in the SIT NT theory in that the
amplitude of their éeld never vanishes in the general case
during énite time intervals.

Although SIT NT breathers have been theoretically
discussed already for several decades, the attempts to
observe them experimentally are scarce [19, 20]. In the
most successful, in our opinion, experiment [20], a breather
was discovered at the stage of its transformation to a
decaying 0p pulse due to irreversible relaxation (see the
discussion of this experiment in [21]). As far as we know, a
SIT breather at degenerate quantum transitions was not
observed experimentally. The main diféculty encountered in
the practical realisation of a breather is the formation of a
pulse of a comparatively complicated shape at the input to a
resonance medium, from which a breather is then produced.
The question about the properties of input radiation and
distances required for the production of SIT breathers at
degenerate transitions was not discussed in the literature. In
addition, relaxation processes, which are very important for
the practical realisation of breathers, were neglected in the
papers mentioned above. This circumstance is, in our
opinion, another reason for the absence of the correspond-
ing experimental results.

The aim of this paper is to simulate numerically the
formation of a breather at the 0! 1 quantum transition
taking into account the inhomogeneous broadening and, if
necessary, relaxation processes. We described the properties
of the decay of the input pulse into polarised solitons and
breathers and simulated collisions of differently polarised
breathers. The numerical estimates of the formation of
breathers and BLPs for the 6p2 3P0 ! 6p7s 3P1 transition
in the 208Pb atoms are presented.

2. Formulation of the boundary-value problem

Consider a quantum transition between the lower J � 0
energy level and the upper J � 1 level, where J is the
quantum number of the total angular momentum. We
denote the quantum state of the nondegenerate lower level
by j1i and the quantum states of the degenerate upper level
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with M � ÿ1, 0 and 1 ë by j2i, j3i, and j4i, respectively
(here, M is the quantum number of the projection of the
total angular momentum on the quanitsation axis z). Let
p � (J � 0k pkJ � 1) be the reduced matrix element of the
electric-dipole moment operator for the transition under
study. We assume that an ensemble of quantum objects
(hereafter, called atoms) is a rareéed gas and D is the width
(at the eÿ1 level) of the Doppler distribution density of
transition frequencies o 0 in atoms around the central
frequency o. Then, the polarisation decay time T1 at the
0! 1 transition due to the inhomogeneous broadening is
determined by the expression T1 � 2=D [22].

The electric éeld strength of strictly resonance radiation
propagating along the z axis can be written in the form

E � m�iE1 cos�otÿ kz� d1� � jE2 cos�otÿ kz� d2��. (1)

Here, m � ���
3
p

�h(T1j pj)ÿ1 is the normalisation factor; i and j
are the unit vectors of the x and y axes, respectively; E1;2

and d1;2 are the functions of z and t describing the
amplitudes and phases of oscillations of the projections of
the vector E on the x and y axes, respectively; and k � o=c.
It is assumed that E1;2 5 0.

Let us introduce dimensionless independent variables s
and w:

s � z=z0, w � �tÿ z=c�=T1, (2)

where

z0 �
3�hc

2poj pj2T1N
;

N is the concentration of atoms. Let us also introduce the
complex éeld amplitudes

a1 �
1���
2
p �

E1 exp�id1� ÿ iE2 exp�id2�
�
,

a2 �
1���
2
p �

E1 exp�ÿid1� ÿ iE2 exp�ÿid2�
�
.

Then, in the slowly varying amplitude approximation, we
obtain the system of equations, which self-consistently
describes the interaction of the éeld and medium:

qa1
qs
� i���

p
p
� �1
ÿ1

s12 exp�ÿe 2�de,

qa2
qs
� i���

p
p
� �1
ÿ1

s41 exp�ÿe 2�de,

qs21
qw
� ies21 � ÿi

�
a �1 �s11 ÿ s22� � a2s24� ÿ k1s21,

qs41
qw
� ies41 � i

�
a2�s11 ÿ s44� � a �1 s42� ÿ k1s41,

(3)
qs42
qw
� i

4
�a2s12 � a1s41�,

qs11
qw
� 1

2
Im�a2s14 ÿ a �1 s12� � k2�s22 � s44�,

qs22
qw
� ÿ 1

2
Im�a1s21� ÿ k3s22,

qs44
qw
� 1

2
Im�a �2 s41� ÿ k3s44.

Here, sik (i, k � 1, 2, 4) are slowly varying amplitudes of the
density matrix elements; e � T1(o

0 ÿ o); k1, k2, and k3 are

the rates of varying the nondiagonal and diagonal matrix
elements due to spontaneous emission. Note that, due to
the transverse nature of the electromagnetic éeld, the j3i
state is not involved in fact in the interaction process.

