
Abstract. The light pressure force acting on a spherical
dielectric particle in the interference éeld of two plane
monochromatic electromagnetic waves is studied in detail for
different particle radii and angles of incidence of waves.

Keywords: light pressure force, interference of electromagnetic
waves, light scattering.

1. Introduction

In 1986 a device allowing holding and manipulating small
dielectric particles by laser radiation, was demonstrated for
the érst time [1]. A year later, the scientists from the same
research group managed to displace a living cell by an IR
laser beam without damaging it [2]. The device making it
possible to move small dielectric particles and biological
objects without their damage by using laser radiation was
termed `laser pincers'. At present laser pincers énds more
and more applications in biology and medicine to study
viruses and bacteria [3], DNA molecules [4], processes
proceeding inside a living cell [5], etc. The manipulation of
small dielectric particles in the laser radiation éeld becomes
possible due to the action of the light pressure force, which
is conventionally divided into two parts: gradient force and
scattering force [6]. In the case of small dielectric particles,
the scattering force can be, as a rule, neglected compared to
the gradient force directed along the intensity gradient of
the electromagnetic éeld [7, 8]. Under the action of the
gradient force, depending on the polarisability sign, a small
dielectric particle tends to move to the region of the
maximum (minimum) éeld intensity, where the force action
is minimal.

Apart from biological applications, the light pressure
force can be used to produce artiécial heterogeneous media
representing liquid suspensions of suspended dielectric
particles with controlled optical properties. These media

can have large Kerr optical coefécients and be applied as
broadband nonlinear media irradiated by low intensity long
laser pulses [9 ë 11]. The simplest way of producing regular
intensity modulation of light éelds is the interference of two
light beams resulting in harmonic modulation of laser
radiation intensity. The control of the intensity modulation
period by changing the convergence angle of interfering
beams allows the action of the light pressure force on the
dielectric particle to be varied. Figure 1 shows the exper-
imental results [12] on ordering 5.8-mm polystyrene balls
suspended in a physiological solution in the interference
éeld of two beams from a He ëNe laser. One can see that
under the action of the light pressure force, the balls initially
distributed disorderly (Fig. 1a) concentrate in the regions of
the interference éeld maxima (Fig. 1b). After switching off
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Figure 1. Spatial distributions of polystyrene microspheres suspended in
physiological solution in the interference éeld [12] before the experiment
(a) and during the experiment (b). The diameter of spherical particles is
5.8 mm and the modulation period of the light éeld is 8.2 mm.



the setup, the ordered pattern is preserved within several
seconds and then, due to diffusion processes the distribution
of the balls becomes disordered. Note that nonspherical
dielectric particles behave similarly. In this case, they tend
not only to enter into the regions of the interference éeld
maxima but also spread along the interference fringe [12].

The light pressure force acting on a spherical particle in
the éeld of a plane monochromatic electromagnetic wave
was érst calculated and studied by Debye in 1909 [13]. At
present, many papers are devoted to the calculation of the
light pressure force produced by electromagnetic radiation
on dielectric particles. In these papers, the affect of laser
(Gaussian) beams on spherical particles is mainly studied
[14 ë 19]. The aim of this paper is to solve analytically the
problem of the light pressure force acting on a spherical
particle of an arbitrary size (transparent dielectric or metal)
and arbitrary radius in a simplest interference éeld of two
plane monochromatic electromagnetic waves. In this case,
main attention is paid to the case of a dielectric particle. The
problem of interference éeld scattering of two plane electro-
magnetic waves from a dielectric spherical particle was
considered earlier, however, the light pressure force acting
on the particle by the éeld has not been calculated so far
[20 ë 22]. In this paper, we will try to éll in this gap. We
calculate the light pressure éeld acting on the dielectric
(metal) particle by using the formalism of Maxwell's stress
tensor [23], which allows deriving the analytic expression for
the force in the case of a spherical particle of an arbitrary
radius.

