
Abstract. The appearance of oscillating regimes in a delayed
feedback diode laser is studied analytically and numerically.
Based on the Lang ëKobayashi model, the transition of the
usual oscillation mechanism, related to the transition through
the Hopf bifurcation, to hard excitation of the spike regime is
studied. The change in the regime of the instability develop-
ment has a nature of a phase transition. An explicit
expression is derived for the frequency of small harmonic
oscillations appearing during the transition through the
Andronov ëHopf bifurcation. The boundary between two
different regimes of the development of laser power
oscillations is determined in the parameter space.

Keywords: diode laser, generation dynamics, delayed feedback,
bifurcation.

1. Introduction

A delayed feedback diode laser is widely used in quantum
electronics due to many dynamic operation regimes [1]. The
variety of its dynamic regimes is caused by the presence of
two coupled resonators, one of which is formed by
semiconductor crystal facets and the other ë by a highly
reêecting end-face and an external mirror. The modern
theory of dynamics of delayed feedback laser diodes is
based on Lang ëKobayashi (LK) equations [2]. In the LK
approximation, the reêection of radiation incident from the
external mirror on the diode facets is neglected. The
foundations of the theory of external feedback diode lasers
are presented in book [1]. A great number of parameters
entering LK equations strongly complicate the classiécation
of regimes of generation dynamics.

Particular solutions of the system of LK equations, the
so-called stationary states in which the radiation intensity is
independent of time, can be easily found. The change in the
éeld phase in the stationary state is characterised by the
stationary frequency O. The linearisation of LK equations
with respect to the stationary states and the search for the
solution, which exponentially depends on time [(exp (lt)],

lead to the transcendental expression for exponent factors l
[1, 3]. The transcendence of the characteristic equation of
the linear perturbation theory is related to the delay of the
signal reêected from the external mirror. This equation
involves éve physical parameters, which complicates the
general analysis of appearing instabilities. The number of
roots of the transcendent equation, generally speaking, is
not limited. In the general case, the roots are complex. The
positive real part of the eigenvalue means the instability of
the stationary solution (stationary state). The stationary
state instability can develop due to the aperiodic increase in
perturbations: such instabilities develop in bifurcations of
the saddle ë node type [4]. In this case, the system undergoes
a transition to another stable state due to the instability
development. The stationary state instability with respect to
the appearance of harmonic oscillations at the Hopf
bifurcation point is of special interest because a couple
of solutions with the zero real part appear at this point in
the transcendent equation. This means that upon passing
through the Hopf bifurcation, undamped harmonic oscil-
lations appear whose amplitude smoothly increases from
zero with distance from the bifurcation point. The oscil-
lation frequency in this case does not change noticeably.

Of great interest is the problem of the search for
bifurcation points and the frequency of the appearing
oscillations in the parameter space of LK equations. The
bifurcation points are usually found numerically. The
approach to énd the bifurcation points, which is based
on the linearisation of LK equations near the stationary
state, was proposed in paper [5]. The authors managed to
reduce the problem to the analysis of two transcendental
equations for the frequency of the appearing oscillations,
which involve all the physical parameters. This paper shows
analytically and numerically that under some conditions the
real solutions for the frequency of the éeld oscillations
disappear. The numerical analysis of the behaviour of the
roots of the characteristic equation by the contour integral
method [3] shows that under these conditions two roots also
intersect the imaginary axis, which is a distinctive feature of
the Hopf bifurcation. However, the limiting cycle related to
the Hopf bifurcation is unstable in this case. As a result, the
solution `passes away' to the other stable limiting cycle
corresponding to the spike generation regime. The direct
calculation of the generation dynamics have shown that this
process starts from small harmonic oscillations with the
frequency equal to the oscillation frequency at the Hopf
bifurcation point and ends by forming periodic anharmonic
spikes with a large amplitude. The regime changes with
changing the parameters during a large number of oscil-
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lations. In the case of the reverse change in the parameters,
the stationary regime restores at another point, i.e. a
hysteresis takes place. Hard excitation of the spike gen-
eration regime, hysteresis during the appearance and
disappearance of oscillations and the possibility of control-
ling the dynamic regimes by étting the parameters can be of
practical interest.