We will analyse the solutions of system (3) by using the
parameters a, a, and g of the polarisation ellipse, where a is
its major semiaxis measured in the units of m and a is the
angle of its inclination with respect to the x axis, and g is the
compression parameter. It is assumed usually [23] that
a5 0, 04a < p, and ÿ14g4 1. The parameter jgj is
the ratio of the minor and major axes of the polarisation
ellipse, and the condition g > 0 (g < 0) corresponds to the
right (left) elliptic polarisation, whereas g � 0 corresponds
to linearly polarised radiation. The parameters of the
polarisation ellipse are uniquely expressed in terms of a1
and a2. The speciécation of a, a, and g and one of the phases,
for example, d1, uniquely determines a1 and a2. The
corresponding cumbersome expressions are omitted here.
All the parameters of the polarisation ellipse are the
functions of s and w in the general case. The function
a(s;w) is called below the pulse envelope.

The initial conditions (w � 0) for system (3) are speciéed
in the form

s11 � 1, sik � 0, i�k 6� 1, s5 0.

The boundary conditions at the input to the medium (s � 0)
have the form

a � a0�w�, a � a0�w�, g � g0�w�, d1 � d10�w�, w5 0, (4)

where a0, a0, g0, and d10 are the speciéed functions of
arguments s and w.

In the simplest case, function (4) has the form

a0 � const, g0 � const,
(5)

a0�w� � j f �w; t;w0� ÿ f �w; t;w0 � Dw�j, d10 � F�w�.
The function f (w; t; q) is speciéed by the expression

f (w; t; q) � am

�
exp

�
wÿ q

t

�
� exp

�
ÿ 3

wÿ q

t

��ÿ1
, (6)

where am, q, and t are parameters and the function F(w) is
0 for F�w)5 0 and p for F(w) < 0. Here, F (w) �
f (w; t;w0)ÿ f (w; t;w0 � Dw).

The function f (w; t; q) is described by a bell-shaped
curve with the rise rate exceeding the decay rate and the
FWHM equal to 1:6t in the units of the dimensionless time
w (hereafter, the time presented without indicating the time
unit corresponds to the time measured in this scale). Pulses
with such envelopes are commonly used in SIT experiments
[24]. Expressions (4) ë (6) describe a pair of `touching' pulses
obtained by the overlap of two out-of-phase elliptically
polarised pulses shifted with respect to each other by the
time Dw. We will call these pulses the components. Such a
pair of pulses (hereafter, a composite pulse) in the case of
linearly polarised laser radiation was obtained experimen-
tally [20] and represents a 0p SIT NT pulse. A composite
pulse (4) ë (6) can be generated by illuminating an interfer-
ence device of the type described in [20] by elliptically
polarised radiation. In addition, as boundary conditions, the
input pulses of a more complicated shape than (5) and (6)
are used, which describe preliminarily formed optical
breathers.
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An important parameter of the input pulse is its area
described by the expression

Y0 �
� �1
ÿ1

a0�w�
��������������������
1� g 20 �w�

q
dw,

where the integrand is proportional to the square root of
the electromagnetic radiation energy êux density.

3. Analytic description of a breather

We described a breather analytically in the case of the
inhomogeneously broadened 0! 1 transition by using the
analogy [15] between the SIT theory for such transitions
and the SIT NT theory [1]. This description is also valid in
the absence of irreversible relaxation and has the form

a � Fbr�w�
���� cosf2 ÿ �t2=t1� sinf2 tanhf1

1� �t2=t1�2 sin 2 f2 sech
2f1

����,
a � const, g � const, d1 � Fbr�w�,

(7)

where

Fbr�w��
4

t1
�������������
1� g 2
p sechf1; fi �

wÿ s=vi � w0i

ti
, i � 1, 2; (8)

vi �
���
p
p �

t 21

� �1
ÿ1

ji exp�ÿe 2�de
�t1=t2 ÿ et1�2 � 1

�ÿ1
,

j1 � 1, j2 � et2 ÿ 1.

