
Abstract. Stationary distributions of temperature and
thermoelastic stresses (thermal tensions) are obtained in an
active disk element with an arbitrary optical density upon a
double-pass pumping. It is shown that the temperature
distribution is determined by the sum of three terms: two
exponential and a linear one, the exponential terms being
preserved with changing the boundary conditions while the
linear term producing no thermal tensions changes. It is found
that thermal tensions decrease with increasing the absorption
coefécient both for the constant thickness of the disk and for
the constant optical density. The assessed values of the
temperature are calculated during the local heating of a thin
disk when the diameter of the pumped region is comparable
with the disk thickness.
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Disc solid-state lasers have been developed for a long time
[1]. To absorb pumping more completely, a multipass
scheme is used in these lasers, which signiécantly compli-
cates the laser scheme. Based on the analysis of
distributions of temperature and thermoelastic stresses
(thermal tensions) and on the experimental results, it was
proposed in [2] to use optically dense media for manu-
facturing active disk elements, in which pump radiation is
almost completely absorbed per one ë two passes.

In this paper we calculated the stationary distributions
of temperature and thermoelastic stresses in active disk
elements with an arbitrary optical density.

Consider a thin disk pumped from one side (x � 0) and
cooled from both sides (for x � 0 and x � d, where d is the
disk thickness). We will denote the temperatures of media by
t1 and t2, which cool the disk surfaces with the coordinates
x � 0 and x � d, respectively. We will consider the double-
pass scheme, when exciting radiation propagating through
the crystal is incident on a mirror with the reêectivity R, and
after reêection from it, propagates through the crystal in the
backward direction.

The stationary heat conduction equation for this partic-
ular case has the form

q 2t

qx 2
� ÿ ZtPpk

lS

ÿ
eÿkx � Re kxÿ2kd

�
, (1)

where t is the temperature; Pp is the pump power
propagated through the front face of the disk after partial
reêection from it; k and l are absorption and heat
conduction coefécients, respectively; S is the disk area; Zt
is the fraction of the absorbed pump power transformed to
heat.

The boundary conditions (of the third kind) can be
written in the form:

l
qt
qx

����
x�0
� a�t�0� ÿ t1�, (2)

l
qt
qx

����
x�d
� ÿb�t�d � ÿ t2�, (3)

where a and b are the coefécients of the heat exchange with
cooling media having the temperatures t1 and t2; t(0) and
t(d ) are the temperatures of the disk surfaces with
coordinates x � 0 and x � d. Below, we will assume for
deéniteness in speciéc calculations that the pumped disk
surface (x � 0) is cooled by air or water, while the other
side of the disk (x � d ) is cooled by water.

The heat power released in the crystal is

Pt � ZtPp

ÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

�
. (4)

In the stationary regime, heat released in the disk is equal to
heat released for the same time to the cooling media:

ZtPp

ÿ
1ÿeÿkd �ÿ1�Reÿkd

��Sfa�t�0�ÿt1��b�t�d �ÿt2�g. (5)

The amount of heat released within 1 s through the face
x � 0 is

Q1 � Pt

a�t�0� ÿ t1�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

� lS
qt
qx

����
x�0

, (6)

and through the face x � d is

Q2 � Pt

b�t�d � ÿ t2�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

� ÿlS qt
qx

����
x�d

. (7)

The solution of expression (1) has the from
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t�x� � ZtPp

lS

�
1

k

ÿ
eÿkd ÿ eÿkx

�� �dÿ x�
�
1ÿ Reÿ2kd

ÿ a�t�0� ÿ t1�
ÿ
1ÿ eÿkd

�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

ÿ
1� Reÿkd

��

� Reÿkd

k

�
1ÿ e k�xÿd �

��� t�d �. (8)

Solution (8) consists of three terms: two exponential terms,

ÿ ZtPp

klS

�
eÿkx � ÿReÿ2kd

�
e kx
�
, (9)

and the linear term. Because the boundary conditions affect
only the linear term, which, is as known [3, 4], does not
cause thermoelastic stresses, we can conclude that in the
stationary case the boundary conditions (naturally, rea-
sonable ones, which do not lead, for example, to the crystal
melting) do not inêuence thermal tensions appearing in a
free thin disk.

