
Abstract. The dynamics of the phase difference of counter-
propagating waves is studied theoretically and experimentally
in the self-modulation oscillation regime in a solid-state ring
laser. It is found that in the case of a small enough frequency
nonreciprocity of the ring resonator, the phase difference of
counterpropagating waves changes within a limited range,
performing periodic oscillations with the intensity self-modu-
lation frequency. The instant frequency difference of counter-
propagating waves also changes periodically in time; however,
its mean value is zero (the frequency locking for counter-
propagating waves takes place). The width of the frequency
locking region is measured. It is shown that the phase
difference of the coupling coefécients considerably affects the
phase dynamics. This opens up new possibilities for deter-
mining the phase difference of coupling coefécients of
counterpropagating waves.

Keywords: solid-state ring laser, phase dynamics, self-modulation
lasing regime of the érst kind, frequency nonreciprocity, phase
locking.

1. Introduction

The studies of the nonlinear dynamics of radiation of solid-
state ring lasers (SRLs) have been usually devoted to the
time and spectral characteristics of radiation of counter-
propagating waves, whereas the dynamics of their optical
phases (phase dynamics of radiation) has received little
attention (see, for example, review [1]). This is explained by
the fact that the direct measurement of optical phases of
counterpropagating waves and their difference is a chal-
lenging technical problem. The phase information can be
obtained by analysing a photomixing (heterodyne) radia-
tion signal from two lasers [2, 3] and also signals obtained
by photomixing of optical éelds of counterpropagating
waves [4]. The phase dynamics of SRLs in dynamic chaos
regimes was studied theoretically and experimentally in
papers [4 ë 6].

It is known that numerous different nonstationary

oscillation regimes can be observed in SRLs, which can
exist both in autonomous ring lasers [1] and non-autono-
mous lasers with periodically modulated parameters [7]. One
of the most often encountered nonstationary regimes in
autonomous SRLs is the self-modulation regime of the érst
kind [1].

Some features of the phase dynamics in this lasing
regime were theoretically studied in papers [1, 8, 9] for a
particular case of the coupling coefécients of counter-
propagating waves close to complex conjugate waves. It
was shown in [8] that in the case of a small enough
frequency nonreciprocity of a ring resonator, the mutual
frequency locking of counterpropagating waves occurs. In
this case, the phase difference of counterpropagating waves
changes within a limited region, by performing periodic
oscillations at the intensity self-modulation frequency om.
The phase-locking regime exits in a énite region jOj < Ocr of
the frequency nonreciprocity of the resonator; as this region
is increased (jOj > Ocr), the phase-locking regime passes to
the beat regime. In this regime, the phase difference F is also
modulated at the self-modulation frequency and, in addi-
tion, the value of F increases (or decreases) linearly with
time. The instant frequency difference of counterpropagat-
ing waves oscillates at the frequency om=2p with respect to
the mean frequency difference hFi=2p. The mean value of
the circular frequency difference in the beat regime is
hFi � sign(O)om.

By weakening the competition between counterpropa-
gating waves with the help of a feedback circuit, it is possible
to obtain the beat regime with virtually equal intensities of
counterpropagating waves [10], which is similar to the well-
known beat regime in gas ring lasers. The phase dynamics in
this regime was studied experimentally in [11].

The aim of this paper is to study theoretically and
experimentally the phase dynamics in the self-modulation
lasing regime of the érst kind. As far as we know, the
dynamics of the phase difference of counterpropagating
waves in this regime is investigated in our paper for the érst
time. Unlike previous studies, we analysed the phase
dynamics for arbitrary phases of the coupling coefécients
of counterpropagating waves.

2. Theoretical analysis

The phase dynamics was analysed by using the standard
SRL model [1] described by a system of equations for the
complex éeld amplitudes of counterpropagating waves
~E1;2(t) � E1;2 exp (ij1;2) and spatial harmonics of the inverse
population N0, N�:
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Here, oc=Q is the bandwidth of the resonator (losses for
counterpropagating waves are assumed equal); T � L=c is
the round-trip transit time for radiation in the resonator; T1

is the longitudinal relaxation time; l is the active element
length; a � T1cs=(8�hop) is the saturation parameter; s is
the laser transition cross section; O � o1 ÿ o2 is the
frequency nonreciprocity of the resonator; and o1 and
o2 are the resonator eigenfrequencies for counterpropagat-
ing waves. The pumping rate is written in the form
Nth(1� Z)=T1, where Nth is the threshold inverse popula-
tion and Z is the pump power excess over the threshold. The
linear coupling between counterpropagating waves is
determined by phenomenologically introduced complex
coupling coefécients

~m1 � m1 exp�iW1�, ~m2 � m2 exp�ÿiW2�, (2)

where m1;2 are the moduli of coupling coefécients and W1;2
are their phases. Note that Eqns (1) are written for lasing at
the gain line centre.

