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Nonlinear processes upon doubling the period
of self-modulation oscillations in a solid-state ring laser

I.I. Zolotoverkh, A.A. Kamyshev, N.V. Kravtsov, E.G. Lariontsev, V.V. Firsov, S.N. Chekina

Abstract. Nonlinear phenomena appearing in a solid-state
ring laser upon approaching the period-doubling bifurcation
point of self-modulation oscillations and inside the doubling
region are studied theoretically and experimentally. The
bifurcation appears due to the parametric interaction of self-
modulation oscillations of the first kind with relaxation
oscillations. It is found that the bifurcation diagrams, time
dependences of the intensities and power spectrum can
significantly differ for counterpropagating waves because of
the amplitude nonreciprocity of the ring resonator and the
inequality of the moduli of the feedback coefficients. It is
shown that when the self-modulation period is doubled, the
widths of spectral peaks corresponding the self-modulation
frequency and the fundamental relaxation frequency decrease.
Noise precursors of doubling bifurcation are studied. It is
found that the distance between the peaks of noise precursors
increases with increasing the noise intensity. It is demon-
strated experimentally that the noise modulation leads to the
bifurcation point displacement, which increases with increas-
ing the noise.

Keywords: solid-state ring laser, parametric synchronisation, self-
modulation lasing regime of the first kind, period doubling of the
self-modulation oscillations, amplitude nonreciprocity.

1. Introduction

Solid-state ring lasers (SRLs) are known to have many
different nonstationary lasing regimes. The nonstationary
regimes are realised both in autonomous [1] and in non-
autonomous ring lasers upon periodic modulation of their
parameters [2]. One of the most widespread nonstationary
regimes in an autonomous SRL is a self-modulation regime
of the first kind, which is characterised by the out-of-phase
sinusoidal intensity modulation of counterpropagating
waves [1]. This regime involves two relaxation frequencies
— fundamental (w,) and additional (w,). If the self-
modulation frequency w, approaches the doubled value
of one of the relaxation frequencies, a number of nonlinear
effects appear which are related to the parametric
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interaction of self-modulation and relaxation oscillations.
This interaction can result in the instability of the self-
modulation lasing regime of the first kind and in the
excitation of more complex self-modulation oscillations
(including the dynamic chaos) [3—6]. During the parametric
resonance with the fundamental relaxation frequency, the
period-doubling bifurcation of self-modulation oscillations
is observed as a rule.

The period-doubling bifurcation appears in dynamic
systems of different types (see, for example, [7—10] and
references therein). The sequence of such bifurcations is
typical for the transition to the chaos according to the
Feigenbaum scenario [10]. Nonlinear phenomena accom-
panying the period-doubling bifurcation were studied in
many papers. The parametric amplification of weak mod-
ulating signals (as well as noises) was considered near the
bifurcation point at resonance frequencies close to the half
the fundamental frequency [7—9, 11, 12]. This amplification
proves to be phase sensitive and under certain phase
relations these signals (noises) are attenuated [13, 14], i.e.
phenomena similar to the light compression in a parametric
oscillator are observed. The noise precursors of the period-
doubling bifurcation were studied in papers [15, 16] and it
was shown in [17, 18] that at certain noise intensities
optimal (resonance) excitation of precursors was observed.

The majority of the mentioned papers are related to
single (isolated) dynamic systems, while the coupled systems
have not been thoroughly studied so far. The effects caused
by the influence of noises in the vicinity of the period-
doubling bifurcation are also hardly investigated experi-
mentally. A solid-state ring laser can be treated as a system
of two coupled unidirectional lasers and the study of the
processes proceeding in counterpropagating waves during
the doubling bifurcation helps reveal the peculiarities caused
by the coupling between dynamic systems and non-identity
of the interacting systems.

The aim of this paper is to study theoretically and
experimentally the phenomena taking place in a two-direc-
tional ring laser near the bifurcation point and inside the
region of parametric synchronisation of self-modulation and
relaxation oscillations. The effect of system intrinsic noises
and additional pump noise is considered.

