
Abstract. The possibility of using Young ëMichelson and
Brown ëTwiss interferometers for measuring the angular
dimensions and parameters of the surface shape of remote
passively scattering and self-luminous nonplanar rough
objects by optical radiation propagating from them is
substantiated. The analysis is based on the properties of
approximate transverse functions of éeld coherence Bt and B 0t
and intensity coherence Bt i and B 0t i formed by the time
averaging of the products of éelds and intensities taken at two
points of a receiving aperture (the prime denotes self-luminous
objects). The averaging time is set to be much longer than the
coherence time of radiation propagating from an object. It is
shown that for the radiation coherence length much smaller
than the depth of the visible region of the object, the functions
Bt and B 0t are proportional to the Fourier transform of the
intensity distribution in the image of a remote object, which is
the generalisation of the Van Cittert ëZernicke theorem to
the case of a nonplanar object, while functions Bti and B 0ti are
proportional to the squares of the modulus of the Fourier
transform of this distribution. It is also shown that the
recording of functions Bt and B 0t with a Young ëMichelson
interferometer gives only the angular dimensions of the visible
region of objects, whereas the recording of functions Bt i and
B 0ti with a Brown ëTwiss interferometer allows one to énd
these dimensions and the radius of curvature of the object
surface.

Keywords: coherence, Young ëMichelson and Brown ëTwiss inter-
ferometers, correlation properties of the éelds formed by passively
scattering and self-luminous objects, the Van Cittert ë Zernicke
theorem for nonplanar objects.

1. Introduction

It is known that the use of Young ëMichelson and Brown ë
Twiss interferometers to obtain information on remote
rough objects is based on the analysis of the statistical
characteristics of random speckles formed due to the
interference of light beams coming from different sites of
the object surface [1 ë 5]. As a rule, this information is

analysed by assuming that these objects are planar and self-
luminous. As a result, the number of parameters of self-
luminous objects that can be determined is limited. For
example, only the angular dimensions of objects were
determined, whereas the surface shape was not studied. The
possibility of measuring the parameters of passively
scattering objects with the help of these interferometers
was not investigated as well. In this connection the necessity
appears to analyse the statistical characteristics of speckle
patterns in the case of passively scattering and self-
luminous objects of an arbitrary, in particular, nonplanar
shape. Among them are, for example, the transverse
coherence function (correlation function) Bf (q1, q2, t) �
hE (q1, t)E

�(q2, t)if of the éeld E (q, t) formed by a passively
scattering rough nonplanar objects [5, 6] and the transverse
coherence function B 0f (q1, q2, t) � hE 0(q1, t)E 0 �(q2, t)if of
the éeld E 0(q, t) formed by a self-luminous rough non-
planar object, which is often called an extended source in
the literature [1 ë 4]. Here, q1 and q2 are the radius vectors
located in the receiving aperture plane; the prime refers to a
self-luminous object and angle brackets hif denote the
averaging over an ensemble of éelds E and E 0.

The transverse coherence function B 0f (q1, q2, t) of the
éeld E 0(q2, t) formed on average by a planar self-luminous
object representing an extended planar narrowband source
was analysed in papers [1 ë 4]. The analysis was based on the
assumption that the éeld V 0s (r) emitted by the source is
delta-correlated near the source surface (where r is the
radius vector of a point on the source surface). This means
that the correlation function of the emitted éeld is
J 0(r1, r2)�hV 0s(r1)V 0 �s (r2)if �r 0jI

0
s(r1)d(r1 ÿ r2), where I 0s(r1)

� jV 0s (r)j is the intensity distribution on the surface and
r 0j � l0 is the correlation radius of the éeld V 0s , which is
constant over the entire surface of the object. Under this
assumption, the function B 0f (q1, q2, t) is proportional to the
Fourier transform of the intensity distribution on the object
surface I 0s (r) � jV 0s (r)j2. This is the known Van Cittert ë
Zernicke theorem. The function B 0f (q1, q2, t) is quite often
approximated by the approximate transverse coherence
function B 0t (q1, q2) � hE 0(q1, t)E 0 �(q2, t)it, where hA(t)it �
T ÿ1

� t0�T
t0

A(t)dt is the time average of the function A(t); T is
the processing (averaging) time of the received éeld E 0(q, t)
selected from the condition T4 tc (tc is the coherence time
of radiation forming the éeld E 0); and t0 is the initial
moment of averaging [3]. It is assumed that B 0t B 0t (q1, q2)
� B 0fm (q1, q2), where B 0fm is the correlation function of the
éeld E 0 formed at one frequency o0. This means that
hB 0t (q1, q2)if � B 0f (q1, q2) and the accuracy of this approx-
imation is high: Z 0 � hjB 0t ÿ B 0f j2if=jB 0f j2 5 1. However, this
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condition was not substantiated in the literature. Note also
that the analysis of the function B 0t is based on the
unsubstantiated assumption that the emission spectrum is
a random delta-correlated process. This spectral approach
to the analysis of the coherence function B 0t of the éeld E 0

formed by radiation coming from a planar extended thermal
source is described in detail in [3].

