
Abstract. The propagation of a conical light beam through
an optical ampliéer is considered. The theoretical analysis is
based on an analogue of the system of Frantz ëNodvik
equations taking into account the speciéc character of
spherical waves. The conditions of applicability of reduced
equations (in slowly-varying amplitude approximation) for
describing spherical waves propagating in a nonlinear medium
are formulated. The peculiarities of ampliécation for different
values of the beam divergence are compared. The change in
the transverse structure of a diverging beam, which appears
due to the ampliécation saturation, is studied.

Keywords: optical quantum ampliéer, conical light beam, two-level
resonance medium, femtosecond pulses, photochemical laser.

1. Introduction

Many recent studies have been devoted to the development
of high-intensity optical femtosecond radiation sources (see
review [1] and references therein). In these studies, along
with the approach based on application of solid-state
optical quantum ampliéers, a new direction has been
outlined at present, which is related to the use of gas
photochemical ampliéers in the énal stages [2 ë 7]. To
achieve high powers in such ampliéers, multipass schemes
of the type of optical traps [3 ë 5] or unstable confocal
resonators [6, 8] are used.

The output radiation parameters of laser systems were
calculated by analysing the interaction of the light éeld with
the amplifying medium in the saturation regime. For a
number of optical schemes, this analysis can be performed
using the results obtained by Frantz and Nodvik [9] for an
intense short pulse with a plane wavefront. If the ampliéer
scheme uses an unstable resonator, the saturation effect
should be considered for spherical waves. Note that this
problem attracted the attention of researchers in the past in
connection with the proposal to apply in the experiment
solid-state amplifying elements in the form of faucets or a
set of discs with successively increasing diameters [10 ë 12].
Light beams with variable diameters were also considered in
[13] during investigations of the stimulated Raman scatter-

ing. The speciéc features of ampliécation of diverging beams
were pointed out in papers [10 ë 13], where energy balance
equations were used. However, the gains, which are calcu-
lated numerically, were determined for some speciéc
variants corresponding mainly to either weak or very strong
signals.

In this paper we calculate as an example the parameters
of ampliéers on the XeF(C ëA), Kr2F, Xe2Cl active gases,
of interest being the ampliéer parameters for which it is
impossible to use the results available in the literature even
for rough estimates of the output radiation energy. First of
all, we will consider the applicability of balance equations
for describing the propagation of spherical waves in a
nonlinear medium. We will specify the conditions under
which it becomes possible to describe spherical éelds (strictly
speaking, multicomponent éelds) with the help of simpliéed
reduced equation. In addition, we will present the reduced
equations in the form, which will allow one to calculate the
transverse structure deformation of a light beam caused by
the saturation effect.

2. Propagation of a conical light beam
in an amplifying medium

The equation

H� H� E� 1

c 2
q 2D

qt 2
� 0 (1)

follows from Maxwell's equations in the absence of free
charges and currents. Here, E is the electric éeld strength;
D � eE is the electric induction vector (we assume that the
permittivity e is a scalar function of the quantity EE �). We
assume that this function can be represented in the form

e � e0 � ~e; (2)

where e0 is a constant and the complex quantity ~e (j~ej5 e0)
is the contribution of a laser transition to the permittivity.
Only ~e depends on the saturation, ~e changing in time and
space only as a function of EE �. Because we will consider
conical beams below, it is reasonable to use spherical
coordinates r; y;j (r is the distance from the coordinate
origin, y is the polar angle and j is the azimuth angle) and
the éeld components Er, Ey, Ej. In this case, the quantity of
r will correspond to the radius of the wavefront curvature
of a spherical wave, which we will consider below. In a
number of problems in electrodynamics it is convenient to
use not éelds but vector potentials. If e is a constant, the
full description is given with the help of vector potentials
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for TM and TE modes, which, in turn, can be expressed in
terms of two Hertz functions. Expressions for the éelds in
terms of the Hertz functions can be found in monographs
[14, 15]. However, in our case, e is not a constant because
the saturation effect leads to the dependence of ~e on the
spatial and temporal coordinates. Because of this, the
components of the potentials obey more complicated
equations than the equations for a homogeneous medium
and the calculation procedure described in [15] is not
applicable. Due to diféculties appearing in the study of the
most general case, we will use a number of restrictions
which correspond to the conditions typical of an optical
quantum ampliéer.