2. Theoretical model and laser parameters

We used the vector model of a solid-state ring laser in the
theoretical analysis of the phenomena under study [1, 19].
In this model, the radiation polarisation of counter-
propagating waves is assumed specified and s
characterised by the arbitrary unit vector e, for counter-
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propagating directions. The initial system of equations of
the vector model has the form:
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Here, Em(t) = E|,exp(ip,) are the complex field ampli-
tudes of counterpropagating waves; N, N, are spatial
harmonics of the inverse population N determined by the
expressions

L L
Ny = lJ Ndz, N, = lJ efe;Nexp( £i2kz)dz;  (2)
L 0 L 0

L is the perimeter of the ray contour. System of equations
(1) differs from the equations of the standard model [1] by
the presence of the polarisation factor in the latter

B = (ejes)” = cos’y, 3)

where v is the angle between unite vectors e;,. Note that
the field polarisations of counterpropagating waves inside
the resonator as well as the angle between the vectors e ,
depend on the coordinate of the considered point inside the
resonator. Expression (3) involves the value y averaged over
the resonator length. Another distinctive feature of
equations (1) is the presence of the Gaussian noise g,
describing the noise modulation of the pump and having
the following statistical characteristics:

(&w(1)) =0, @)

<gw(l)gw(s)> = DS([ - S)> (%)

where D is the noise intensity; 6(z) is the Dirac delta
function.

Equations (1) use the following notations: w./Q,, are
the resonator bandwidths; Q) , are the resonator Q factors
for counterpropagating waves; T = L/c is the round-trip
time of light in the resonator; 7 is the time of the
longitudinal relaxation; / is the active element length;
a = Tyca/(8nhw) is the saturation parameter; ¢ is the laser
transition cross section; Q2 = w; — w, is the frequency non-
reciprocity of the resonator; w;, w, are the resonator eigen-
frequencies for counterpropagating waves. The pump rate is
represented in the form Ny (1+ #)/T), where Ny, is the
threshold inversion population; # = P/Py, — 1 is the pump
power excess over the threshold. The linear coupling of
counterpropagating waves is determined by phenomenolog-
ically introduced complex coupling coefficients

my =myexp(idy), My =myexp(—id), (6)

where m, , are the moduli of coupling coefficients and 9, »
are their phases. Note that equations (1) are written for the
case of lasing at the gain line centre.

In the numerical simulation a part of the parameters was
assumed equal to the experimentally measured correspond-

ing parameters of the laser under study. The resonator
bandwidth was determined by the relaxation frequency
W, = [nwc/(QTl)]]/z. When the pump is exceeded over
the threshold # = 0.09, the main relaxation frequency in
the laser under study is w,/2n = 65 kHz. The polarisation
parameter f =0.75 was determined as in [19] by the
experimentally measured dependence of the additional
relaxation frequency w,; on the frequency nonreciprocity
Q of the resonator. The amplitude nonreciprocity of the ring
resonator 4 =w./0, — w./Q; was determined by the
experimentally measured phase difference of signals of
self-modulation intensities of counterpropagating waves
(see [1]). The values of the moduli and the phase difference
of complex coupling coefficients 71, 5 are difficult to estimate
by the characteristics of self-modulation oscillations. The
results of the numerical simulation performed in this paper
showed that the parameters of the self-modulation oscil-
lations in the bifurcation region of their period doubling are
most strongly affected by the frequencies w,, and w,, the
inequality of the moduli of the coupling coefficients m; , and
the amplitude nonreciprocity 4, while the phase difference
of coupling coefficients 3; — 9, influences them weakly. In
this connection, for simplicity we consider the coupling
coefficients below as complex-conjugate ones ($;— 3, = 0).

3. Experimental setup

Experiments were performed by using a Nd : YAG diode-
pumped monoblock SRL [1]. The chip laser under study
was a monoblock with a spherical input face and three total
internal reflection faces. The geometrical perimeter of the
resonator was 2.6 cm and the resonator nonplanarity angle
was 80°. The laser was pumped by a 250-mW, 0.81-um
diode laser. The white-noise generator in the power circuit
of the diode emitter was used for the additional noise pump
modulation. The laser under study operated in a single-
mode regime (the fundamental mode with one and the same
longitudinal index was excited in each direction), which was
controlled by the Fabry—Perot interferometer. During the
research, the temporal dependences of intensities and
radiation power spectra of counterpropagating waves
were measured for different pump noise levels. The laser
operated in the self-modulation regime of the first kind.
When the pump level was changed, the self-modulation
period-doubling bifurcation appeared.