(9)

Here, Fbr(w) is the function taking values 0 or p for the
negative or nonnegative values of the quantity in the
modulus in (7), respectively. We will call the function Fbr(w)
the secondary envelope breather. The quantity v1 is the
group velocity of the breather equal to the propagation
velocity of its secondary envelope. The important param-
eters determining the breather structure are t1 (t1 > 0), t2
(ÿ1 < t2 <1), and g. The constant a depends on the
orientation of the x and y axes, while constants w01 and w02

are determined by the choice of the reference point of the
coordinate s and time w. Note that the components of the
breather éeld (7) ë (9) along the x and y axes have the form

of SIT NT breathers shifted in phase with respect to each
other.

Expressions (7) ë (9) are used below to énd breathers in
calculation results (see section 4.1) and to specify the
radiation envelope describing a breather at the input to a
resonance medium (see section 4.2).

As mentioned above, it was shown in [18] that SIT at the
0! 1 quantum transition admits solutions describing BLPs.
Breather-like pulses are characterised by four independent
parameters. A breather described by expressions (7) ë (9)
should be a particular case of such BLPs. However, the
inhomogeneous broadening was neglected in [18] and the
BLP velocity in the presence of the inhomogeneous broad-
ening was not obtained.

4. Results of calculations

4.1 Breather formation process

Consider the formation of a breather by neglecting
relaxation processes. Let us assume in (5) and (6) that
am � 0:25, t � 14, Dw � 22, and w0 � 40, so that
Y0 � 1:8p. In this case, the duration of each component
pulse is equal to the time shift between pulses and
considerably exceeds the time T1. In this case, we are
dealing with the large inhomogeneous broadening. We also
assume that a0 � p=6, and g0 � 0:5. The pulse envelopes for
s � 0 and 6 are shown in Fig. 1 (the values of a and g for
any s are equal to p/6 and 0.5, respectively). Let us show
that Fig. 1b presents the breather envelope.

The height of the central peak of the pulse in Fig. 1b is
0.0659. Let us assume that it coincides with the coefécient at
sechf1 in the érst expression in (8). Then, taking into
account that g � 0:5, we obtain t1 � 54:26. By using again
the érst expression in (8), we can construct the dependence
of the secondary envelope Fbr(w) with an accuracy to the
position on the w axis. This dependence is shown in Fig. 1b
by the dotted curve with the maximum made coincident
with the maximum of the central peak. Good coincidence of
the dotted curve with the pulse envelope suggests that
Fig. 1b demonstrates a breather. The parameter t2 can
be estimated from the expression t2 � xmt1, where xm is the
maximal root of the equation

cos�x=x� ÿ x sin�x=x� tan x � 0.

s � 0 s � 6
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Figure 1. Envelopes of the input pulse (a) and breather at a distance of s � 6 (b). The dotted curve is the secondary envelope of the breather.
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Here, x � Dt=t1; and Dt is the half-width of the base of the
central peak of the breather. We énd by this method the
value of t2 � 13:46 and, by using expression (9), obtain
v1 � 1:067� 10ÿ2. According to the calculation results
presented in Fig. 1b, we have v1 � 1:070� 10ÿ2. The
close values of the group velocity v1 obtained by these
two methods conérms the fact that Fig. 1b demonstrate a
breather.

Calculations performed for different combinations of
quantities am, t (t5 1), and Dw in expressions (5) and (6)
under the condition that jDwÿ 1:6tj=t < 0:5 well agree with
the statement that the radiation structure at long distances is
determined by the interval Dl � ( �Ylÿ1; �Yl) (l � 1, 2, 3, ...)
where the input pulse area Y0 is located. The numbers �Yl

are speciéed by expressions

�Yl � �4�l=2� � 3fl=2g�p, (10)

where �a� and fag are the integer and fractional parts of the
number a. For Y0 < 1:5p, i.e. when Y0 is located in the érst
interval D1 � ( �Y0; �Y1), a pulse consisting of many peaks is
formed, which decays with distance. If Y0 > 1:5p and
belongs to an interval with an odd number Dl, only l pairs
of 2p pulses are formed in the medium; if the interval has
an even number, a breather appears along with 2p pulses.