2. Scattering of the interference éeld
of two plane monochromatic electromagnetic
waves on a dielectric spherical particle

The solution of the problem on scattering of a plane
electromagnetic éeld from a dielectric (metal) spherical
particle (the Mie solution) has been known already for a
hundred years [24]. It is used to solve many problems
related to scattering of electromagnetic radiation from
spherical particles [25]. The wide application of the Mie
solution is caused by the convenient analytic computational
method and good agreement of the theoretical results with
the experimental data. In this section we will generalise the
Mie solution for the incident electromagnetic éeld of the
type

E i � ey exp�ÿiot��E1 � E2�
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where ex, ey, ez are the unit vectors of the Cartesian
coordinate system; o is the éeld oscillation frequency; E10

and E20 are the complex wave amplitudes; km � (o=c)
� �����������

emmm
p

is the wave number in the medium where the
spherical particle is located; c is the speed of light in
vacuum; em and mm are the dielectric and magnetic
permeabilities of the medium under study, respectively;
a1 and a2 are the angles between the wave directions and
the positive direction of the z axis (04a1; a2 4p) (Fig. 2).
We represent expression (1) for the incident éeld in the
form of expansion in the fundamental system of spherical
vector functions, which are the solutions of the vector
Helmholtz equation in the spherical coordinates r, y, j
(04 r <1, 04y4p, 04j < 2p) [23]. In the general
case, the expression for spherical vector functions (vector
functions below) can be written in the from
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In expressions (2) and (3), n � 0, 1, 2; m � 0, 1, ..., n; in the
case of the even function (with the subscript `e'), the upper
line of the expression in braces is used and in the case of the
odd function (with the subscript `o'), the lower line is used;
k is the wave number in the medium under study; Zn(kr) is
one of the Riccati ë Bessel functions [26] whose form
depends on the region where the solution is sought for;
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Figure 2. Geometry of the problem on the light pressure on a spherical
particle.
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the prime at the function denotes hereafter the derivative of
this function in its argument; Pm

n is the adjoined Legendre
function [26]; er, ey, ej are the unit vectors of the spherical
coordinate system. By using expressions (2) and (3),
expressions for the incident electric and magnetic éelds
can be represented in the form:
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Expressions for the vector functions m i
mne, m

i
mno and n i

mne,
n i
mno, entering (4) are derived from (2) and (3) by

substituting k! km and Zn(kmr)! cn(kmr) �
���������������
pkmr=2

p
� Jn�1=2(kmr), where Jn�1=2(kmr) is the Bessel function [26].
We will énd the unknown coefécients Gmne, Gmno and Qmne,
Qmno in expansions (4) by using the orthogonality proper-
ties of vector functions [23]. By integrating the scalar
products E i (4) over the angles of the spherical coordinate
system in complex conjugated functions m i�

mne and m i�
mno,

we obtain expressions for Gmne and Gmno, respectively.
Similarly, by integrating the scalar products H i (4) over the
angles of the spherical coordinate system in complex
conjugated vector function m i�

mne and m i�
mno, we obtain

expressions for Qmne and Qmno. As a result, for the sought
coefécients, we obtain relations
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d0n is the Kronecker delta. Note that as it should be, in the
limiting case, E20 � 0, a1 � 0, p and expressions (5) are
transformed into well-known expressions for the plane
wave polarised along the y axis and propagating along the z
axis [23].

Thus, taking (5) into account, expressions for the
incident electromagnetic wave can be represented in the
form
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The electric E t and magnetic H t éelds propagated inside
(r < R) a spherical particle of radius R, will be sought for in
the form
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For the dielectric medium (r > R), in which the particle is
suspended, the scattered electric E s and magnetic H s éelds
can be written in the form
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In expressions (8) and (9), the coefécients G t
mne;Q

t
mno and

G s
mne, Q s

mno should be deéned; the vector functions m t
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m t
mno and n t
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mno are obtained from (2) and (3) by

substituting k! kp � (o=c)
���������
epmp
p

and Zn(kpr)! cn(kpr),
where ep and mp are the dielectric and magnetic perme-
abilities of the spherical particle material, respectively; the
vector functions m s

mne, m s
mno and n s

mne, n s
mno are obtained

from (2) and (3) by substituting k! km and Zn(kmr)!
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p
H
�1�
n�1=2(kmr), where H