In this paper, the coherence functions Bt and B 0t are
analysed by using the non-spectral approach, which is based
on the time correlation function Bu(t) � hu(t)u �(t� t)it
introduced in papers [7, 8], where u(t) is the modulation
function of radiation forming the éelds E and E 0 under the
condition that the function u(t) changes slower than
exp (io0t), where o0 is the central (carrier) radiation
frequency. In this case, the averaging time proposed for
the formation of the function Bu(t) was selected according
to the condition T4 tc. It was assumed that Bu(t) � B(t)
� hu(t)u �(t� t)iu, where hiu is the averaging over different
realisations of the function u(t). The function Bu(t) intro-
duced in papers [7, 8] was used to analyse the statistical
characteristics of the intensity I(q, t) � jE(q, t)j2 averaged
over the time T, which considerably exceeded the coherence
time tc�I(q) � Bt(q, q) � Tÿ1

� t0�T
t0

I(q, t)dt. Then, methods
are considered for obtaining information on remote rough
nonplanar objects with the help of Young ëMichelson and
Brown ëTwiss interferometers, which are based on the use
of functions Bt and B 0t and the non-spectral approach to
their analysis. First the statistical models of the éelds E(q, t)
and E 0(q, t) are introduced. Then, it is shown that the
functions Bt(q1, q2) and B 0t (q1, q2) for the radiation coher-
ence length Lc considerably smaller than the depth Ls of the
visible region of the object are proportional to the Fourier
transform of the intensity distribution in the image of the
remote object, which is the generalisation of the Van
Cittert ë Zernicke theorem to the case of a nonplanar object.
Then, the Young ëMichelson interferometer scheme is
described for measuring the functions Bt and B 0t from
which the angular dimensions of remote objects can be
determined.

The approximate transverse coherence functions
Bti (q1, t, q2, t) � hI(q1, t)I(q2, t)it ÿ �I(q1, t) �I(q2, t) and B 0ti (q1,
t, q2, t) � hI 0(q1, t)I 0(q2,t)it ÿ �I 0(q1, t) �I 0(q2, t) (where I(q) �
jE(q, t)j2 and I 0(q) � jE 0(q, t)j2), which were not discussed
earlier in the literature, are analysed in the Fresnel approx-
imation. It is shown that for L s 4L c 5 20l0 (l0 � 2pc=o0

is the central radiation wavelength and c is the speed of
light) these functions are proportional with a high accuracy
to the square of the modulus of the Fourier transform of the
intensity distribution in the image of a remote nonplanar
object. A variant of a Brown ëTwiss interferometer is
proposed for recording the functions Bti and B 0ti, which
can be used for determining the angular dimensions of a
remote nonplanar rough object and parameters of its
surface shape. The known variants of this interferometer
could be used to determine only the angular size of objects.

The accuracy of the relation Bu(t) � B(t) � hu(t)u �(t�
t)iu is estimated in Appendix 1 by assuming that the
averaging time proposed for the formation of the function
Bu(t) satisées the condition T4 tc. The accuracy of the
approximation of the function Bt by the function Bfm, where
Bfm is the correlation function of the éeld E formed at one
frequency o0, is calculated in Appendix 2. It is shown that
the condition Zt � Ls=Lc 5 1 is fulélled for the depth of the
visible region of objects Ls 4Lc.

2. Statistical models of éelds formed by rough
passively scattering objects and self-luminous
nonplanar objects

Consider the statistical models of éelds formed by rough
passively scattering and self-luminous nonplanar objects.
The éeld scattered by the object probed by a source with
the radiation pattern D(rS) (rS is the radius vector of the
object surface) and the central radiation frequency o0 in the
Kirchhoff approximation has the form [5] (Fig. 1)

E�q; t� � io0

rcc

� �
Es�rS� exp

�
io0

�
tÿ jrS ÿ qsj � jrS ÿ qj

c

��

� u

�
tÿ jrS ÿ qsj � jrS ÿ qj

c

�
drS, (1)

where qs is the radius vector of the centre of the aperture of
the probe radiation source; u(t) is a modulation function;
Es(rS) � AD(rS)k(rS); A is the éeld amplitude of the probe
source on the object surface; k(rS) is the distribution of
Fresnel reêection coefécients, i.e. the distribution of the
reêected éeld along the average object surface; rc � jrcj is
the distance to the object; and rc is the radius vector of the
point nearest to the centre of the receiving aperture.

A self-luminous object will be represented in the form of
an extended source with a nonplanar and rough surface on
which point sources are densely located. A similar model of
an extended source was proposed in [9]. According to this
model, the éeld E 0(q, t) formed by this object can be written
in the form

E�q; t� � io0

rcc

� �
Es�rS� exp

�
io0

�
tÿ jrS ÿ qj

c

��

� u

�
rS; tÿ

jrS ÿ qj
c

�
drS, (10)

where E 0s(rS) � Ak(rS) is the distribution of the éeld
emitted by the self-luminous object along its mean surface;
u(rS, t) is the local function of radiation modulation on the
object surface; and k(rS)4 1 is the relative distribution of
radiation amplitudes on the object surface.
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Figure 1. Measurement of approximate transverse coherence functions
Bt � hE1E