The self-modulation regime of the érst kind, which is
characterised by the out-of-phase sinusoidal modulation of
the intensity of counterpropagating waves, exists in a broad
range of SRL parameters [1]. The analytic solution deter-
mining the time dependence of the complex amplitudes was
found in [12]. For simplicity, we present here this solution
for O � 0 (the frequency nonreciprocity is absent) in the
case of the symmetrical coupling of counterpropagating
waves, when coupling coefécients have the same moduli:

m1 � m2 � m. (3)

The phase difference of the coupling coefécients is denoted
by

W � W1 ÿ W2. (4)

The time dependences of the complex amplitudes of
counterpropagating waves can be written in the form [12]
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The intensity self-modulation frequency om is determined
by the expression

om � mj cos�W=2�j, (6)

and constants A1;2 and B1;2 in the case under study are
determined from the expressions
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By using this solution, we can obtain expressions
determining the time dependence of the phase difference
of counterpropagating waves. The complex amplitudes of
counterpropagating waves are written in the form

~E1 � E r1 � iE i1 and ~E2 � E r2 � iE i2,

where Erj and Eij are the real and imaginary parts of the
complex amplitudes of counterpropagating waves ( j � 1,
2). The time dependence of the phase difference F � j1ÿj2

of counterpropagating waves can be found from the
expressions

cosF � Er1Er2 � Ei1Ei2

E1E2

, sinF � Ei1Er2 ÿ Ei2Er1

E1E2

. (8)

Consider the inêuence of the phase difference W of
coupling coefécients on the phase dynamics in the absence
of the frequency nonreciprocity of the resonator (O � 0).
The time dependences cosF calculated by expressions (5) ë
(8) are shown in Fig. 1. Some parameters used in calcu-
lations were set equal to the experimental parameters of the
laser under study. The excess of the pump power over the
threshold was set equal to 0.09 and the bandwidth of the
resonator was determined from the relaxation frequency
or � (oZ=QT1)

1=2; for Z � 0:09, we have or=2p � 65 kHz.
The self-modulation frequency was éxed (om=2p �
207 kHz) during changing W, and the values of m were
calculated for the given W from expression (6).

One can see from Fig. 1 that the phase difference of
counterpropagating waves in the self-modulation regime of
the érst kind in the absence of the frequency nonreciprocity
periodically changes in time in énite limits. The type of
changing of cosF is substantially different for coupling
coefécients close to complex conjugate ones (Fig. 1a:
scattering by the refractive index inhomogeneities) and
for coupling coefécients that considerably differ from
complex conjugate coefécients (Figs 1b ë d: scattering by
absorption inhomogeneities).

The phase difference of coupling coefécients affects the
range of variation in the phase difference F of counter-
propagating waves in the frequency-locking region. In this
region, the mean (for the self-modulation period) frequency
difference of counterpropagating waves is zero. The fre-
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quency locking is preserved in the case of small enough
frequency nonreciprocities of the ring resonator (for
jOj < Ocr).

A change in the phase difference of counterpropagating
waves is caused by their linear coupling determined by the
complex coupling coefécients ~m1;2 and the nonlinear cou-
pling due to backscattering of counterpropagating waves by
inverse population gratings induced in the active medium.
The self-modulation frequency for monolithic SRLs is
usually considerably greater than the relaxation frequency
(om 4or). In this case, phase shifts due to nonlinear
coupling are small, and the phase difference of counter-
propagating waves is mainly modulated due to linear
coupling.

The dependence of the phase-locking region width Ocr

on the laser parameters can be found either analytically or
by solving numerically the system of equations for the
standard SRL model. It can be shown that the frequency
locking exists when the inequality

O 2

o 2
m

<
jhI1i ÿ hI2ij
hI1i � hI2i

(9)

is fulélled, where hI1;2i are the average intensities of
counterpropagating waves. By substituting into (9) the
expressions for the intensity from [12], we can transform
this inequality to the form jOj < Ocr and obtain the
expression

Ocr �
�1� Z�m 2j sin Wj
�o=Q�Z (10)

for estimating the width Ocr of the phase-locking region.
By using expressions for frequencies om and or, we can

rewrite (10) in the form

Ocr �
2�1� Z�o 2

mj tan�W=2�
T1o 2

r

. (11)

All the parameters entering this expression (except W) can be
measured experimentally and then the phase difference of

coupling coefécients can be found from (11) and the
modulus of the coupling coefécient can be found from (6).