2. Derivation of basic relations

Consider LK equations describing an optical external
feedback laser diode in dimensionless variables in the
form presented in [6, 7]:

qE
qt
� �1ÿ ia�NE�t� �ME�tÿ t� exp

�
i

�
K� p

2

��
,

(1)
T
qN
qt
� PÿNÿ �1� 2N�jEj2.

The érst expression describes the behaviour of the éeld
amplitude E in the diode and the second ë the population
inversion dynamics N. In the derivation of the equations,
the time dependence of the éeld in the form exp (ÿio0t),
where o0 is the free-laser frequency, is excluded. In (1), a is
the line broadening factor (antiwaveguide parameter); t is
the delay time; K is the phase incursion in the feedback loop
after substraction of p=2 and the number multiple of 2p:
K� p=2 � o0t (mod 2p). All the quantities having a time
dimension are normalised to the photon lifetime tph in the
intrinsic resonator of length L: tÿ1ph � (c=n)�aint � (2L)ÿ1�
ln rÿ1� (c=n is the speed of light in the medium, n is its
refractive index, aint are internal losses, r is the reêection
coefécient of the crystal facets); for example, T � ts=tph (ts
is the carrier lifetime). Other dimensionless variables are:
jEj � ( 1

2
gtsI )

1=2 is the éeld amplitude (I is the photon
density, g is the differential ampliécation of the medium);
N � 1

2
gtph(Nc ÿNth) is the inverse population measured

from the threshold population Nth (Nc is the carrier
concentration); P � 1

2
gtph( jts ÿNth) is the normalised

pump intensity [ j � J=(ed ) is the carrier injection rate (in
cmÿ3 sÿ1) into the active layer of thickness d for the current
density j, e is the carrier charge]. The coupling constant
M � (1ÿ r)(R=r)1=2�ctph(2nL)ÿ1�, where R is the reêectivity
of the external mirror.

The stationary state is determined by the conditions
qN=qt � 0, qE=qt � iOE, where O is the radiation frequency
detuning with respect to o0. These conditions lead to the
relations

N

M
� sin�Kÿ Ot�, PÿN � �1� 2N�jEj2.

And the frequency detuning O satisées the equation

Ot
s
� sin

�
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�
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The number of stationary solutions (2) depends of the
feedback eféciency [1, 3], which is determined with the
accuracy to the multiplier as a product of the coupling
constant and the delay time: s �Mt(1� a 2)1=2. The number
of roots in Eqn (2) increases with increasing s. The stability
of stationary solutions is determined by the position of roots
of the characteristic equation [1, 3]
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on the complex plane. Here, the notations f � �1ÿ
exp (ÿ lt)�=l and g � T ÿ1(1� 2P)(1� 2N)ÿ1 are used for
brevity. The stationary state stability is preserved until the
number of poles

m � 1� 1

2pi

� ÿi1
�i1

dl
_g2�l�
g2�l�

(4)

in the right half-plane (Rel > 0) is equal to zero [3]. When
the stability of stationary solutions is lost, different
oscillations ë both periodic and chaotic ë appear in the
time dependence of the delayed feedback laser power. We
will consider the parametric conditions of the appearance of
Hopf bifurcations in the solutions of LK equations.

In delayed feedback diode lasers, the frequency or of
intrinsic relaxation oscillations is, as a rule, large compared
to the inverse lifetime of the carriers: or � (2P=T)1=2 4 1=T.
The equations can be linearised near the bifurcation point in
small perturbations with respect to the stationary solution.
Let us present the éeld in the form E � Est�
expC � Est(1�C), where Est � �P�M sin (Otÿ K)�1=2�
exp (iOt). A differential equation with a delayed argument

ÿ �C �M exp

�
ÿ iOt� i

�
K� p

2

��ÿ
_Cÿ _Ct

�
��1ÿ ia�o 2

r ReC (5)
is derived in [5] for the small complex phase perturbation
C. Here, Ct � C(tÿ t);

o 2
r � 2

P�M sin�Otÿ K�
T

. (6)