Let us show that for small optical densities D � kd,
solution (8) is transformed into a known parabolic solution
typical of the uniform distribution of heat release sources.
The heat conduction equation for this case has the form

q 2t

qx 2
' ÿ ZtPp k�1� R�

lS
, (10)

and the boundary conditions are

l
qt
qx

����
x�0
� a�t�0� ÿ t1�, (11)

ÿl qt
qx

����
x�d
� b�t�d � ÿ t2�. (12)

The solution of expression (10) has the form

t�x� � ZtPp k�1� R�
lS

�
d 2

2
ÿ x 2

2

��xÿ d � a�t�0� ÿ t1�d
a�t�0� ÿ t1� � b�t�d � ÿ t2�

�
� t�d �. (13)

Let us show that for D5 1 solution (8) obtained above
transforms into (13). For this, we will rearrange the terms
in braces in (8):

1

k

ÿ
eÿkd ÿ eÿkx

�� �dÿ x� � Reÿ2kd�xÿ d � � Reÿkd

k

��1ÿ e k�xÿd �
�� a�t�0� ÿ t1�

a�t�0� ÿ t1� � b�t�d � ÿ t2�

�ÿ1ÿ eÿkd
�ÿ
1� Reÿkd

��xÿ d �. (8 0)

Expression (8 0) consists of éve terms. The sum of the érst
two terms for small D is

1

k

ÿ
eÿkd ÿ eÿkx

�� �dÿ x� � 1

k

�
1ÿ kd� k 2d 2

2
ÿ 1�

� kxÿ k 2x 2

2

�
� �dÿ x� � k

�
d 2

2
ÿ x 2

2

�
, (14)

and the sum of the second two terms is

R

�
eÿ2kd�xÿ d � � eÿkd

k

�
1ÿ e k�xÿd �

��

� R

�
�1ÿ 2kd ��xÿ d � � 1ÿ kd

k

�
kdÿ kx

ÿ k 2�xÿ d �2
2

��
� kR

�
d 2

2
ÿ x 2

2

�
. (15)

Thus, the sum of the érst four terms in (8 0) is

k

�
d 2

2
ÿ x 2

2

�
�1� R�. (16)

The last term in expression (8 0) is

a�t�0� ÿ t1�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

ÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

��xÿ d �

� a�t�0� ÿ t1�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

kd�1� R��xÿ d �, (17)

and expression (8) for D5 1 transforms into the expression

t�x� � ZtPp

lS

�
k�R� 1�

�
d 2

2
ÿ x 2

2

�

� a�t�0� ÿ t1�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

d�xÿ d �k�1� R�
�
� t�d �

� ZtPp k�1� R�
lS

�
d 2

2
ÿ x 2

2

� a�t�0� ÿ t1�d�xÿ d �
a�t�0� ÿ t1� � b�t�d � ÿ t2�

�
� t�d �, (18)

which precisely coincides with the above solution of (13) for
the uniform distribution of heat release sources.

We will show how to use solution (8). Let the temper-
atures t1 and t2 of cooling media and the pump power Pp be
speciéed. To calculate t(x) it is necessary to determine the
temperatures t(0) and t(d ) of disk surfaces, which enter (8).
We have two equations:

t�0� � ZtPp

lS

�
1

k

ÿ
eÿkd ÿ 1

�� d

�
1ÿ Reÿ2kd

ÿ a�t�0� ÿ t1�
a�t�0� ÿ t1� � b�t�d � ÿ t2�

ÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

��

� Reÿkd

k

ÿ
1ÿ eÿkd

��� t�d � (19)

and expression (5). By solving (5) and (19) with respect to
t(0) and t(d ), we have

t�0� � 1

1� a=b� ad=l

�
ZtPp

lS

�
eÿkd

k
ÿ 1

k
� dÿ dReÿ2kd�
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� adSt1
ZtPp

� Reÿkd

k

ÿ
1ÿeÿkd ���ZtPp

ÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

�
bS

� at1
b
� t2

�
, (20)

t�d � � ZtPp

ÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

�ÿaS�t�0� ÿ t1�
bS

� t2. (21)

By substituting the obtained values of t(0) and t(d ) into (8),
we will énd the temperature distribution by the disk
thickness t(x).