We will consider travelling waves with a carrier fre-
quency o0, whose spatial oscillations are described by the
wave number k � o0

����
e0
p

=c and the envelope is characterised
by the time scale t0 and the spatial scale l. Let us introduce
also the transverse scale of the éeld change l? � r~y , where ~y
is the angular width of the initial beam (if the beam has a
éne angular structure, the scale of this structure will be also
involved in the estimate of l?). We assume that the
conditions lÿ1 5 k, tÿ10 5o0 , lÿ1? 5 k are fulélled. The
last inequality takes place if the value of r is not too small
(r > l=~y), which is undoubtedly fulélled in real ampliéers.
This condition allows us to omit the derivatives with respect
to the angular variables in equation (1) and obtain the set of
equations:

1

r

q 2

qr 2
�rEy�r; y;j; t�� ÿ

1

c 2
q 2

qt 2
Dy�r; y;j; t� � 0; (3)

1

r

q 2

qr 2
�rEj�r; y;j; t�� ÿ

1

c 2
q 2

qt 2
Dj�r; y;j; t� � 0; (4)

ÿ 1

c 2
q 2

qt 2
Dr�r; y;j; t� � 0: (5)

The inequality tÿ10 5o0 together with the assumption
with respect to the contribution of the resonance transition
in e allows us to reject the quantities of the order
(~e=e0)(o0t)

ÿ1 in calculations of the temporal derivatives
in expressions (3), (4). After this, expressions (3), (4) take
the form

1

r

q 2

qr 2
�rEj�r; y;j; t�� ÿ

1

c 2
e0

q 2

qt 2
Ej�r; y;j; t�

� 1

c 2
~e
q 2

qt 2
Ej�r; y;j; t�: (6)

Here, the subscript j is the projection of the E vector in the
directions y or j. It follows from (5) that under the above
assumptions the component Er vanishes. It is equation (6)
that will be the basis of the further discussion.

Let us make several remarks concerning expression (6).
Note, érst of all, that it contains only derivatives with
respect to r; angular variables enter into (6) only as
parameters. In this case we have an analogy with the
description of a quantum-mechanic wave function near a
scattering centre [16]. In some problems of the theory of
scattering, the structure of the wave function changes only
depending on the distance to the scattering centre. In our

case, however, the difference is induced by the ampliécation
nonlinearity. Expression (6) under study involves the
quantity ~e depending on EE �, i.e is nonlinear. Due to
this, expression (6) contains terms describing the change of
the angular structure in the saturation regime.

Expression (6) cannot be used to analyse the diffraction
effects, because it neglects the derivatives with respect to the
angular variables. Nevertheless, the role of diffraction is not
always signiécant for diverging beams. Thus, if the initial
divergence angle noticeably exceeds the diffraction angle, in
many cases the account for diffraction leads only to a weak
relative change in the total beam divergence.

Unlike diffraction effects, the saturation effects, as
mentioned above, are taken into account in expression
(6), which can be used to consider the changes in the
angular structure during the nonlinear ampliécation, what is
demonstrated in section 4.3.

Thus, we will take expression (6) as the initial one. Let us
transform it with the help of the substitution

Ej�r; y;j; t� �
1

r
Uj�r; y;j; t�: (7)

In this case, expression (6) takes the form

q 2Uj

qr 2
ÿ 1

c 2
e0
q 2Uj

qt 2
� 1

c 2
~e
q 2Uj

qt 2
: (8)

We will use below the procedure based on the intro-
duction of slowly varying amplitudes (see, for example,
monographs [17, 18]) and use it to simplify equation (8). By
representing the function Uj as a product of a slowly varying
function uj and oscillating multiplier exp (ÿio0t� ikr), i.e.
in the form

Uj�r; y;j; t� � uj�r; y;j; t�

� exp�ÿio0t� ikr�; k � o0

v
; (9)

where

v � c����
e0
p (10)

is the phase velocity and assuming that the condition���� q 2uj

qr 2

����5 k

���� qujqr

����; ���� q 2uj

qt 2

����5o0

���� qujqt

����; (11)

is fulélled, we énd from (8)