Because of the delay and a nonanalytic term containing
ReC, equation (5) at the Hopf bifurcation point has the
solution in the form of a linear combination of two
phase-shifted harmonic oscillations: C� c1 cos (ot)� c2�
cos�o(tÿ t=2)�, where c1;2 are complex numbers. The
oscillation frequency o is found from the existence con-
dition of nontrivial solutions of Eqn (5). By using relations
derived in [5] (see also the Appendix), this existence
condition is reduced to the analysis of the roots of cubic
equation (A4), which can be presented in the form

x 3 ÿ pxÿ q � 0, (7)

where

x � o 2 ÿ D; (8)

D � 2

3

�
o 2

r � 2M 2 cos 2�Otÿ K��;
p � 3D 2 ÿ o 2

r d; d � o 2
r � 4MO cos�Otÿ K�; (9)
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r

�
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�ÿ O 2
�
.
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The number of real roots of the cubic equation with the real
coefécients (7) changes from one to three upon varying the
parameter q. As shown in the Appendix, the solution for
o 2 > 0 appears only in the presence of three roots (7).
Because the extrema of the function y � x 3 ÿ pxÿ q lies at
the points 3x 2 � p, the three real roots can exist only if
p > 0. The values of the function ym in the local extrema is
ym � �2(p=3)3=2 ÿ q. The number of roots changes when
the function touches the abscissa axis, i.e. ym � 0 at this
moment. The three real roots exist if only (q=2)2 4 (p=3)3.
In this case, the solution can be written in the form

xk � 2

�
p

3

�1=2
cos

y� 2kp
3

,

(10)

cos y � q

2

�
p

3

�ÿ3=2
, k � 0, 1, 2.

Among the three roots only one positive root satisées
condition (A3), which guarantees the absence of `redun-
dant' solutions.

Thus, the number of control parameters of the problem
can be reduced to two ( p, q). The condition

q 2 � 4

27
p 3 (11)

divides the regions in the parameter space in which the
Hopf bifurcation or bifurcation with a hard excitation of
the spike regime are realised. The interface in the parameter
space corresponding to this condition can be naturally
called separatrix. In terms of the catastrophe theory (see,
for example, [8, 9])*, the separatrix is a `fold line' of the
cusp catastrophe A3.

Thus, under the condition ÿ( p=3)3=2 4 q=24 ( p=3)3=2,
the instability of the stationary state is caused by the Hopf
bifurcation. Note that the two roots on the separatrix merge
into one multiple root corresponding to the frequency
o 2 � D� ( p=3)1=2. In the diagram in variables p, q
(Fig. 1) the separatrix separates the region where the
instability leads to harmonic oscillations whose amplitude

smoothly increases with deepening into the instability region
and the region where the established periodic oscillations are
highly anharmonic.

3. Numerical calculations

The numerical program for the solution and analysis of
Eqns (1) was developed earlier [3]. It includes the determi-
nation of the stationary states followed by the analysis of
the stability based on integral calculations (4). The obtained
information allows one to select speciéc values of the phase
incursion in the feedback loop K for calculating the process
dynamics. The type of the nonlinear solution (deterministic
or chaotic oscillations) is determined by the parallel
calculation of the Lyapunov indices and the dimensionality
of the phase subspace by the Kaplan ëYorke formula. The
direct observation of the generation dynamics near the
bifurcation points allows one to determine the bifurcation
type. The analytic relations formulated above well agree
with the results of the numerical integration. In particular,
the oscillation frequency found analytically for the Hopf
bifurcation coincides with good accuracy with the result of
the direct calculation. In the calculations we used the
antiwaveguide parameter a � 3.

The establishment of the generation dynamics was
calculated as follows: for the speciéed parameters near
the bifurcation point the solution of LK equations was
calculated numerically. The established values of the éeld E
and population N in the stationary state are used as initial
conditions to make a new calculation with a different K
value. The step for K was chosen so that to exclude sharp
temporal changes in the éeld after K is changed.