Let us present another notation of the solution of
expression (1) with boundary conditions (2) and (3):

t�x� � ÿ ZtPp

lSk

ÿ
eÿkx � Re kxÿ2kd

�� C1x� C2,

where

C1 � ab

�
t2 ÿ t1 �

ZtPp

S

�
eÿkd�Rÿ 1�

b
� eÿkd�R� 1�

lk
ÿ 1

a

� Reÿ2kd

a
ÿ 1

lk
ÿ Reÿ2kd

lk

��
�abd� al� bl�ÿ1.

C2 �
ZtPp

S

�
1

a
ÿ Reÿ2kd

a
� 1

lk
� Reÿ2kd

lk

�
� t1 �

l
a
C1

The coordinate xmax at which the temperature has a
maximum, is easy to determine by equating the derivative
dt=dx to zero:

dt

dx
� ZtPp

lS

�
eÿkx ÿ

�
1ÿ Reÿ2kd ÿ a�t�0� ÿ t1�

a�t�0� ÿ t1� � b�t�d � ÿ t2�

� ÿ1ÿ eÿkd
�ÿ
1� Reÿkd

��ÿ Reÿ2kde kx
�
� 0. (22)

By denoting the expression in square brackets by C, we
obtain

Reÿ2kde2kxmax � Ce kxmax ÿ 1 � 0, (23)

which yields

e kxmax � ÿC�
ÿ
C 2 � 4Reÿ2kd

�1=2
2Reÿ2kd

, (24)

xmax �
1

k
ln

� ÿ
C 2 � 4Reÿ2kd

�1=2 ÿ C

2Reÿ2kd

�
. (25)

We calculated the thermoelastic stresses s by using the
expression [3]

s � aE
1ÿ v

�
ÿ t�x� � 1

d

� d

0

t�x�dx

� 3�xÿ d=2�
2�d=2�3

� d

0

t�x��xÿ d=2�dx
�
. (26)

Here, a is the coefécient of thermal expansion; E is the
elasticity modulus; v is Poisson's coefécient (the medium is
assumed isotropic). By substituting the distribution t(x) (8)
into (26), we obtain

s�x� � aE
1ÿ v

ZtPp

klS

�
eÿkx � Reÿ2kd�kx � eÿkd

kd
ÿ 1

kd
�Reÿ2kd

kd

ÿ Reÿkd

kd
� 12�xÿ d=2�

d 3k

�
deÿkd

2
ÿ 1

k
� eÿkd

k
� d

2

ÿRdeÿkd

2
� Reÿkd

k
ÿ Reÿ2kd

k
ÿ Rdeÿ2kd

2

��
. (27)

Below we present the results of calculations of the
temperature and stresses obtained from above expressions.
The calculations were performed for the heat power P 0t , the
same for all the absorption coefécients, which was
calculated per unit of the disk surface area: P 0t � Pt=S �
50 W cmÿ2. In this case, the ratio ZtPp=S was replaced by

P 0tÿ
1ÿ eÿkd

�ÿ
1� Reÿkd

� . (28)

We used in calculations the heat conduction coefécient
l � 0:1 W cmÿ1 Kÿ1, the reêectivity R � 1, v � 0:25, the
temperatures of the cooling media t1 � t2 � 20 8C, the heat
exchange coefécients b � 0:75 W cmÿ2 Kÿ1 (cooling by
water) and a � 0:015 (cooling by air) or 0.75 W cmÿ2 Kÿ1

(cooling by water). The parameters a � 7� 10ÿ6 Kÿ1 and
E � 2� 106 kgf cmÿ2 were taken, for example, correspond-
ing to the YAG crystal. Note that the used value of the
speciéc heat power corresponded to a �100-kW hypo-
thetical laser for the disk area of 1000 cm2 [2].