�
2 it and B 0t � hE 01E 0�2 it of the received éelds E(q, t) and E 0 (q, t)

with a Young ëMichelson interferometer [Ei � E(qi, t) Ë E 0i � E 0i (qi, t);
q is the radius vector in the receiving aperture plane; rays propagating
from the source to object, scattered by the object and transmitted
through two apertures in the receiving aperture are indicated by thick
arrows]: ( 1 ) rough object; ( 2 ) boundary of the visible region of the
object; ( 3 ) speckle pattern of the received éeld; ( 4 ) source aperture; ( 5 )
receiving aperture; ( 6 ) unit for formation of functions Bt and B 0t .
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The radiation modulation function u(t) can be written
in the form u(t) � ju(t)j exp�ic(t)�, where c(t) ë
arctan�Im u(t)=Re u(t)�. According to its deénition, ju(t)j
4 1. The dependence of this function on rS is omitted here
for simplicity. Usually, the function ju(t)j has few extrema
during the observation time T, while the function c(t) has
many extrema. Therefore, it is appropriate to represent the
function ju(t)j in the form a determinate process and the
function c(t) ë in the form of nondeterminate (random)
process. In this case, the averaging hiu over different
realisations of the function u(t) can be replaced by the
averaging hic over different realisations of the function
c(t), which gives the relation B(t) � hu(t)u �(t� t)ic.

By assuming that c has the Gaussian distribution
wi(c) � (2p)ÿ1=2sÿ1c exp�ÿc 2=(2s 2

c)� with the correlation
function hc(t)c(t� t)ic � s 2

c(t) exp�ÿt 2=t 2c(t)�, where sc
and tc are the root-mean-square deviation and correlation
time of the function c, respectively, we have under condition
sc 4 1,�

Bu

�
t
tc

��
c
� hhu�t�u ��t� t�iitc

� 1

T

� t0�T

t0

ju�t�u�t� t�jhexpfi�c�t� ÿ c�t� t��gicdt

� 1

T

� t0�T

t0

ju�t�u�t� t�j exp
�
ÿ h�c�t� ÿ c�t� t��2ic

2

�

� Bud

�
t
tc

�
exp

�
ÿ s 2

c

�
ÿ exp

�
ÿ t 2

t 2c

���

� Bud�t� exp
�
ÿ t 2

t 2i

�
,

where ti � tc=sc; Bud (t=td) � hju (t)u(t� t)jit; and td is the
half-width of the function ju(t)j. For example, in the case of
probe radiation formed by a pulsed laser with the Gaussian
modulus of the modulation function ju(t)j � exp (ÿ t 2=t 2d )
(td is the pulse duration), we have Bud (t=td) �
exp (ÿ t 2=t 2d ) and hBu (t=tc)ic � exp (ÿ t 2=t 2c ), where tc �
td ti(t

2
d � t 2i )

ÿ1=2 is the coherence time of detected radia-
tion. In particular, for a Q-switched pulsed laser, we have
ti 4 td and tc � td, i.e. the coherence time tc coincides with
the pulse duration. Then, with the high accuracy, u (t) �
ju (t)j � exp (ÿ t 2=t 2d ), i.e. u (t) is a determinate function. In
the opposite case, when td 4 ti, we have hBu(t=tc)ic �
exp (ÿ t 2=t 2i ) and tc � ti. which takes place, for example,
for a cw laser. The accuracy of the approximation of the
function B (t) by the function Bu was estimated in Appendix
1 by using the results presented above under the condition
that T4 tc:

Bu

�
t
tc

�
� hu�t�u ��t� t�it � B�t�

� hu�t�u ��t� t�ic � exp

�
ÿ t 2

t 2i

�
. (2)

Note here that in the case of a self-luminous object, the
coherence time tc and, therefore, the coherence length
Lc � ctc are different for different sites of its surface, so
that tc � tc(rS) and Lc � Lc(rS).

Let us now analyse the éelds formed by rough passively
scattering and self-luminous nonplanar objects. For this
purpose, we érst introduce the roughness height x(r) as the
deviation of the real surface of the object under study on its
mean surface along the normal to the mean surface at the
point with the radius vector r � r (u, v), where u and v are
the surface orthogonal coordinates on the mean surface.
Then, rS � r�N(r)x(r), where N(r) is the normal to the
mean surface. If x(r)5 rc, we have

E�q; t; x� �
�
Vs�r�F�r; qs; q; t�dr,

(3)

E 0�q; t; x� �
�
V 0s�r�F 0�r; qs; q; t�dr,

where

F�r; qs; q; t� � exp

�
ÿ io0

jrÿ qsj � jrÿ qj
c

�

� u

�
tÿ jrÿ qsj � jrÿ qj � 2 cos W�r�x�r�

c

�
,

(4)

F 0�r; qs; q; t� � exp

�
ÿ io0

jrÿ qj
c

�

� u

�
tÿ jrÿ qj � cos W�r�x�r�

c

�
are spherical waves propagating from the object surface;

Vs�r� � Es�r� exp�2iCr�r��, V 0s�r� � E 0s�r� exp�iCr�r�� (5)

is the éeld distribution on the object surface; Cr(r) �
2pio0 cos W(r)x(r)=l0 is the phase incursion of radiation
propagating within the surface roughness; and W(r) is the
angle between the normal N(r) and direction to the object.
In the case of a rough object, the function x(r) has a
random distribution with the dispersion s 2(r)�� x 2w1(x)dx,
the correlation function B12(r1, r2) �

� �
x1x2w12(x1,

x2)dx1dx2, and the correlation radius l (r) � f� �B12(r, r1)�
�s 2(r1)�ÿ1�dr1gÿ1=2, where w1(x) and w12(x1, x2) are the one-
and two-dimensional probability densities of the roughness
height distribution [5]. Knowing the function w12(x1, x2),
the averaging hif over the ensemble of analysed éelds in the
calculation of the coherence functions Bf and B 0f can be
replaced by averaging hir over different realisations of
roughness heights:

Bf�q1; q2; t� � hE�q1; t1�E ��q2; t2�ir

�
� �

E�q1; t1; x1�E ��q2; t2; x2�w12�x1; x2�dx1dx2

�
� �
hVs�r1�V �s �r2�F�r1; qs; q1; t1�

�F ��r2; qs; q2; t2�irdr1dr2. (6)

Similar relations can be obtained for B 0f .
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3. Approximate transverse functions of éeld
and intensity coherence formed by passively
scattering and self-luminous objects

In practice, the functions Bf (q1, q2, t) and B 0f (q1, q2, t) are
often replaced by approximate transverse coherence func-
tions of the éelds E and E 0 formed by remote passively
scattering and self-luminous objects Bt(q1, q2) � hE(q1, t)�
E �(q2, t)it and B 0t (q1, q2) � hE 0(q1, t)E 0 �(q2, t)it. Let us
calculate the mean value hBt(q1, q2)ir of the function Bt.
For Lc 4s4 l0, assuming that the probability density w1

is Gaussian, w1(x) � (2p)ÿ1=2sÿ1 exp (ÿ x 2=2s 2) [5], and
taking into account relations (2) ë (6), we obtain

hBt�q1; q2�ir �
� �
hVs�r1�V �s �r2�ir

� exp

�
io0

C�r2; q2� ÿC�r1; q1�
c

�

�Bu

�
C�r2; q2� ÿC�r1; q1�

Lc

�
dr1dr2,

where

hVs�r1�V �s �r2�ir � Es�r1�E �s �r2�hF�x1 ÿ x2�ir

� jAj2jk�r1�j2 exp
�
ÿ �r1 ÿ r2�2

r 2
j�r1�

�
; (7)

x1 � x(r1) and x2 � x(r2); F(x1 ÿ x2) � exp�4pi(x1 ÿ x2)�
cos W(r)=l0�; C(r, q) � jrÿ qsj � jrÿ qandj; rj (r) � l0l(r)�
�2 cos W(r)s(r)�ÿ1 is the correlation radius of the function
Vs (r). Then, we can show that for rj (r)5L(r), where
L(r)�fjk�u, v)=�q 2k�u, v)=q 2u� k�u, v)�=�q 2k�u, v)=q 2v�gÿ1=2,

hBt�q1; q2�ir �
�
Iis�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�

�Bu

�
r�q1 ÿ q2�

Lcrc

�
dr. (8)

Here, Iis (r) � jAD(rc)j2ki (r) is the intensity distribution of
the image of a passively scattering object at the scale
m � rc=f; f is the focal distance of an optical system forming
this image; and ki (r) � jrj (r)k(r)=l0j2 expfÿ�tan W(r)l �2�
sÿ2�g. The quantity L(r) can be treated as the size of a local
detail of the function k(r) [5].

Similarly, in the case of a self-luminous object, taking
into account the relation

hV 0s�r1�V 0 �s �r2�ir � jA 0j2jk�r1�j2 exp
�
ÿ �r1 ÿ r2�2

r 0 2j �r1�
�
, (7 0)

where r 0j (r) � 2rj (r) is the correlation radius of the
function V 0 (r), we obtain

hB 0t �q1; q2�ir �
�
I 0is�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�

�Bu

�
r�q1 ÿ q2�
Lc�r�rc

�
dr. (8 0)

Here, I 0is (r) � jA 0j2k 0i (r) is the intensity distribution in the
image of a self-luminous object at the scale m � rc=f;

k 0i (r) � jr 0j (r)k(r)=l0j2 expfÿ�2 tanW(r)l �2=s 2�g; and Lc (r)
� ctc (r) is the local coherence length of radiation from
the surface of the self-luminous object. For example, in the
case of the Lorentzian correlation function [3], when
Bu(t, r) � exp�ÿjtj=tc (r)�, we have

hB 0t �q1; q2�ir �
�
I 0is�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�

� exp

�
ÿ
���� r�q1 ÿ q2�

Lc�r�rc

�����dr.
Note that the relation r 0j (r) � 2rj (r) takes place because in
the case of a passively scattering object, radiation passes
through surface irregularities twice, while in the case a self-
luminous object ë once. Therefore, the phase C 0 of the
function V 0s along the object surface changes two times
slower than the phase C of the function Vs and, hence, the
correlation radius of the function V 0s noticeably exceeds
that of the function Vs.