In the case of calculations presented in Fig. 1, the area
Y0 is located in the second interval, for which �Y0=(4p)� � 0,
so that only a breather should be formed, which is
conérmed by calculations. Figure 2 presents the results
obtained for am � 1:48 and the same other conditions as in
the previous calculation. In this case, Y0 � 10:5p and is
located in the sixth interval, for which �Y0=(4p)� � 2, so that
two pairs of 2p pulses and one breather should appear. This
assumption is conérmed by Fig. 2.

Our calculations showed that for Y0 slightly exceeding
1.5p, the breather duration considerably exceeds the input
pulse duration and the breather consists of many well
resolved peaks. For Y0 slightly smaller than 4p, the breather
duration is small and it consists of a small number of
subpulses. The role of intervals Dl for circularly polarised
pulses was discussed in detail in paper [25], and therefore we
will restrict ourselves by the examples considered above.

4.2 Collision of pulses

Consider two breathers (7) ë (9) arriving successively at the
input (s � 0) of a medium. The parameters for the érst
breather [( 1 ) in Fig. 3a] are t1 � 54, t2 � 13, w01 � 300,
and w02 � 20 and for the second breather [( 2 ) in Fig. 3a]
t1 � 11, t2 � 19, w01 � 1000, and w02 � 20. Both breathers
are linearly polarised at an angle of 458 to each other.

Figure 3b presents the envelopes of these breathers before
their collision and Fig. 3c illustrates the overlap of these
pulses. Note that after the collision (Fig. 3d), pulses ( 1 )
and ( 2 ) are no longer breathers because the éeld nowhere
vanishes within these pulses. Therefore, these pulses can be
assigned to BLPs described in paper [18]. Breather-like pul-
ses propagate in a medium like breathers, periodically chan-
ging their shape without loosing energy. At least calcu-
lations performed for s � 14ÿ 20 did not reveal any energy
losses, although the éeld strength of weak monochromatic
radiation should decrease at such distance due to the inho-
mogeneous broadening approximately by 4� 103 times [22].

Breather-like pulses are linearly polarised, their polar-
isation planes rotating in the opposite directions:
counterclockwise for pulse ( 1 ) and clockwise for pulse
( 2 ) when looking toward the wave. This circumstance is
illustrated in Fig. 4 presenting the fragments of Fig. 3d
containing the envelopes of pulses ( 2 ) and ( 1 ) together with
functions a(w). Recall that SIT NT breathers recover their
shape after a collision [26]. Our calculations showed that
breathers linearly polarised at an angle of 908 to each other
have such properties (these properties are obvious for the
zero angle, because the corresponding problem is the SIT
NT problem).

The experimental realisation of input pulses in the form
of breathers (7) ë (9) is complicated. Because of this, we will
assume that two composite pulses [( 1 ) and ( 2 ) in Fig. 5a]
arrive successively at the input surface s � 0. We assume
that am � 0:25, w0 � 40, a � 0, and Y0 � 1:8p for pulse ( 1 )
and am � 0:42, w0 � 700, a � p=4, and Y0 � 3p for pulse
( 2 ). Pulse ( 1 ) has the left elliptic polarisation and pulse ( 2 )
has the right elliptic polarisation, and jgj � 0:5 for both
pulses. Pulse ( 1 ) is transformed in the medium to a breather
[( 1 ) in Fig. 5b] with t1 � 54:26, t2 � 13:67, a � 0, and
g � ÿ0:5. Input pulse ( 2 ) produces a BLP [( 2 ) in Fig. 5b].
Pulse ( 2 ) is transformed to the BLP instead of a breather
because this pulse interacts at the initial formation stage
with the medium coherently excited by pulse ( 1 ). Note that
the medium remains in the unexcited state after the breather.
This circumstance was favourable for the formation of
breather ( 2 ) in Fig. 3b. After a collision, each pulse has
the BLP structure, which is similar to that shown in Fig. 3c.