A classical pattern is observed during the transition
through the Hopf bifurcation: within the time of the order
of one oscillation time, there appear éeld oscillations whose
amplitude gradually (for the time signiécantly exceeding the
carrier lifetime T ) increases to the stationary value. With
increasing the distance from the Hopf bifurcation point, the
éeld modulation amplitude increases at an almost constant
frequency. The numerical calculations showed that for the
pump intensity P > 0:8, the coupling constant M > 0:02 and
the delay time t5 40, the stationary state instability
develops according to the Hopf bifurcation scenario.

For the bifurcation with a hard switching on of
oscillations, the periodic regime is established for the
time exceeding T. First, éeld amplitude oscillations appear,
whose frequency corresponds to the imaginary roots
l � � io of Eqn (3). Unlike the evolution after the tran-
sition through the Hopf bifurcation upon hard switching on
oscillations, their shape during the establishment of the
periodic regime changes signiécantly. In particular, the
oscillation period changes. If the current frequency is
determined by the oscillation period, the frequency o varies
from 0.049 to 0.035 for the set of parameters P � 0:8,
M � 0:02, T � 1000, t � 20, 1808K=p � 2258. This develop-
ment dynamics is typical of the instability leading to a
transition to the spike regime.

4. Change in the development regime
of the oscillatory instability as a function
of control parameters

Among a set of physical parameters (P, M, T, t, K, a), the
line broadening factor a is determined by the laser design

*Note that (7) is a canonical equation for the description of the cusp
catastrophe A3 according to the classiécation of types of elementary
catastrophes presented by Thom.
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Figure 1. Diagram in the variables p, q illustrating the regions of
different nonstationary lasing regimes. The inset shows the characteristic
time dependences of the éeld amplitude E in different regimes.
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and, hence, cannot be changed during the experiment. We
used in calculations a � 3. Because the value of T is high, it
was also éxed in calculations and was set equal to 1000.
Other parameters (P is the pump intensity, M is the
coupling constant, t is the delay time, K is the phase
incursion of the éeld in the feedback loop) can be varied in
the experiment.

The separatrix corresponding to the change in the
scenario of the oscillation development from the stationary
state is determined by equality (11) éxing the ratio
27q 2=(4p 3), which, as can be shown, depends only on
two key parameters: b � or=M and w � Otÿ K ( w is the
phase of the change in the population, for the stationary
state sin w � ÿN=M ). It was found numerically that for the
interval 14or=M4 4 expression (11) has four roots wi,
each of them depending on or=M. For each branch relations
(8), (9) together with expressions (A1) and (A3) from the
Appendix allow the calculation of the root of the oscillation
frequency at the separatrix points o 2(b, w) � D� (D 2ÿ
o 2

r d=3)
1=2 and the quantity ot. Having determined the

delay time t, by using (2) one can also reconstruct separately
O and K ë the coordinates of the bifurcation point on the
stationary state diagram. Of practical interest is also the
function t(P) at the separatrix points, which is shown in
Fig. 2 for each branch w(or=M) at or=M � 2. The change in
the parameters corresponding to the intersection of curves in
Fig. 2 is expected to result in the change in the regime of the
appearance of oscillations in the unstable stationary state.

Curve ( 3 ) in Fig. 2 corresponds to the case, when the
number of roots of dispersion equation (3) in the right half-
plane changes from one to three, which is of no practical
importance. It was found out that the intersection of curve
( 4 ) does not correspond to the intersection of the separatrix
in coordinates p, q, which means that the Hopf bifurcation is
realised on both sides of the curve.

Thus, only when curves ( 1 ) and ( 2 ) intersect, the
scenario of the development of the stationary state insta-
bility is changed. It follows from the above expressions that
the oscillation frequency and the delay time in the feedback
loop are related, for example, along curve ( 2 ) by the
relation t � 2:067=o. The quantities Ot=s � 0:25, K=p �
1.38 and w � 2:56 are constant along this curve. Figure 3
presents the diagrams of the stationary state stability to
illustrate what occurs when curves ( 1 ) and ( 2 ) intersect.