For Lc 4Ls, radiation forming the éelds E(q, t) and
E 0 (q, t) is monochromatic [7]. In this case, u(t) � 1 and
hBt(q1, q2)ir � Bfm (q1, q2), hB 0t (q1, q2)ir � B 0fm (q1, q2),
where Bfm (q1, q2) �

�
Iis (r) exp�2pir (q1 ÿ q2)=(l0rc�dr and

B 0fm (q1, q2) �
�
I 0is (r) exp�2pir(q1 ÿ q2)=(l0rc)�dr are the

Fourier transforms of the intensity distribution in the image
of a nonplanar object. The two last relations are the
generalisation of the Van Cittert ë Zernicke theorem to
the case of a nonplanar object and monochromatic radi-
ation propagating from the object. Taking into account
relations (8) and (8 0) and the fact that Lc 5 20l0 in practice,
the functions Bt and B 0t are recorded in the region
jq1 ÿ q2j � l0rc=d, where d is the size of the visible region
of the object, and it is possible to show that we have
hBt(q1, q2)ir � Bf (q1, q2) and hB 0t (q1, q2)ir �B 0f (q1, q2) for
Ls 4Lc. Under the condition Ls 4Lc 5 20l0 (see Appendix
2), we have Z � hjBt(q1, q2)ÿ Bf (q1, q2)j2ir=jBf (q1, q2)j2 5 1
and Z 0 � hjB 0t (q1, q2)ÿ B 0f (q1, q2)j2ir=jB 0f (q1, q2)j2 5 1. It
follows from this that

Bt�q1; q2� � Bf �q1; q2� �
�
Iis�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr, (9)

B 0t �q1; q2� � B 0f �q1; q2� �
�
I 0is�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr. (9 0)

This means that for Ls 4Lc 5 20l0, not only mean values,
but also individual realisations of the functions Bt and B 0t
are proportional to the Fourier transform of the intensity
distribution in the image of a nonplanar object. This fact is
the generalisation of the Van Cittert ë Zernicke theorem to
the case of a nonpolar object and quasi-monochromatic or
polychromatic radiation propagating from the object, for
which Ls 4Lc [7]. In particular, for Ls 4Lc 5 20l0, we
have Bt(q, q) � �I(q) � Bfm (q, q) � � Iis(r)dr and B 0t (q, q) �
�I 0(q) � B 0fm (q, q) � � I 0is(r)dr. In the opposite case, when
Lc 4Ls, approximate equalities (9) and (9 0) are not fulélled
due to strong êuctuations of the éelds E and E 0 and, hence,
functions Bt(q1, q2) and �I(q).

In the case of an average planar object, when
sin W(r) � 0, for Ls 4Lc 5 20l0, we have

Bt�q1; q2� �
�
r 2
j�r�Is�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr, (10)
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B 0t �q1; q2� �
�
r 0 2j �r�I 0s�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr, (10 0)

where Is(r) � jEs(r)j2 � jVs(r)j2 and I 0s(r) � jE 0s(r)j2 �
jV 0s(r)j2 are the intensity distributions of the éelds Vs(r)
and V 0s(r) on the object surface. In the case of sharp
irregularities, when l(r) � s(r), we have Bt(q1, q2) ��
Is(r) exp�2pir (q1 ÿ q2)=(l0rc)�dr and B 0t (q1, q2) �

�
I 0s�r��

exp�2pir (q1 ÿ q2)=(l0rc)�dr. The last relation virtually coin-
cides with expression (5.5.8) from [1] for the coherence
function of the éeld formed by a self-luminous planar
object. Thus, the function B 0t is proportional to the Fourier
transform of the intensity distribution I 0s(r) on the planar
object surface only in the case of sharp irregularities of the
object surface, which is the known Van Cittert ë Zernicke
theorem. And only in this case, as in paper [1], the
correlation radius r 0j of the function V 0s is constant
(r 0j � l0) over the entire object surface.

The moduli of the approximate transverse coherence
functions Bt and B 0t can be determined with the help of a
Young ëMichelson interferometer [1 ë 4] by measuring the
visibility Vs(q1, q2) of the interference pattern near the
receiving aperture axis, which was formed by beams pro-
pagated through two small holes in the aperture (Fig. 1).
They are calculated from the expressions Bt (q1, q2) �
Vs (q1, q2)��I(q1)�I(q2)�1=2 and B 0t (q1, q2) � V 0s (q1, q2)��I 0 (q1)�
�I 0 (q2)�1=2. By using these expressions and relations (9) and
(9 0), we can determine the angular size a of the visible region
of a remote object [1 ë 4] and also in principle the intensity
distributions Iis(r) and I 0is(r) in the image. It can be shown
that the relative accuracy of measuring a is Z 0a � Lc=Ls for a
self-luminous object and Za � Lc=2Ls for a passively scatter-
ing object. The angular size a can be measured quite
accurately when the coherence length satisées the inequality
Lc 4 0:1Ls.