2ik
quj
qr
� 2io0

e0
c 2

quj
qt
� ÿ~e

o 2
0

c 2
uj�r; t�: (12)

Here, we can derive the equation for the product uju
�
j :

q
qr

uju
�
j �

����
e0
p
c

q
qt

uju
�
j � ÿ

Im~e
e0

o0
����
e0
p
c

uju
�
j : (13)

For an amplifying medium we have Im~e < 0, the quantity
jIm~ej being proportional to the gain. Let us use the
notation
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ÿ Im~e
e0
� b

N

N0

; (14)

where N is the density of the inverse population; N0 is the
same density in the absence of saturation. Then, we can
obtain from (13) an equation for the quantity

P
j uju

�
j ,

which is the sum of squares of moduli of all the components
uj. By using (14) and (10), based on (13) we énd�

q
qr
� 1

v
q
qt

�X
j

uju
�
j � b

o0

v
N

N0

X
j

uju
�
j : (15)

Consider now the electric éeld intensity I summed over all
the components:

X
j

EjE
�
j � I: (16)

By using (7), (9) and (15), we derive the relation

X
j

uju
�
j � Ir 2; (17)

and equation (15) has the from�
q
qr
� 1

v
q
qt

�
�Ir 2� � b

o0

v
N

N0

Ir 2: (18)

Note that equation (18) can be derived in a simpler way if
not to emphasize the difference between the electric and
magnetic éeld amplitudes and to neglect the longitudinal
components of the éelds, whose contribution is only
signiécant near the curvature centre of a divergent beam.
In the course of deriving we established the conditions of
applicability of expression (18): the necessity to fuléll the
inequality r > l=y. In addition, expression (18) allows one
to study not only the dependence of the radiation intensity
on the radial coordinate but also its parametric dependence
on the angular variables.

The interaction between an ultrashort pulse having a
diverging wavefront and a nonlinear amplifying medium
will be analysed below on the basis of expression (18), which
will be considered together with the equation for the
medium.

3. Saturation of ampliécation in the case
of a conical beam

Passing to the analysis of the interaction of a light éeld with
an active medium, instead of the permittivity we will
introduce the parameter, which is more convenient for
discussion, i.e. ampliécation cross section

s � b
o0

vN0

: (19)

By using (19), expression (18) takes the from�
q
qr
� 1

v
q
qt

�
�Ir 2� � sNIr 2: (20)

The derived expression formally resembles the érst equation
of the Frantz ëNodvik system. The difference consists in

the fact that it is written here for the variable Ir 2 and not
for variable I as was done in paper [9].

The expression for the inverse population density under
conditions of a slow (with respect to the radiation duration)
relaxations of levels, as is known, has the from

qN
qt
� ÿ sv

�ho0

�
1� g2

g1

�
NI; (21)

where g1 (g2) is the statistical weight of the lower (upper)
state of the laser transition. The case of nondegenerate
levels, when g1 � g2 � 1 was studied in paper [9]. For the
transitions of excimer molecules under study, the lower
state is dissociative, and we should set g2=g1 � 0 in (21).
Then, the equation for N will have the from

qN
qt
� ÿ sv

�ho0

NI: (22)

Expressions (20, (22) represent a basic system of
equations for problems on spherical wavefront pulses. In
accordance with the Frantz ëNodvik method, we will
introduce, érst of all, a local time coordinate t � tÿ r=v,
where r is a spatial coordinate. In this case, expressions (20),
(22) will have the form

q
qr
�Ir 2� � sNIr 2; (23)

qN
qt
� ÿ sv

�ho0

NI: (24)

Consider brieêy the Frantz ëNodvik method (taking into
account the peculiarities of our case). By combining
expressions (23) and (24), we obtain

q
qr
�Ir 2� � �ho0

v
r 2

qN
qt
� 0: (25)

In addition, by integrating (24), we derive

N�r; y;j; t� � N�r; y;j;ÿ1�

� exp

�
ÿ sv

�ho0

� t

ÿ1
I�r; y;j; t 0�dt 0

�
: (26)