Figure 1 presents the temperature distribution t(x) along
the axis of a 0.1-cm-thick disk cooled from one side by air
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Figure 1. Temperature distributions along the disk axis for a � 0:015
W cmÿ2 Kÿ1, b � 0:75 W cmÿ2 Kÿ1 (a) and a � b � 0:75 W cmÿ2 Kÿ1

(b), k � 1 ( 1 ), 30 ( 2 ) and 100 cmÿ1 ( 3 ).
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and from the other side by water (a � 0:015 W cmÿ2 Kÿ1,
b � 0:75 W cmÿ2 Kÿ1) and by water from both sides
(a � b � 0:75 W cmÿ2 Kÿ1) for the absorption coefécients
k � 1, 30 and 100 cmÿ1. One can see that the temperature
on the pumped disk surface (x � 0) is higher than that on
the opposite surface (x � d ). The maximum temperature is
achieved for x � xmax [see expression (25)], which is so much
the closer to zero the lower the ratio a=b. For small values of
the optical density (for example, D � 0:1 for k � 1 cmÿ1),
we obtain the known parabolic distribution, in this case, for
a � b, the position of the parabola vertex (where the
temperature is maximal) almost coincides with the disk
centre (xmax ' d=2). When k is increased, the temperature
t(0) increases and t(d ) decreases, and the distribution t(x)
tends to be quasi-linear one. In this case, the thermal
tensions in the sample should decrease because the linear
dependence t(x) does not cause stresses [3, 4]. This is
conérmed by calculations of thermal tensions s(x).

Note once again that the quantity s(x) in our speciéc
case is independent of the temperature of the cooling media
and heat exchange coefécients and is determined only by the
heat power Pt scattered in the crystal, the disk area S and
thickness d as well as by the coefécients of absorption (k),
heat conduction (l) and reêection (R) of exciting radiation
from the rear mirror, which directly enter expression (27).

Figure 2 shows the dependences s(x) calculated for
d � 0:1 cm, k � 1, 30 and 100 cmÿ1. The results of
calculations are valid for both types of cooling (air ëwater,
water ëwater). For small optical densities (D � 0:1), we
have a parabolic distribution. Note that in this case the
pump absorption in the active element proceeds during a
rather large number of passes. The maximal value smax is
achieved for x � 0 (i.e. on the pumped disk surface). The
stresses smax érst slightly increase (approximately by 10%)
and then decrease with increasing k and for k > 60 cmÿ1

(D > 6) they become lower than at small optical densities,
which is explained by the quasi-linearisation of the temper-
ature dependence mentioned above. For the speciéed value
of D, the stresses smax decrease with increasing k. For the
speciéed k, the stresses smax increase with increasing the disk
thickness.

The presented results conérm the conclusion [2] that thin
disks based on optically dense active media, in which pump
radiation is absorbed per one ë two passes, have lower
thermal tensions than disks with a small optical density,
which require multipass pumping.

Note that the performed calculations did not take into
account the increase in the heat conduction coefécient l
with increasing temperature [5, 6]. The calculations showed
that, for example, for k � 100 cmÿ1 a decrease in l by 30%
leads to an increase in temperature of the `external' disk face
(at which pump radiation is incident) approximately by
18 K. The maximal thermal tension appearing on the same
face and changing, as seen from expression (27), inversely
proportional to l, increases in this case by 40%.

Note that expression (8) for the temperature distribution
was obtained for thin disks, which are cooled through plane
faces and whose heat release through the side surface is
small. However, in a real laser experiment, the cooling
conditions can be different. Thus, in [2] pump radiation
focused into a spot of radius R1 � 0:01 cm was incident on a
0.035-cm-thick disk of radius R0 � 0:2 cm. In this case the
ratio of the side surface area of the pumped region to the
area of its faces was �3:5 and the heat could effectively
`spread' over the entire crystal. First, this decreased the
temperature, and second, increased the area from which the
heat escaped to the cooler ë êowing water, which signié-
cantly increased the heat removal and also decreased the
crystal temperature. If we neglect these processes and
assume that the heat is extracted only from the faces of
the pumped region, the temperature under conditions of the
experiment described in [2], in which the value of Pt (the
heat power released in the crystal) was �0:5 W, is estimated
to be �1500 8C! However, if the area, from which the heat is
extracted, is increased up to �1 mm2, the temperature
decreases by an order of magnitude. This increase in the
area in a real experiment occurs due to the `spreading' of the
heat along the crystal.