4.3 Inêuence of relaxation

We perform numerical estimates for the 283.3-nm
6p2 3P0 ! 6p7s 3P1 transition in the 208Pb isotope in
saturated vapour at temperatures 900 ë 1100 K. This
transition was used in experimental studies of electro-
magnetically induced transparency [27]. By using the
oscillator strengths taken from [28], we énd j pj2 �

500 600 700 w

s � 30

5

0 100 200 300 400

4

3

2

1

0.5

1.0

a

Figure 2. Decay of the input pulse with the area Y0 � 10:5p: 2p pulses ( 1 ë 4 ) and a breather ( 5 ).
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1:2� 10ÿ35 CGSE units. For T � 1000 K, we have
T1 � 1:6� 10ÿ10 s and N � 1:1� 1014 cmÿ3 [29], so that
z0 � 0:011 cm. Relaxation at low pressures is caused by the
spontaneous decay of the upper 6p7s 3P1 level to the 6p2 3Pi

(i � 0, 1, 2) levels. By using data [28], we obtain
k1 � 1:4� 10ÿ2, k2 � 8:8� 10ÿ3, and k3 � 2:9� 10ÿ2.
The FWHM t1=2 (in seconds) of component pulse (6) is
2:5� 10ÿ10t and its peak intensity (in W cmÿ2) is
Im � 424a 2

m(1� g 2). A change in temperature within
900 ë 1100 K affects considerably only the values of N
and z0. Thus, z0 � 0:11 and 0.0016 cm for T � 900 K and
1100 K, respectively.

Figure 6a presents the results of calculations for the
same boundary conditions as in Fig. 1. This means that
t1=2 � 3:5 ns and Im � 33 W cmÿ2. Instead of the breather
(see Fig. 1b), a pulse appears now, which rapidly decays

during propagation. The envelopes of this pulse for s � 2
and 3 are presented in Fig. 6a. The rapid decay of the pulse
is explained by the following reason. For this calculation,
Y0 � 1:8p and the breather duration is �400 (see Fig. 1b),
which is approximately four times longer than the duration
of the input composite pulse. The shortest of the relaxation
times is 1=k1 � 71. Therefore, coherent processes lead to
such an increase in the pulse duration in the medium that it
becomes considerably longer then the irreversible relaxation
times. Under these conditions, relaxation eféciently sup-
presses the breather.

The situation when am � 0:523 and all other conditions
coincide with the conditions of the previous calculation is
illustrated in Fig. 6b. Then, Y0 � 3:7p, t1=2 � 3:5 ns, and
Im � 145 W cmÿ2. This égure presents the envelopes of
pulses for s � 2:8 and 4 and also the envelope of a breather

0 500 1000 1500 w

0.2

0.3

s � 0

2

0.1

1

0 500 1000 1500 w

0.2

0.3

s � 1:2

2

0.1
1

a b

a a

0 500 1000 1500 w

0.2

0.3

a

s � 8:85

0.1

0 500 1000 1500 w

0.2

0.3

a

s � 14:1

2

0.1

1

c d

Figure 3. Collision of linearly polarised breathers: breathers at the input to a resonance medium (a), isolated breathers before the collision (b), the
overlap of breathers (c), BLPs after the collision.
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Figure 4. Fragments of Fig. 3d containing BLP ( 2 ) (a) and BLP ( 1 ) (b), and functions a�w�.
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that could appear in the absence of relaxation. One can see
that the breather is also quite eféciently suppressed by
relaxation in this case. However, the pulse envelope at the
distance s � 2:8 (about 3 mm for T � 900 K) looks like the
breather envelop. The matter is that, as mentioned above,
for Y0 � 3:7p the breather has a comparatively short
duration. In particular, the intensity of breather ( 3 ) in
Fig. 6b is smaller more than by half than that of the breather
in Fig. 1b. Therefore, relaxation weakly affects the pulse
formation process and the pulse can resemble a breather at
small distances. The numerical analysis performed in [21]
showed that such a pulse resembling a breather was
observed in experiments [20] in the case of linearly polarised
radiation.

Relaxation affects not only the evolution of the major
axis of the polarisation ellipse but also the compression
parameter g. This is illustrated by Fig. 7 showing the
envelope of pulse ( 1 ) presented in Fig. 6b together with
the dependence of g on w. It follows from Fig. 7 that
relaxation not only changes considerably jgj but also its sign.
This means that the rotation direction of the vector E
changes. Relaxation does not affect the angle a, and this
angle is equal to p/6 at all distances, as for the input pulse.