3. Experiment

Experiments were performed with a diode-pumped mono-
block ring Nd :YAG laser [1]. The chip laser represented a
monoblock with a spherical input face and three total
internal reêection faces. The geometrical perimeter of the
resonator was 2.6 cm. The nonplanarity angle of the
resonator was 808. The laser was pumped by a 250-mW
diode laser. The frequency nonreciprocity was varied by
means of an external magnetic éeld produced by an
electromagnet located near the chip laser. The magnetic
éeld strength could achieve 500 Oe.

The phase dynamics was recorded by the interference
method described in [4]. In this case, information on the
phase dynamics is contained in the photomixing signal of
counterpropagating waves, which gives the total éeld
intensity

Epm � E1 � E2. (12)

Because polarisations of counterpropagating waves are
not identical in the general case, it is expedient in the
interference method to separate similar (for example, linear)
polarisation components in each wave. In this case, the
intensity of the photomixing signal of counterpropagating
waves is

Ipm � I1 � I2 � 2K�I1I2�1=2 cosF, (13)

where I1;2 are the intensities of separated components of
counterpropagating waves having the same polarisation; F
is the phase difference of interfering waves; and the
coefécient K characterises the degree of overlap of
interfering beams.

The self-modulation regime of the érst kind existed in
the laser under study when the excess of the pump over
threshold was Z < 0:25. The self-modulation oscillation
frequency was om=2p � 207 kHz, and the relaxation oscil-
lation frequency was 65 kHz for the relative excess over the
threshold power equal to 0.09.

The experimental intensity of counterpropagating waves
and photomixing signal were computer-processed in the
following way. To exclude the inêuence of the noise
component, the real signals were approximated by the
expressions A cos (omt� j)� B determining these signals
in the absence of noise. The value of cosF was found from
(13):

cosF � Ipm ÿ I1 ÿ I2

2K�I1I2�1=2
. (14)

Figure 2 presents the time dependences of cosF found
experimentally for different magnetic éeld strengths in the
active medium (different frequency nonreciprocities of the
ring resonator). Also, similar time dependences calculated
analytically by expressions (5) ë (8) are presented. The phase
difference W for coupling coefécients was set equal to ÿ1:2 in
calculations, while the rest of the parameters were equal to
their experimental values. The experimental time depend-
ences of cosF presented in Figs 2a, b correspond to the
frequency-locking regime (the phase difference changes in a
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Figure 1. Theoretical time dependences of cosF in the self-modulation
lasing regime of the érst kind in the absence of frequency nonreciprocity
(O � 0) for different phase differences and different moduli of coupling
coefécients: W � ÿ0:1, m=2p � 207:3 kHz (a); W � ÿ1, m=2p � 236 kHz
(b); W � ÿ1:5, m=2p � 283 kHz (c); and W � 1:5, m=2p � 656 kHz (d).
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limited range); Fig. 2c corresponds to the beat regime. The
experimental dependences well agree with calculations.

Our experimental study conérmed the theoretical pre-
diction about the existence of the frequency locking of
counterpropagating waves in the self-modulation regime of
the érst kind. The range of variations in the phase difference
in the phase-locking region is limited, and cosF changes
from �1 to minimal values exceeding ÿ1 (see Figs 1 and 2).
In the beat regime, cosF changes from ÿ1 to �1 (Fig. 2c).
The phase-locking region width measured in experiments is
close to 20 kHz, which is in qualitative agreement with the
theoretical estimate by (11).

4. Conclusions

We have studied theoretically and experimentally the
dynamics of the phase difference for counterpropagating
waves in the self-modulation regime of the érst kind. It has
been shown that in the case of small enough non-
reciprocities of the ring resonator, the mutual frequency
locking of counterpropagating waves takes place. The phase
difference in the frequency-locking region oscillated within
a limited interval with a period of self-modulation
oscillations. The variation range strongly depends on the
phase difference of coupling coefécients, which allows us to
estimate qualitatively the phase difference for linear
coupling coefécients of counterpropagating waves from
the time dependence.

It was assumed earlier that coupling coefécients in
monolithic ring chip lasers are determined by scattering
from refractive-index inhomogeneities and therefore are
close to complex conjugate coefécients (jWj4 1). The
time dependence of cosF measured in our experiments
can be explained only if the phase difference Wÿ 1:2 of
coupling coefécients is large enough, i.e. the coupling
coefécients in the laser under study considerably differ
from complex conjugate ones.
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Figure 2. Time dependences of cosF in the self-modulation lasing regime
of the érst kind in the phase-locking region for O=2p � 0 (a) and 20 kHz
(b) and in the beat region for O=2p � 100 kHz (c). The solid curves are
the theory, points are experiment data.
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