�1�
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Henkel function of the érst kind [26]. We will énd the
unknown expansion coefécients (8) and (9) by using the
equality conditions of the tangential components of the
electromagnetic éeld from two sides of the spherical particle
surface, from which we obtain the equations for the sought-
for coefécients. By solving these equations, we énd the
expressions:
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(10)
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where expressions for the Mie coefécients for the reêected
éeld sn and tn have the form [23]
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the derivatives are taken for r � R. Obtained coefécients
(10) can be used to calculate the time-averaged scattering
power [23]
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By using the asymptotic of the Riccati ë Bessel functions for
r!1 [26], after integration in (12), we obtain the sought-
for expression
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Thus, expressions (8) and (9) for éelds with coefécients
(10) and (11) are the solution of the problem on scattering of
the interference éeld of two plane monochromatic electro-
magnetic waves from a spherical dielectric (metal) particle.

3. Light pressure force acting on a spherical
dielectric particle in the interference éeld of two
plane monochromatic electromagnetic waves

The general expression for the light pressure force of the
arbitrary electromagnetic éeld on a particle of an arbitrary
shape and size is presented, for example, in [27]. By
neglecting mechanic deformations of the particle and the
dielectric medium in which it is submerged, appearing
under the action of electromagnetic radiation, the expres-
sion of the time-averaged light pressure force F takes the
form

F � 1

2
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�
;

where S is an arbitrary surface surrounding the particle
under study; m is the vector of the external normal to S; T̂ is
Maxwell's stress tensor [23]; 
 denotes the direct product of
vectors; Î is the unit tensor. To calculate force (14), it is
convenient to take the surface S in the form of a sphere
with the inénitely large radius. As a result, (14) is
transformed into the form:
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where we took into account that for r!1 the radial
components of spherical vector functions decrease faster
than 1=r and do not contribute to (15). By using expansion
(7), we can show that
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Therefore, expression (15) can be written in the form
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By using (7) and (9), after integration in (18) and (19), we
obtain

F2 � F2xex � F2zez; F3 � F3xex � F3zez: (20)

The explicit form of expressions for F2x, F2z and F3x, F3z,
due to their cumbersomeness is presented in Appendix.
Thus, it follows from (20) that the light pressure force
acting on a spherical particle in the incident éeld does not
have a component directed along the y axis and acts in the
interference plane. For deéniteness, we have

E10 � E0 exp�ikm�X sin a1 � Z cos a1��;
(21)

E20 � E0 exp�ikm�X sin a2 � Z cos a2��;
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where the quantities X and Z mean the displacement of the
spherical particle centre with respect to the maximum of the
selected interference fringe. Conditions for producing
interference maxima and minima of the electric éeld (1)
taking into account (21) have the form

km�x� X ��sin a1 ÿ sin a2� � km�z� Z �

��cos a1 ÿ cos a2� � 2qp;
(22)

km�x� X ��sin a1 ÿ sin a2� � km�z� Z �

��cos a1 ÿ cos a2� � �2q� 1�p;
where q � 0; �1; �2; ::: : It follows from (21) that for
X � Z � 0, the line of the interference maxima of the
incident éeld passes through the spherical particle centre,
which coincides with the origin of the coordinate system. If
X and Z are nonzero, the line of maxima of the interference
pattern, generally speaking, does not pass through the
particle centre, which can be interpreted as the particle
displacement by the quantity X or Z with respect to the
selected interference maximum (minimum).

Let us expand expression (17) for the force acting on a
spherical dielectric (without losses) particle in series in
powers oR=c5 1. By using (20), (21) and the explicit
form of expressions for F2x, F2z and F3x, F3z (see Appendix),
and by using the érst nonvanishing term of the expansion,
we obtain

F � ÿ 1

2
kmR

3jE0j2em

�
�
ep ÿ em
ep � 2em

� mp ÿ mm
mp � 2mm

cos�a1 ÿ a2�
�

(23)

� sinfkm�X�sin a1 ÿ sin a2� � Z�cos a1 ÿ cos a2��g

���sin a1 ÿ sin a2�ex � �cos a1 ÿ cos a2�ez�:

It follows from (23) that for symmetric incidence of
electromagnetic waves with respect to the x axis, i.e.
when the condition a1 � a2 � p is fulélled (see Fig. 2), force
component (23) directed along the x axis is equal to zero. If
for the given symmetric incidence of waves the condition
Z � 0 is also fulélled, both vector force components are
equal to zero.