They are plotted for the delay time t � 20 and 40 at éxed
P � 0:8 and M � 0:02.

The plot in Fig. 3a contains two values of K at which the
stationary state stability is violated by the passage of two
roots (3) to the right half-plane. One of the bifurcations
(w � p=12) is located on the left boundary of the segment
with m � 2 [the number of roots m in Eqn (3) is determined
by using (4)], and the other ë on the right boundary of the
segment with m � 2 and the region with m � 0 for the stable
stationary state (K � 5p=4). The érst bifurcation turns close
to the left edge of separatrix ( 1 ) (Fig. 2). Because the stable
stationary state adjacent in Fig. 3a with the érst bifurcation
for K � p=12 is restricted on the other side by the develop-
ment of the aperiodic instability for K � p=16, the interval w,
where it can exist, is very narrow, which is of low interest
from the point of view of the experiment. The second
bifurcation point in Fig. 3a, as numerical calculations show,
corresponds to the hard excitation of the spike regime,
whose establishment dynamics is described in the previous
section. To change the bifurcation type of this point to the
Hopf bifurcation, it is enough to change the delay time t
according to the data for curve ( 2 ) in Fig. 2.

The numerical calculations showed that above separatrix
( 2 ) (Fig. 2) soft excitation of oscillations occurs, while
below it, the hard regime of oscillation excitation is realised.
Near the separatrix, when the bifurcation points of both
types are close in the parameter space, énal states sharply
change with varying slightly the physical parameters. One
can see from Fig. 2 that for P � 0:8, M � 0:02, t � 40 the
bifurcation point should be close to separatrix ( 2 ). The plot
in Fig. 3b shows such a bifurcation point for 1808K=p
� 2358 (in this case, Ot=s � 0:2). The Hopf bifurcation is
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Figure 2. Four separatrices in coordinates t, P for or=M � 2, a � 3,
T � 1000 corresponding to the solutions wi(or=M) of equation (11)
together with equations (A1) ë (A4).
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close to it and harmonic oscillations are established. When K
is changed by one degree to 2348, oscillations develop within
the time � 50T. In this case the current frequency changes
from 0.055 to 0.042 and the oscillation shape becomes
strongly anharmonic. The transition to the stationary
regime from this state upon the reverse change in the
parameters occurs for 1808K=p � 2528, i.e. a hysteresis
take place.

Moving along separatrix ( 2 ) (Fig. 2), the change in the
bifurcation type of creating oscillations can be achieved for
a shorter delay time (t � 20). In this case, P should be set
equal to 3.2 (and M ë to 0.04, respectively), which also
corresponds to the closeness to the separatrix. The Hopf
bifurcation is observed for 1808K=p � 2298 and weak
harmonic oscillations with the frequency o � 0:11 take
place in the narrow interval of K (2298 > 1808K=p
> 2278). At the boundary of the interval for 1808K=p �
2278, hard switching on of intense oscillations with an
almost 100-% éeld amplitude modulation occurs. The spike
regime is changed to the stationary state for
1808K=p � 2428. According to the stated theory, hard
excitation of the spike regime takes place in the entire
region below the separatrix and the return to the stationary
state is accompanied by the hysteresis.

In the region of the parameters under study, only curve
( 2 ) in Fig. 2 is of practical interest for studying the change
in the scenarios of the instability development of the
stationary generation from the soft to the hard oscillation
excitation regimes. The linear stability theory for the
conditions of the hard oscillation excitation also predicts
a passage of two roots of the characteristic equation to the
right half-plane. Numerical and analytical calculations allow
one to interpret the found phenomenon as follows. The
Andronov ëHopf bifurcation leads to the development of
oscillations. The increase in their amplitude is stabilised by
the output of the solution to the limiting cycle covering the
point of the stationary state. The analysis described above
showed that approaching the separatrix, the region of
attraction to the limiting cycle narrows down. At the
moment of the separatrix intersection, the stability of the
limiting cycle is lost. The spike generation regime is the
result of the development of the limiting cycle instability.