Figure 8 shows the results of calculations for t � 0:2,
am � 35:77, and the same parameters of the boundary
conditions as in Fig. 1 (for this value of t, the inhomoge-
neous broadening should be considered small). In the given
case, Y0 � 3:7p, t1=2 � 50 ps, and Im � 68 kW cmÿ2. The

solid curves in Fig. 8 show the envelopes of pulses for
s � 256 and 283 taking relaxation into account, and the
dotted curves show the envelopes of breathers for s � 283
and 318 in the absence of relaxation. For T � 1000 K, the
smallest and greatest of these distances are 2.8 and 3.5 cm,
respectively (distances were selected so that the solid and
dotted curves had similar shapes). In all calculations for any
s and w, we obtained a � p=6 and g � 0:5, as for the input
pulse. Note that each pulse structure in Fig. 8 contains a
prepulse consisting of many peaks and a tail, which decay
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0.3
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s � 2:4

2

0.1

1

0 500 1000 1500 w

0.2
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2

0.1
1

a b

Figure 5. Appearance of an elliptically polarised breather and a BLP: composite pulses ( 1 ) and ( 2 ) at the input to a medium (a), breather ( 1 ) and
BLP ( 2 ) inside the medium (b).
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Figure 6. Pulses in the presence of relaxation for s � 2 ( 1 ) and 3 ( 2 ) for Y0 � 1:8p (a) and pulses in the presence of relaxation for s � 2:8 ( 1 ) and 4
( 2 ), and a breather in the absence of relaxation for s � 7:86 ( 3 ) for Y0 � 3:7p (b).
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Figure 7. Fragment of Fig. 6b containing the envelope of pulse ( 1 ), and
the dependence g�w�.
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during the pulse propagation even in the absence of
relaxation.

The close shapes of the solid and dotted curves dem-
onstrate a weak inêuence of relaxation on the development
of the process. This is explained by a short duration of the
input pulse and the closeness of the value of Y0 to 4p. These
conditions provide the appearance of a breather of duration
1 (see the dotted curves in Fig. 8), which is considerably
smaller than the smallest of the relaxation times 1=k1 � 71.
Note that in this case, relaxation leads to a small decrease in
the pulse velocity (approximately by 10%) and almost the
same decrease in the spatial period of the reconstruction of
the shape of its envelope.

5. Conclusions

Our calculations have revealed the following features
related to the inêuence of the polarisation of input laser
radiation on the breather formation process. First, we have
shown that an elliptically polarised composite pulse with
éxed values of a and g incident on a medium can produce a
breather with the same values of a and g. The numerical
analysis performed in the paper gives a simple rule relating
the structure of radiation at large distances with the area of
the composite pulse. This rule generalises the rule proposed
in [24] for the cases of circularly and linearly polarised
radiation.

Second, the collision of breathers is followed by the
recovery of their initial shape only in some particular cases
(for example, for circular polarisations, collinear or orthog-
onal linear polarisations). In the general case, this collision
will result in the formation of two BLPs with parameters of
the polarisation ellipse depending on the time and coor-
dinate in a complicated way. When two elliptically polarised
composite pulses arrive successively at the input of a
resonance medium, only the érst of them produces a
breather, whereas the second pulse is transformed to a
BLP. This is explained by the inêuence of the coherent
excitation of the medium remained after the propagation of
the érst pulse. The collision of the elliptically polarised
breather and BLP gives rise in the general case to two BLPs.

Under typical conditions of a possible experiment,
relaxation prevents the formation of a breather from the
input composite nanosecond pulses. Relaxation affects not
only the pulse envelope but also the compression parameter
of the polarisation ellipse. For input composite pulses of

duration �100 ps, the inêuence of relaxation is negligible, at
least when Y0 is only slightly smaller than 4p.
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Figure 8. Pulses in the presence of relaxation (solid curves) and breathers in the absence of relaxation (dotted curves) for Y0 � 3:7p and small
durations of input pulses: a pulse for s � 256 and a breather for s � 283 (a), a pulse for s � 283 and a breather for s � 318 (b).
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