In papers [28, 29], expression (em � 1 and mm � mp � 1):

Fgrad �
1

2
Pgrad�ReE i�2 (24)

is used as gradient force acting on a spherical dielectric
particle, where

P � ep ÿ 1

ep � 2
R 3

is the polarisability of the spherical dielectric particle in a
homogeneous éeld. In the case of interference of two plane
monochromatic electromagnetic waves, we obtain after
averaging in time from (24)

Fgrad � ÿ
o
2c

R 3jE0j2
ep ÿ 1

ep � 2

� sin

�
o
c
��x� X ��sin a1 ÿ sin a2� � �z� Z �

� �cos a1 ÿ cos a2��
�
��sin a1 ÿ sin a2�ex

��cos a1 ÿ cos a2�ez�: (25)

By comparing (23) and (25) (em � 1 and mm � mp � 1), one
can see that these expressions are identical, if we put
x � z � 0 in (25). Thus, as was expected, expression for
gradient force (24) calculated in the centre of the spherical
dielectric particle under study is the érst approximation for
force (14) and can be used as an asymptotic expression for
the light pressure force acting on the spherical dielectric
(without losses) particle with a small radius (R5 c=o).
Note that account for further terms in expansion (17) in
series by powers of the small parameter oR=c5 1 results
not only in reéning of the asymptotic expression for
gradient force (23) but also in taking into account of
contributions of scattering force. Because the obtained
expressions for F2x;F2z and F3x;F3z are cumbersome (see
Appendix), it is extremely difécult to derive an explicit
expression for the érst nonvanishing contribution of
scattering force, which does not allow us to present it in
this paper.
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Figure 3. Dependences of normalised scattering power (13) of two plane
electromagnetic waves from the quartz spherical particle (ep � 2:4,
mp � 1) located in water (em � 1:7, mm � 1) on the difference in the
angles of incidence of plane waves (for a1 � a2 � p) for different radii of
the particles (a) and on the normalised radius of the particle for the
waves incident in one direction (a1 � a2 � p=2) and in the counterpro-
pagating direction (a1 � p, a2 � 0) (b). The wavelength of incident
radiation is 1.064 mm, the particle displacement is X � Z � 0.
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4. Discussion of the results

To illustrate the analytic results obtained in the above
sections, we will consider a quartz spherical dielectric
particle (ep � 2:4, mp � 1) located in an aqueous medium
(em � 1:7, mm � 1). Let incident radiation have the wave-
length of 1.064 mm (in vacuum). Without loss of generality,
consider the symmetric incidence of plane electromagnetic
waves (a1 � a2 � p) with respect to the x axis.

Figure 3a shows the scattering power (13) of two plane
electromagnetic waves from a quartz particle as a function
of difference in the angles of incidence for some speciéed
values of the particle radius. One can clearly see that the
highest scattering power is achieved when the waves are
incident codirectionally on the spherical particle. The
number of oscillations of the scattering power increases
with increasing the particle radius (Fig. 3a). Figure 3b
presents the scattering power as a function of the spherical
particle radius for two mutual directions of incidence of
plane electromagnetic waves: in one (copropagating) direc-
tion and counterpropagating direction. As was noted above,
the scattering power is larger for copropagating waves
(Fig. 3b). In this case, it oscillates and fast small-amplitude
oscillations are observed against the background of these
oscillations, which agrees with known results [25].

Figure 4a shows light pressure force (17) as a function of

difference in the incidence angle of plane electromagnetic
waves a1 ÿ a2. For the symmetric incidence of plane waves,
the force component directed along the z axis is equal to
zero, which follows from the geometry of the problem
(Fig. 2). The only nonzero component of the light pressure
force Fx � F2x � F3x takes the maximum value when the
propagation directions of incident waves (a1 � a2) coincide,
which also takes place for the scattering power (cf. with
Fig. 3a). The light pressure force takes the minimum (zero)
value when incident waves counterpropagate, as is seen from
Fig. 4a. When the radius of the spherical particle is
increased, the oscillation frequency of the force increases
depending on the difference in the incidence angles of waves
(Fig. 4a) and the particle radius (Fig. 4b). In this case, as for
the scattering power, when the radius is increased, fast
oscillations are observed against the background of rela-
tively slow oscillations (Fig. 4b), which agrees with the
results of paper [25].