4. Experimental results

We studied the evolution of self-modulation oscillations by
smoothly changing the control parameter. This control
parameter was the excess of the pump power over the lasing
threshold #. Both experimental studies and numerical
simulations were performed.

The value of # was changed in the range from 0.05 to 0.5
in the experiments. The research performed showed that in a
broad value range of # (except the interval 0.22 < 5 < 0.37)
the laser exhibited the self-modulation regime of the first
kind. In the interval 0.22 <y < 0.37 the period-doubling
regime of self-modulation oscillations appeared.

4.1 Temporal and spectral emission parameters

Figure 1 presents the experimental dependences of the self-
modulation frequency w,, and doubled relaxation frequency
2w, on 7 as well as the dependence of w,, on 5 obtained in
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the numerical simulation. When # increases, the frequency
o, of relaxation oscillations increases and the self-modu-
lation frequency w,, changes insignificantly. As a result, for
o, ~ oy, /2 the parametric frequency synchronisation of
self-modulation and relaxation oscillations (@, = w,/2)
appears, which is accompanied by the excitation of
relaxation oscillations and by the period doubling of the
radiation self-modulation. The regime with the doubled
period of oscillations exists in the finite interval of changes
in the control parameter 1, < n < 1,, where 7, , are the left
and right boundaries of the parametric synchronisation
region.
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Figure 1. Dependences of the self-modulation frequency ,,/2n and
doubled relaxation frequency w,/m on the pump excess over the
threshold (m, @ are the results of the experiment, o is the numerical
simulation).

In the period-doubling regime, the radiation self-mod-
ulation of intensities of counterpropagating waves becomes
nonsinusoidal and each its period has two intensity maxima.
The bifurcation diagrams in Fig. 2 show the change in the
intensity maxima of counterpropagating waves by varying #.
According to the presented diagrams when 7 is increased,
the difference between two adjacent intensity maxima
proves to be significant first only in one beam while in
the other (counterpropagating) the adjacent maxima almost
coincide. The difference between the maxima in the first
beam increases with increasing n and at n = 0.3 becomes the
largest. When # is further increased, similar changes take
place in the counterpropagating beam, while in the first one,
on the contrary, the adjacent maxima become almost the
same. The experimental diagrams are analogous to those
obtained in the numerical simulation.

The asymmetry for counterpropagating laser waves is
observed not only in bifurcation diagrams but also in the
difference in the character of the radiation self-modulation
of counterpropagating waves. Figure 3 shows the time
dependences of intensities of counterpropagating waves
inside the period-doubling region for three values of the
control parameter 1. These dependences were measured
experimentally. The dependences obtained in the numerical
simulation are completely similar to those presented in
Fig. 3. Inside the period-doubling region the radiation
power spectra also can differ significantly for counter-
propagating directions, which is seen in Fig. 4.

I "™ (rel. units)

0.6

0.5 Vi
0.4

0.3

0.2

0.1 |

0.20 0.25

1M, 1M (rel. units)

0.30 0.35 0.40 n

0.6

0.5 F

0.4

03|

0.2

0.1 |

0.20 0.25 0.30 0.35 0.40 n

Figure 2. Bifurcation diagrams showing the change in the intensity
maxima of counterpropagating waves by varying # (a is the experiment,
b is the numerical simulation).

The difference in the temporal and spectral emission
parameters for counterpropagating directions can appear in
the model under study both due to the inequality of the
moduli of the feedback coefficient m;, and due to the
amplitude nonreciprocity of the ring resonator 4 =
®./0> — w./Q;. In the self-modulation regime of the first
kind the amplitude nonreciprocity can be experimentally
measured by the phase shift 6¢ of the self-modulation
signals in counterpropagating waves. In the absence of
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Figure 3. Time dependences of the intensities of counterpropagating
waves inside the period-doubling region for n = 0.275 (a), 0.3 (b) and

0.34 (c).
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Figure 4. Radiation power spectra for counterpropagating waves for
n = 0.275.

the peak widths at frequencies w,, and .. In the period-
doubling region of self-modulation (for 0.22 < n < 0.37) the
width decreased approximately twice.