Because the analytic solution of the problem on the heat
`spreading' in the crystal under conditions of the experiment
described in [2] is problematic, we will consider a simpler
model to estimate the temperature. Because the disk thick-
ness is small, we will assume that the heat being released is
distributed uniformly over the pumped volume and the
temperature fall between the disk faces is small, i.e. we
consider the temperature to be the function of only the
distance r from the centre of the pump spot along the disk
surface. The `external' disk face is cooled by the êowing
water having temperature t2 � 20 8C. Then, the heat con-
duction equation in cylindrical coordinates will have the
form:

1

r

q
qr

�
r
qt
qr

�
� ÿ Pt

lS1d
, (29)

where

S1 � pR 2
1 .

Solution (29) has the form

t � Pt

4lS1d

�
ÿ r 2 � R 2

1

�
1� 2 ln

R0

R1

��
� t�R0�

�04 r4R1�, (30)

t � PtR
2
1

2lSd
ln
R0

r
� t�R0� �R1 4 r4R0�, (31)

where t(R0) is the temperature at the disk edge (for r � R0).
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Figure 2. Distribution of thermoelastic stresses along the disk axis for
k � 1 ( 1 ), 30 ( 2 ) and 100 cmÿ1 ( 3 ).
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As a boundary condition of the érst kind, we specify the
temperature t(R0). It is obvious that t(R0) cannot be smaller
than the temperature t2 � 20 8C of the cooling liquid. On the
other hand, if we assume that the heat power Pt is
distributed uniformly in the entire disk, the face temperature
t(d ) cooled by water will be determined from the relation

Pt � b�t�d � ÿ t2�pR 2
0 , (32)

which yields t(d ) � 25 8C. Because the temperature of the
disk edges in the case when the heat is distributed over the
entire volume, will be higher than in the case when the heat
is released in a small pumped region, 25 8C is the upper
boundary of the temperature t(R0). Thus, by assuming that
20 8C4 t(R0)4 25 8C, we obtain the temperature at the
disk centre 100 8C4 t(r � 0)4 105 8C.

Let us calculate the heat removal P 00t from the cooled
disk face according to the boundary condition of the third
kind:

P 00t � b

� R0

0

2pr�t�r� ÿ t2�dr. (33)

By substituting t(r) determined from (30), (31), we obtain
P 00t ' 1:35 W, while the input heat power is 0.5 W.

This diskrepancy is caused obviously by the fact that
expressions (30), (31) were obtained by neglecting the
integral heat extraction through the face to water but by
taking into account the cooling by means of introducing
temperature t(R0) at the disk edge. At the same time,
because the heat removal is proportional to the difference
in temperatures of the cooled surface and water and occurs
from the entire disk face being cooled, i.e. from area pR 2

0 ,
the real temperature is lower than the calculated one. This
circumstance in the érst approximation can be taken into
account by introducing expressions (30), (31) correction
coefécient b < 1 as

t 0�r� � b�t�r� ÿ t2� � t2. (34)

where t(r) is the temperature calculated by expressions (30),
(31) and t 0(r) is the corrected value of the temperature.
According to (34) the temperature decrease is higher, the
larger the difference t(r)ÿ t2, i.e. the higher the heat `sink'
to water, the character of the dependence t 0(r) being the
same as t(r). It is obvious that b � Pt=P

00
t � 0:37 and the

temperature at the disk centre is

t 0�r � 0� � b�t�r � 0� ÿ t2� � t2 � 50 8C. (35)

The value of the temperature, that is lower than that under
the boundary conditions of the érst kind, is explained by a
more complete, than in the case of specifying the temper-
ature at the disk edge, account for cooling under the
boundary condition of the third kind, according to which
the heat is extracted from the entire disk edge being cooled,
which takes place in the experiment [5].

Therefore, the model under study taking into account
the heat `spreading' over the laser crystal yields a realistic
estimate of its temperature.
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