The operation regimes of a diode laser controlled by a
signal with a speciéed amplitude and frequency were
classiéed in paper [4]. In particular, it was found that
the limiting cycle created by the Hopf bifurcation can
experience the saddle ë node bifurcation with a transition
to a new limiting cycle. The interaction of limiting cycles is a
nonlinear process. By using the linear theory we managed to
énd the parameters of the problem for which the established
nonlinear generation regime is changed.

Our interpretation of the processes is also supported by
the hysteresis observed in the spike generation regimes: the
return to the stationary regime by means of the reverse
change in the parameters takes place at other values of these
parameters, so that two stable generation regimes ë the
stationary and dynamic spike regime ë exist for the same
parameters in the overlap region.

Thus, separatrix ( 2 ) (Fig. 2) is most interesting for
classifying the nonlinear lasing regimes. In the space of
three parameters (t, P, M), the searched for separatrix can
be plotted in the form of the function t(P,M) representing a
surface in a three-dimensional space. The relief of this
function resembles a slope of a hill with a maximum in

the left bottom part of the domain of deénition (Fig. 4). The
surface relief is presented in the form of the level lines.
Curve ( 2 ) in Fig. 2 is the intersection of the surface t(P,M)
with the surface corresponding to or=M � 2 and passes
through the left bottom and right top parts of the deénition
domains.

For the speciéed parameters t, P, M, by étting the éeld
phase incursion K in the feedback loop, the regime of small
harmonic oscillations or periodic nonharmonic spikes can
be provided (the jump m � 0! 2 in Fig. 3). Above the
separatrix surface t(P,M) the Hopf bifurcation is realised,
which leads to small oscillations and below the separatrix
hard excitation of oscillations occurs. In the general case,
the normal vector fÿdt=dP, ÿdt=dM, 1} to the surface
t(P,M) in the three-dimensional space PMt directs the
change in the parameters to the scenario with a soft
excitation of oscillations.

Therefore, to pass from the regime of small oscillations
to the spike generation regime it is necessary to decrease the
round-trip time of radiation in the feedback loop by
adjusting the pump power in this case. In particular, if
M is éxed and P decreases, the bifurcation type of creating
oscillations changes from the Hopf bifurcation to the hard
excitation regime of oscillations. Thus, for t � 30 and
M � 0:02 the Hopf bifurcation is possible if
P(M) > 1:75. For the éxed P the change of the Hopf
bifurcation to the hard excitation regime of oscillations
occurs if the coupling constant M is decreased.

5. Conclusions

Our analysis has shown the existence of the parameter
space of a delayed feedback diode laser in which small
oscillations of a generated éeld appearing due to the Hopf
bifurcation become unstable and transform into spikes with
a new repetition rate. Within the framework of the linear
theory with respect to the closeness to the bifurcation point,
the algebraic equation is derived from which the real
oscillation frequency can be found. It has been found that
although the oscillatory instability remains, the solution of
the algebraic equation yielding the oscillation frequency
vanishes under certain conditions. This behaviour of the
system can be interpreted as a change in the scenario of the
instability development. Numerical calculations have shown
that during the transition through the point in the
parameter space in which the oscillation frequency obtained

M

t � 22

20

1.0 1.5 2.0 2.5 3.0 P
0.020

0.025

0.030

0.035

24

26

28

30
3234

36

Figure 4. Representation of separatrix ( 2 ) in Fig. 2 in the form of equal
level lines of the function t�P; M�.
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from the algebraic equation disappears, the character of
oscillation excitation drastically changes. Small oscillations
typical of the Hopf bifurcation are transformed for the time
exceeding the carrier relaxation time into periodic oscil-
lations of the énate amplitude, whose shape resembles
spikes. In other words, for the arbitrary small change in the
parameters leading to the instability region, the amplitude
of the established oscillations turns to be énite and their
shape noticeably differs from the harmonic one.