Consider now the properties of approximate transverse
intensity coherence functions Bti(q1, q2, t) � hI1I2it ÿ �I1�I2
and B 0ti(q1, q2, t) � hI 01I 02it ÿ �I 01�I 02, where Ij � jE(qj, t)j2,
I 0j � jE 0(qj, t)j2, �Ij(q) � Bt(qj, qj), and �I 0j (q) � B 0t (qj, qj). To
determine the parameters of remote nonplanar objects, these
functions can be recorded with a Brown ëTwiss interfer-
ometer in the variant presented in Fig. 2. Although this
interferometer is most often used in practice to obtain
information on a remote self-luminous object, in particular,
in the stellar interferometry, Fig. 2 presents as an example
the éeld E(q, t) formed by a passively scattering object. It
was assumed that if, for example, for T > 10tc the function
u (t) is random, then Bu(t) � B(t) � hu(t)u �(t� t)iu. Taking
into account that the éelds E(q, t) and E 0(q, t) under real
conditions have random Gaussian distributions and by
using the results obtained in Appendices 1 and 2, we can
show that in the Fresnel approximation under the condition
Ls 4Lc 5 20l0, which is usually fulélled in practice, the
relations

Bti�q1; q2� �
���� � Iis�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr

����2 � F12, (11)

B 0ti�q1; q2� �
���� � I 0is�r� exp

�
2pi

r�q1 ÿ q2�
l0rc

�
dr

����2 � F 012 (110)

take place with an accuracy to insigniécant factors, where

F12�q1; q2� �
� �

Iis�r1�Iis�r2�
����Bu

�
2�r2 ÿ r1�

c

�����2

� exp

�
2pi
�r1 ÿ r2��q1 ÿ q2�

l0rc

�
dr ;

F 012�q1; q2� �
� �

I 0is�r1�I 0is�r2�
����Bu

�
r2 ÿ r1

c

�����2

� exp

�
2pi
�r1 ÿ r2��q1 ÿ q2�

l0rc

�
dr.

Taking also into account that F12(q1, q2)4F12�q, q) �� �
Iis(r1)Iis(r2)jBu(2(r2 ÿ r1)=c)j2dr and F 012(q1, q2)4

F 012�q, q)
� �

I 0is(r1)I
0
is(r2)jBu((r2 ÿ r1)=c)j2dr and by using

expression (A2.4) under the condition Ls 4Lc, at which
the éelds E(q, t) and E 0(q, t) are formed either in quasi-
monochromatic or polychromatic radiation [7], we can show
that

F12�q1; q2�4F12�q; q� � CsLc

�
I 2
is�r�dr,

(12)
F 012�q1; q2�4F 012�q; q� � C 0sLc

�
I 0 2is �r�dr,

where Cs � 1 and C 0s � 1 are constants and F12=Bti 5 1 and
F 012=B

0
ti 5 1. Under this condition, the equalities Bti (q1, q2)

� jBt (q1, q2)j2 and B 0ti (q1, q2) � jB 0t (q1, q2)j2 are fulélled, i.e.
the functions Bti (q1, q2) � jBt (q1, q2)j2 and B 0ti (q1, q2) �
jB 0t (q1, q2)j2 are proportional to the squares of the modulus
of Fourier transforms of the intensity distributions Is(r) and
I 0s(r) in the images of nonplanar passively scattering and
self-luminous objects, respectively. This statement is the
generalisation of the known fact to the case of a few objects
[1 ë 4] that the intensity coherence function on the receiving
aperture is proportional to the square of the modulus of
Fourier transforms of intensity distributions Is(r) and I 0s(r)
on the object surface. It should be emphasised here that this
is valid in fact only for a planar object with sharp surface
irregularities when l(r) � s(r). Only in this case, we have

5

I 2

I2

1

2

3

E(q ,t)q 2

q 1

4

7

C
1

B
12

I 2
1

I
1

I 1

I1 I2

�I2

�I1

I1

hI 2
1 i

t

hI1 I2 it

6

6

6

6

�

�
dt

�
dt

�
dt

�
dt

Figure 2. Functional scheme of a Brown ëTwiss interferometer [Ii �
I(qi, t) � jE(qi, t)j2, C1 � hI 21 it=�I 2

1 ÿ 2, B12�Bti=(�I1�I2) � �hI1I2it=(�I1�I2)�
ÿ1 is the normalised approximate coherence function of the intensity
distribution I(q, t)]: ( 1 ) speckle pattern of the processed éeld E(q, t); ( 2 )
photomultipliers; ( 3 ) receiving aperture; ( 4 ) multiplicators; ( 5 ) qua-
drature unit; ( 6 ) integrators; ( 7 ) unit for formation of the function B12

and parameter C1.
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Bti�q1; q2� �
���� � Is�r� exp �2pi r�q1 ÿ q2�

l0rc

�
dr

����2,
B 0ti�q1; q2� �

���� � I 0s�r� exp �2pi r�q1 ÿ q2�
l0rc

�
dr

����2.
For Ls 4Lc, relations (11), (11 0), and (12) can be used

for determining the angular size a of the visible region of a
remote object, for example, from the half-widths of func-
tions Bti and B 0ti [1 ë 4]. These functions can be also used for
determining the radius of curvature r0 of objects. For
example, in the case of a passively scattering object, it
follows from relations (10) ë (12) and (A2.4) that r0 �
(Csa

2r 2c )=(CtLc), where Ct(q) � hI 2(q)it=�I 2(q)ÿ 2. It can
be shown that the values of a and r0 can be estimated quite
accurately by probing objects by radiation with Lc 4 0:1Ls.