Let us introduce the notation

y�r; y;j; t� � sv
�ho0

� t

ÿ1
I�r; y;j; t 0�dt 0: (27)

Then, expression (26) can be written in the from:

N�r; y;j; t� � N�r; y;j;ÿ1� exp�ÿy�r; y;j; t��; (28)

after that expression (25) takes the from

q
qr

�
qy
qt

r 2
�
� sr 2

qN
qt
� 0: (29)

By changing the differentiation order in the érst term in the
left-hand side of Eqn (29) and integrating (29) in t, we
obtain
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q
qr
f�y�r; y;j; t� ÿ y�r; y;j;ÿ1��r 2g

� sr 2�N�r; y;j; t� ÿN�r; y;j;ÿ1�� � 0: (30)

We will use below expression (28) and assume that
y�r; y;j;ÿ1� � 0, N(r; y;j;ÿ1) � N0 (this means that
for t � ÿ1 radiation is absent and the medium is initially
homogeneous). In this case, expression (30) is reduced to a
simpler form:

qy
qr
� 2

r
y � N0s�1ÿ exp�ÿy��: (31)

This equation should be solved together with the
boundary condition specifying the shape and amplitude
of a pulse at the input to the amplifying medium. Denote the
initial value of the radius of the wavefront curvature by r0
(at the input to the amplifying medium). For r � r0 the
parameters of the input pulse are known, i.e. the function
I(r0; y;j; t) is known. In this case, due to relation (27) the
function y(r0; y;j; t) is also known. The function

y�r0; y;j; t� �
s

�ho0

� t

ÿ1
I�r0; y;j; t 0�dt 0

is a boundary condition for expression (31), i.e. represents
the function y at the input to the medium. One can see from
Eqn (31) that the local time t enters it only as a parameter.
By solving the problem we can énd the dependence
y(r; y;j; t) for the arbitrary shape of the input pulse and
then by differentiating it, determine the function I(r; y;j; t),
i.e. obtain information on the changes both in the intensity
and the pulse shape throughout the entire ampliéer.
However, a simpler problem ë the quantitative estimate
of the increase in the total energy contained in the pulse ë is
of interest for practical applications. The next section of
this paper is devoted to this estimate.

4. Peculiarities of ultrashort pulse ampliécation
in the case of a spherical wavefront

4.1 Dependence of the energy density on the coordinate

Let us analyse the changes in the electromagnetic energy
density of a pulse during its propagation in the ampliéer.
Based on Eqn (31), we will consider the square of the
modulus of the electric éeld strength I(r; y;j; t) integrated
over the entire pulse duration. Let us introduce the notation

Y�r; y;j� � y�r; y;j;1� � s
�ho0

�1
ÿ1

I�r; y;j; t 0�dt 0: (32)

The equation for the quantity Y

qY
qr
� 2

r
Y � N0s�1ÿ exp�ÿY �� (33)

has, in fact, the same structure as Eqn (31) presented above
for the quantity y.

Note that signiécant saturation corresponds to Y � 1 or

s
�ho0

�1
ÿ1

I�r; y;j; t 0�dt 0 � 1,

The contribution of stimulated transitions to the éeld
energy, as seen from (33), is determined by the quantity
N0s�1ÿ exp (ÿY )�=Y so that the noticeable depletion of the
working level population really corresponds to the quanti-
ties Y5 1.

In this section as well as in section 4.2 we will consider
the case when the energy density of the input radiation
homogeneously élls the cone with the opening angle 2y0 so
that Y(r0; y;j) � Y0 for y4y0 and Y(r0; y;j) � 0 for
y > y0.