The performed analysis has allowed éve initial physical
parameters, on which lasing depends, to be reduced to only
two their combinations. We have derived a simple equation
determining the parameters at which there occurs the change
in the regime of the instability development of the stationary
lasing having a character of the phase transition. The
relation of the performed analysis to the catastrophe theory
has been pointed out. In particular, the separatrix separat-
ing different regimes of the instability development in the
parameter space is a `fold line' on the cusp surface in the
terms of the catastrophe theory. It has been found in
numerical calculations that the more the time of the
establishment of the stationary oscillations the closer the
system to the critical point. It has been also determined that
when the oscillation excitation is step-wise, there exists the
hysteresis of the lasing dynamics. In the hysteresis region
lasing depends on the prehistory.

From the practical point of view the performed analysis
is useful for the controlled change in the lasing dynamics of
a delayed feedback diode laser. The presented theory allows
the selection of physical parameters to obtain lasing in the
regime of generation of short pulses. The parameter space
where this regime is realised is wider for lasers with a small
delay time of the éeld in the feedback loop. At a high pump
level the modulation depth almost achieves 100%. Har-
monic oscillations appearing during the Hopf bifurcation
are better realised in lasers with longer delay times in the
feedback loop.

Appendix

It was shown in [5] that the nontrivial solution of equation
(5) exists if the frequency o satisées the system of two
transcendent equations

o 2 � o 2
r � 4M 2 sin 2 ot

2
, (A1)

Mo sin�ot� � 1

2
o 2

r �1� a 2�1=2 sin�Otÿ Kÿ arctan a�

ÿo 2 sin�Otÿ K�. (A2)

Under condition that

Mo sin�ot�
�
1

2
o 2

r �1� a 2�1=2 sin�Otÿ Kÿ arctan a�

ÿo 2 sin�Otÿ K�
�
5 0, (A3)

system of equations (A1), (A2) is equivalent to the bicubic
equation:

o 2
ÿ
o 2 ÿ o 2

r

�ÿ
4M 2 � o 2

r ÿ o 2
�

� 4M 2

�
1

2
o 2

r �1� a 2�1=2 sin�Otÿ Kÿ arctan a�ÿ

ÿo 2 sin�Otÿ K�
�2
. (A4)

One can conclude from the form of the left-hand side of
Eqn (A4) that one of its roots is always negative (Fig. A1).
Thus, this root does not correspond to the Hopf
bifurcation. The cubic equation can have either one or
three real roots. Only in the latter case we can expect the
appearance of real oscillation frequencies (i.e. roots for
o 2 > 0). Therefore, it is necessary that all the three roots of
the cubic equation are real for the Hopf bifurcation to
appear.

References
1. Verduyn Lunel S.M., Krauskopf B., in Fundamental Issues of

Nonlinear Laser Dynamics. Ed. by B. Krauskopf, D. Lenstra
(Melville, NY: AIP Conf. Proc., 2000) Vol. 548, p. 66.

2. Lang R., Kobayashi K. IEEE J. Quantum Electron., 16, 347
(1980).

3. Napartovich A.P., Sukharev A.G. Kvantovaya Elektron., 34 (7),
630 (2004) [Quantum Electron., 34 (7), 630 (2004)].

4. Wieczorek S., Krauskopf B., Lenstra D. Opt. Commun., 172, 279
(1999).

5. Sukharev A.G., Napartovich A.P. Kvantovaya Elektron., 37 (2),
149 (2007) [Quantum Electron., 37 (2), 149 (2007)].

6. Winful H.G., Rahman L. Phys. Rev. Lett., 65 (13), 1575 (1990).
7. Winful H.G., Wang S.S. Appl. Phys. Lett., 53 (20), 1894 (1988).
8. Gilmore R. Catastrophe Theory for Scientists and Engineers

(New York: Wiley, 1981; Moscow: Mir, 1984).
9. Arnold V.I. Usp. Matem. Nauk, 30 (5), 3 (1975).

1

2

ÿ1 1 2 3 x

y

0

Figure A1. Illustration to the solution of equation (A4): y � const > 0 (1),
y � x�xÿ x1��x2 ÿ x�, x � o 2, x1 � o 2

r , x2 � o 2
r � 4M 2 (2).
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