4. Conclusions

(i) The non-spectral approach based on the use of the time
correlation function Bu(t) � hu (t)u �(t� t)it has been used
to substantiate the possibility of employing Young ë
Michelson and Brown ëTwiss interferometers for measur-
ing angular dimensions and surface shape parameters of
passively scattering and self-luminous nonplanar rough
objects by optical radiation propagating from them. This
possibility is realised with the help of approximate
coherence of the éeld coherence Bt(q1, q2) � hE(q1, t)�
E �(q2, t)it and B 0t (q1, q2) � hE 0(q1, t)E 0 �(q2, t)it and inten-
sity Bti (q1, q2) � hI1I2it ÿ �I1�I2 and B 0ti (q1, q2) � hI 01I 02itÿ
�I 01�I 02, where �Ij � Tÿ1

� t0�T
t0

Ij (q, t)dt and �I 0j � T ÿ1�� t0�T
t0

I 0j (q, t)dt, Ij � jE(qj, t)j2, I 0j � jE 0(qj, t)j2.
(ii) If radiation is quasi-monochromatic or polychro-

matic, which is the case for Ls 4Lc, then under the addition
condition Lc 5 20l0, the functions Bt and B 0t are propor-
tional to the Fourier transform of the intensity distribution
in the object image. This fact is the generalisation of the
known Van Cittert ë Zernicke theorem to the case of non-
planar objects: the coherence function of the detected éelds
E and E 0 is proportional to the Fourier transform of the
intensity distribution on the object surface. In fact this takes
place only in the case of éelds formed by an object planar on
average if its surface has sharp irregularities. By recording
the moduli of functions Bt and B 0t with a Michelson
interferometer, we can determine the angular dimensions
of visible regions of remote nonplanar objects.

(iii) For Ls 4Lc 5 20l0, we have Bti (q1, q2) �
jBt (q1, q2)j2 and B 0ti (q1, q2) � jB 0t (q1, q2)j2. This means
that functions Bti and B 0ti are proportional to the squares
of the modulus of the Fourier transform of the intensity
distribution in object images. These functions can be
recorded with a Brown ëTwiss interferometer for determin-
ing the angular dimensions of the visible region of a remote
nonplanar object and the object surface parameters, includ-
ing the radius of curvature of the object surface.

Appendix 1

Calculation of the accuracy of approximation
of the correlation function B�s� by the time
correlation function under the condition s c5T

The accuracy of the approximation of the function
B(t) � hu(t)u �(t� t)ic by the time correlation function

Bu(t) � hu(t)u �(t� t)it will be estimated by the parameter
Zt � �h�B(t)ÿ Bu(t)�2ic�1=2� Bÿ1(t) under the condition
that the phase c (t) � arctan�Imu(t)=Reu(t)� of the mod-
ulation function u(t) is random, which is the case, for
example, for a cw probe laser or thermal radiation from a
self-luminous object. In this case,
B(t) � hu(t)u �(t� t)iu � hu(t)u �(t� t)ic and assuming
that c has the Gaussian distribution with the correlation
function hc(t)c(t� t)ic � s 2

c(t) exp�ÿt 2=t 2c(t)�, we have

hBu�t�2ic �
1

T 2

� t0�T

t0

� t0�T

t0

exphfÿ�c�t1� ÿ c�t1 � t� � c�t2�

ÿc�t2 � t��2=2gicju�t1�jju�t1 � t�jju�t2�jju�t2 � t�jdt1dt2

� 1

T 2

� t0�T

t0

� t0�T

t0

F�t1; t2; t�ju�t1�u�t1 � t�j

�ju�t2�u�t2 � t�jdt1dt2, (A1.1)

where

F�t1; t2; t� � exp

�
ÿ s 2

c

�
2ÿ 2 exp

�
ÿ t 2

t 2c

�

� 2 exp

�
ÿ �t2 ÿ t1�2

t 2c

�
ÿ exp

�
ÿ �t2 � tÿ t1�2

t 2c

�

ÿ exp

�
ÿ �t1 � tÿ t2�2

t 2c

��
is the function having two maxima equal to unity: one at
the intersection of planes t2 � tÿ t1 � 0 and t1 � tÿ t2 � 0
and the other in the plane t � 0. All these planes intersect
along the line t1 � t2. Let us assume that sc 4 1. Then,
F (t1, t2, t) � exp (ÿ 2t 2=t 2i ) in the vicinity of the érst
maximum and F (t1, t2, t)� expfÿ2�t 2=t 2i � (t1 ÿ t2)t

ÿ2
i �g

in the vicinity of the second maximum, where ti � tc=sc.
The width of each maximum is of the order of ti. Because
ti 5T, except the straight line t1 � t2, these maxima and
their nearest vicinities are strongly separated and the
approximation F (t1, t2, t)� exp (ÿ 2t 2=t 2i )� expfÿ2�t 2=t 2i
� (t1 ÿ t2)