Let us present a number of solutions of Eqn (33) in a
graphic form. For calculations we chose the parameters
corresponding to the photochemical ampliéers designed at
present. We used the unsaturated gain N0s � 0:05 cmÿ1, the
radius r0 � 2 cm was chosen as the initial curvature radius
in this series of calculations. The ampliéer length was set
equal to rf ÿ r0 � 100 cm, where rf is the curvature radius at
the ampliéer input. We used several values of the input
energy density corresponding to the values of Y0 equal to
0.1, 0.5 and 1.0 at the ampliéer input. The dependences of Y
on the dimensionless coordinate N0sr (the length is divided
by the ampliécation length) are presented in Fig. 1a. They
demonstrate a nonmonotonic dependence of Y on the
coordinate, which is related to the competition of two
factors: the beam ampliécation and expansion. The most
noticeable intensity attenuation due to the beam expansion
occurs for the smallest values of the curvature radius r.

Note that in the limiting case of the weak saturation, i.e.
forY5 1, the solution of Eqn (33) has the from

Y � Y0

r 20
r 2

exp�N0s�rÿ r0��; (34)

and in the case of strong saturation, i.e. for Y4 1, we have

Y � Y0

r 20
r 2
�N0sr

3
ÿN0sr

3
0

3r 2
: (35)

The structure of these two expressions also indicates the
nonmonotonic dependence of the energy density on the
ampliécation length. The transition from the region of the
intensity attenuation to the region of its growth is
determined by the condition N0sr > 2Y=�1ÿ exp (ÿY )�.
The limiting cases and the nonmonotonic change in the
intensity are studied in papers [11, 12].

Now we include into solution of Eqn (33) the factor
r 2=r 20 , which accounts for the beam expansion The new
function Yr 2=r 20 will monotonically depend on the coor-
dinate. Figure 1b shows a monotonic increase in the
function Yr 2=r 20 with increasing the variable N0sr.

From the formal point of view, the presented expressions
as the dependences in Figs 1a and b give a complete
description of the ampliéer properties because the equation
for the ampliéer contains the only independent variable, the
product N0sr, and the boundary condition is set by the only
parameter Y(r0). However, the results of this consideration
do not allow one to obtain in the explicit form the
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dependence of ampliécation on the divergence angle of the
light beam. The role of this angle will be more obvious if the
beam diameter at the ampliéer input rather than the
curvature radius is taken as its initial parameter. Let the
initial beam diameter be 2a and the diffraction angle be 2y0.
In this case the radius of the wavefront curvature at the
input is r0 � a= sin y0. We will construct a number of
solutions of Eqn (33) by assuming that the initial diameter
is 2a � 2 cm for all the variants, the unsaturated gain is
N0s � 0:05 cmÿ1 and the energy density in all the cases is
the same and corresponds to Y � 0:1 (the saturation
parameter is 0.1). Now we select the quantity
N0sL � N0s(rÿ r0) as an independent variable, i.e. con-
struct the dependence on the ampliéer length L by placing
the point corresponding to the ampliéer entrance at the
coordinate origin for all variants under study. Figure 2a
presents the results of the calculation. It is obvious that the
nonmonotonic dependence of Y on the coordinate becomes
stronger at larger divergence angles.

4.2 Dependence of the total pulse energy on the coordinate

We have dealt so far not with the total pulse energy but
with the energy per unit area of the cross section. Consider
now the integral characteristic, i.e. the quantity Y
integrated over the transverse coordinate.

We will start by passing from the quantities under study
to the conventional deénitions of the energy and energy
density. Denote the energy density related to the electric
éeld components of the pulse by w. By using a standard
expression for the energy density of a quasi-monochromatic
éeld and expression (16), we can write

�r; t� � 1

16p
e0
X
j

EjE
�
j �

1

16p
e0I�r; t�: (36)

For the total energy W, we have

W �
� � �

w�r; t�r 2drdO � O0

16p

�
wr 2dr; (37)

where O0 � 2p�1ÿ cos y0) is the solid angle corresponding
to the conical beam. Note that the energy density w is
concentrated in the spherical layer, whose approximate
thickness is tpv, where tp is the pulse duration. Because this
quantity is small (tpv � l5 r), the radius r can be treated
constant in the localisation region of the w function. For
this reason, the multiplier r 2 in (37) can be factored out of
the integral. The other multiplier (w) depends on r mainly
through t � tÿ r=v. Therefore, we can set with a good
accuracy in expression (37)

�
wr 2dr � r 2v

�
wdt. By using

this simpliécation and taking into account expressions (36)
and (32) relating w, y, Y, we obtain from (37) the
expression for the pulse energy:

Y

a
0 1 2 3 4 N0sr
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0

1

b

Yr 2=r 20

50
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0 1 2 3 4 N0sr

23

0

Figure 1. Dependences of the time-integrated square of the modulus of
the electric éeld strength Y in the units of the saturation energy density
(a) and the quantity Yr 2=r 20 (b) on the dimensionless radial coordinate
N0sr for Y0 � 0:1 ( 1 ), 0.5 ( 2 ) and 1.0 ( 3 ).
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Figure 2. Dependences of the time-integrated square of the modulus of
the electric éeld strength Y in the units of the saturation energy density
(a) and the gain integrated over the time and transverse coordinate of the
square of the modulus of the electric éeld strength K (b) on the
dimensionless coordinate N0sL � N0s�rÿ r0� for the beam divergence
angles y0 � 0:6258 ( 1 ), 1.258 ( 2 ), 2.58 ( 3 ), 58 ( 4 ), 108 ( 5 ), 158 ( 6 ) and
308 ( 7 ). Dashed curves correspond to the plane wavefront.
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W � O0e0
16p

�ho0

s
r 2Y: (38)

For r � r0, we énd from (38) the pulse energy at the
ampliéer input

W0 �
O0e0
16p

�ho0

s
r 20Y0: (39)

According to (38), (39), the energy gain K can be written in
the form

K � W

W0

� r 2

r 20

Y

Y0

: (40)

If to pass from the radius of the wavefront curvature to the
distance L � rÿ r0 measured from the ampliéer entrance,
we obtain the expression for the gain:

K � �r0 � L�2
r 20

Y�r0 � L�
Y�r0�

: (41)

Figure 2b shows the dependence of the gain on the
distance measured from the ampliéer entrance for some
angles of the beam divergence. Unlike the local energy
density presented in Fig. 2a, the integral gain monotonically
increases with increasing the ampliéer length. Stronger
ampliécation corresponds to larger divergence angles.
One can see from Fig. 2b that for the divergence angles
larger than 58, an increase in the angle does not increase the
energy gain. For comparison Fig. 2b shows also the depend-
ence of the gain for a pulse with a plane wavefront. In this
case, the gain has signiécantly lower values than in the case
of the diverging beams.

4.3 Change in the transverse proéle of intensity radiation
upon ampliécation

Consider an input pulse having a smooth dependence of the
radiation intensity on the transverse coordinate. Assume
that the transverse structure of initial emission has the from
Y(r; y;j) � Y0 exp (ÿsin2 y=sin2 y0), the energy density on
the beam axis being 0.1 in the units of the energy density

saturation. We will use the same parameters as in the
previous calculations: 2a � 2 cm, L � 100 cm, s0N �
0:05 cmÿ1. We will set the angle y0 equal to 2.58. Figure 3
shows the initial energy density proéle and the proéle at the
ampliéer output. The shape acquired by the initial proéle
upon ampliécation of a plane ë parallel beam (y0 ! 0) is
shown for comparison. One can see that the transverse
structure is distorted much less in the diverging beam than
that in the beam with a plane wavefront.

5. Conclusions

The present paper is related to the problem of obtaining
high-power ultrashort light pulses and is aimed at establish-
ing a theoretical approach to the optimisation of the
ampliéer design. Consider brieêy the main results of the
paper.

Conditions for the applicability of reduced equations for
spherical waves propagating in a nonlinear medium have
been obtained.

Based on the equation for spherical waves and equations
for a two-level resonance medium whose relaxation time of
the inverse population exceeds the pulse duration, the
peculiarities of the change in the energy density in the
ampliéer have been analysed.

It has been shown that the gain integrated over the
transverse coordinate proves to be larger for larger diver-
gence angles and (for the same input beam cross sections)
can exceed manifold the gain of a pulse with a plane
wavefront.

The deformation of the transverse intensity proéle of a
light beam in the ampliéer has been studied. It has been
shown that distortions in the diverging beam prove to be
weaker than in the plane ë parallel beam. Variation in the
initial divergence angle allows one to change the transverse
proéle of the output radiation intensity.
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