4.2 Noise precursors of the period-doubling bifurcation of
the self-modulation

We observed the noise precursors (two closely spaced peaks
at the frequency o, and combination frequency w, — w,)
near the bifurcation point in the radiation power spectrum.
In Fig. 6 these precursors are shown when # increases till
the appearance of the bifurcation. One can see that as the
bifurcation point is approached the precursors become
closer to each other and increase in their intensity. The
noise precursors presented in Fig. 6 appear under the action
of intrinsic noises of the system. In this paper we also
studied the influence of the additional pump noise on the
precursor characteristics of the period-doubling bifurcation.
It was shown that the noise pump modulation affects the
position (central frequency) of precursor peaks and their
width.

Figure 7 shows the dependences of the central peaks of
precursors on the noise intensity near the period-doubling
bifurcation point obtained in the experiment and numerical

the amplitude nonreciprocity (4 =0), the intensity self-
modulation of counterpropagating waves is strictly out-
of-phase. If 4 # 0, the out-of-phase propagation is violated,
which is characterised by the phase shift

sind¢p = 24/wy,. @)

The experimental dependence of d¢ on the pump excess
over the threshold is shown in Fig. 5. The same figure
presents the values of 4 calculated by using expression (7). It
was assumed in the numerical simulation that 4 = 5000 s
To obtain a satisfactory agreement with the results of the
experiment we used the following values of the moduli of
coupling coefficients: m; = 812600 s~', m, = 1986400 s~

We measured the peak width v, at the frequency of the
self-modulation oscillations in the radiation power spec-
trum. Our measurements showed that in the self-modulation
regime of the first kind, dv,, is almost independent of the
pump excess over the threshold and is equal to ~ 4 kHz.
The parametric synchronisation of the frequencies of self-
modulation and relaxation oscillations caused a decrease in
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Figure 5. Experimental dependence of 8¢ on the pump excess over the
threshold and the value 4 calculated by using expression (7).
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Figure 6. Noise precursors of the period-doubling bifurcation in the
radiation power spectrum with increasing n up to the bifurcation
appearance.
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Figure 8. Experimentally measured boundaries of the doubling region
111, as a function of the noise intensity D.

o, O — 20, /
—, ——— /kH
2’ 2n z

130 F

120

100

90

Figure 7. Dependences of the central frequencies of noise precursor
peaks on the relative noise intensity D near the period-doubling
bifurcation point (e are the results of the experiment, o is the numerical
simulation).
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Figure 9. Dependence of the noise modulation of the pump on the peak
widths of self-modulation (dv,,) and relaxation (dv,) oscillations near the
bifurcation point (experiment).

simulation. One can see that when the noise increases, the
precursors ‘push apart’ nonlinearly due to which the
boundaries of the period-doubling region are displaced
resulting in the increase in #. Figure 8 presents the
experimentally measured boundaries of the doubling region
M1, as a function on the noise intensity.

The influence of the noise modulation of the pump on
the peak widths of modulation and relaxation oscillations
was studied near the bifurcation point (Fig. 9). One can see
that the line width at the frequency of self-modulation
oscillations weakly depends on the pump noise intensity and
the peak width at the fundamental relaxation frequency
significantly increases (approximately by an order of mag-
nitude) with its increase.

5. Conclusions

We have studied in this paper the characteristics of self-
modulation oscillations when period-doubling bifurcation
appears. It has been shown that the inequality of the
coupling coefficients of counterpropagating waves and the
amplitude nonreciprocity of the ring resonator lead to the
difference of temporal and spectral emission parameters of
counterpropagating waves. The dependence of the line
width at the self-modulation frequency on the pump excess
over the threshold has been studied. It has been shown that
when the period is doubled, the width of the spectral peak
at the self-modulation frequency decreases by twice. The
influence of the pump noise on the precursors of the period-
doubling bifurcation has been studied. Due to the shift of
the noise precursor frequencies, the bifurcation point is
displaced under the noise action.
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