2=t 2i �g can be used. By substituting this relation
into (A1.1), we obtain

hBu�t�2ic � hBu�t�i2c � exp

�
ÿ 2

t 2

t 2i

�

� 1

T 2

� t0�T

t0

� t0�T

t0

exp

�
ÿ �t1 ÿ t2�2

t 2i

�
ju�t1�jju�t1 � t�j

� ju�t2�jju�t2 � t�jdt1dt2,

where hBu�t�ic � Bud�t� exp (ÿ t 2=t 2i ). We will assume that
the function ju (t)j has the half-width td 4 ti. Then,
hBu�t�2ic�hBu�t�i2c � (ti=T ) exp (ÿ 2t 2=t 2i )hju (t)ju (t� t)j2it.
By substituting this relation into expression Zt �
�h�B(t)ÿ Bu(t)�2i�c=B (t) and taking into account that
hju (t)jju (t� t)j2it 4 1 and for td 4 ti the relation tc � ti
is valid, we obtain énally for tc 5T that Zt � (tc=T )1=2 5 1,
i.e. B (t) � Bu(t) with the accuracy Zt � (tc=T )1=2.

Application of Young ëMichelson and Brown ëTwiss interferometers 475



Appendix 2

Calculation of the accuracy g of approximation
of the function Bt by the function Bfm

Without loss of generality, we calculate the parameter Z for
a passively scattering object illuminated by quasi-mono-
chromatic probe radiation. The coherence length Lc of this
radiation is considerably smaller than the depth Ls of the
visible region of the object (see Fig. 1) and noticeably
exceeds the root-mean-square deviation s of the height of
its surface irregularities [7]. In this case, Z � hjBt(q1, q2)ÿ
Bfm (q1, q2)j2ir=jBf (q, q)j2. Taking into account the Gaus-
sian distribution of the éeld E (q, t), we obtain

hjBt�q1; q2�j2ir �
1

T 2

� t0�T

t0

� t0�T

t0

hE�q1; t1�E ��q2; t1�E ��q1; t2�

�E�q2; t2�irdt1dt2 �
1

T 2

���� � t0�T

t0

Bf �q1; q2; t�dt
����2

� 1

T 2

� t0�T

t0

� t0�T

t0

hE�q1; t1�E ��q1; t2�i

�hE ��q2; t1�E�q2; t2�idt1dt2. (A2.1)

Then, taking into account relations (6) and (A2.1) and that
hu(t)u �(t� t)it � Bu(t=tc), we can obtain in the Fresnel
approximation

hjBt�q1; q2� ÿ Bfm �q1; q2�j2ir �
1

T 2

�
ki�r1�ki�r2�

�
� t0�T

t0

� t0�T

t0

u

�
t1 ÿ 2r1 ÿ

r1q1
crc

�
u �
�
t2 ÿ

2r1
c
ÿ r1q1

crc

�

� u �
�
t1 ÿ 2r2 ÿ

r2q2
crc

�
u

�
t2 ÿ 2r2 ÿ

r2q2
crc

�
dt1dt2dr1dr2

�
� �

ki�r1�ki�r2�
����Bu

�
2�r2 ÿ r1�

Lc

ÿ r1q1 ÿ r2q2
Lcrc

�����2dr1dr2.
We will assume that the probe radiation is narrowband.

This means that Lc > 4l0M
1=2, where M � �ddr�2=�l0rc)2 is

the number of spots of the processed éeld on the receiving
aperture, d is the size of the visible region of the object, and
dr is the receiving aperture size [7]. Then,

hjBt�q1; q2� ÿ Bfm�q1; q2�j2ir �
� �

ki�r1�ki�r2�

�
����Bu

�
2�r2 ÿ r1�

c

�����2dr1dr2. (A2.2)

This integral was analysed in paper [7] by approximating
the surface under study by a paraboloid of revolution
r � rc � R 2=2r0, where R is the distance from the surface
axis to a point with the radius vector rc and r0 is the radius
of curvature of the surface. In the case of such an
approximation, we have ki (r) � (l=s)2jk(R)j2�
expfÿRl �2=s 2g. It follows from this approximation that

d � r0s
l

, Ls �
r0s

2

8l 2
. (A2.3)

For Lc 5Ls, we have� �
ki�r1�ki�r2�

����Bu

�
2�r2 ÿ r1�

c

�����2dr1dr2
� Lcr0

�
k 2
i �r�dr. (A2.4)

Taking into account (A2.2) ë (A2.4) and that jBfm(q, q)j2 �
(
�
ki (r)dr)

2, for the condition Lc 5Ls, we obtain énally
Z � Lc=2Ls 5 1, and hence, Bt(q1, q2) � Bfm (q, q). In the
opposite case, when Ls 5Lc, we have jBu(�2(r2ÿ
r1)=c)�j2 � 1 and Z � 1. This means that the functions Bt

and Bfm are substantially different. Similar calculations
show that for Lc 5Ls, we have B 0t (q1, q2) � B 0fm(q1, q2). It
can be shown that for Lc < s, which corresponds to the
propagation of polychromatic radiation from the object, we
have Z � Lc=Ls 5 1. In this case, we can assume that the
equalities Bt(q1, q2)�Bfm(q1, q2) and B 0t (q1, q2)�B 0fm(q1, q2)
are fulélled.
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