Figure 5 presents light pressure force (17) acting on the
quartz particle under study in the éeld of two plane
electromagnetic waves propagating at angles a1 � 3p=4
and a2 � p=4 as a function of the particle displacement
Z (X � 0). One can clearly see that the force components
directed along the x (Fig. 5a) and z (Fig. 5b) axes oscillate
with the period

oZ
c
� 2p�����������

emmm
p jcos a1 ÿ cos a2j

� 3:4

a1 � a2 � p=2

a1 � 3p=4; a2 � p=4

b

a
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Fx

F max
x

Fx

jE0j2R 2=�8p�
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Figure 4. Dependences of the normalised component Fx of light pressure
force (17) acting on the quartz spherical particle (ep � 2:4, mp � 1)
located in water (em � 1:7, mm � 1) in the interference éeld of two plane
electromagnetic waves on the difference in the angles of incidence of
plane waves (for a1 � a2 � p) for different radii of the particles (a) and
on the normalised radius of the particle for the waves incident in one
direction (a1 � a2 � p=2) and at the angle p=2 to each other (a1 � 3p=4,
a2 � p=4) (b). The wavelength of incident radiation is 1.064 mm, the
particle displacement is X � Z � 0:
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Figure 5. Dependences of the normalised components Fx (a) and Fz (b)
of light pressure force (17) acting on the quartz spherical particle
(ep � 2:4, mp � 1) located in water (em � 1:7, mm � 1) in the interference
éeld of two plane electromagnetic 1.064-mm waves on the normalised
displacement of the particle oZ=c (X � 0) for different radii of the
particle. Plane waves are incident at angles a1 � 3p=4 and a2 � p=4.
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with increasing the displacement. When the spherical
particle radius increases, the average line, with respect to
which oscillations of the x component of the light pressure
force are observed, is displaced to the direction of the force
increase (Fig. 5a). In the case of the z component of the
gradient force, when the spherical particle radius is
increased, the line, with respect to which oscillations
occur, remains constant: Fz � F2z � F3z � 0 (Fig. 5b).

Figure 6 presents light pressure force (17) as a function
of the radius of the particle under study for different
displacements X � Z. Dashed curves show asymptotic
solution (25). The plane electromagnetic waves are incident
at angles a1 � 3p=4 and a2 � p=4. One can see from Fig. 6
that when the particle radius tends to zero, the force also
tends to zero. In this case, asymptotic solution (23) for the
nonzero z component of the force (Fig. 6b) agrees well with
exact solution (17), if the particle radius is R4 0:5c=o. To
study spherical particle with a larger particle, it is necessary
to use expression (17) for calculating the light pressure force.

5. Conclusions

We have considered in detail the solution of the problem on
the spherical dielectric particle in the interference éeld of
two plane monochromatic electromagnetic waves. The

dependence of the scattering power on the difference in
the angles of incidence of plane waves and the radius of the
spherical particle has been studied. By using Maxwell's
stress tensor, the light pressure force acting on a spherical
dielectric particle by the incident éeld has been calculated as
a function of the difference in the angles of plane waves and
the particle radius. The asymptotic expression has been
obtained for the light pressure éeld for rather small radii of
the dielectric (without losses) particle, which coincides with
the known expression for the gradient force. Analytic
expressions have been derived (see Appendix), which are
suitable for calculating the light pressure force acting both
on dielectric and metal spherical particles with an arbitrary
radius.

The results of this paper can be used to calculate the
light pressure force acting on dielectric (metal) spherical
particles in the interference éeld of two plane monochro-
matic electromagnetic waves and to verify the algorithms of
the numerical calculation of the light pressure force in the
case of particles having a more complicated shape.

Appendix

Let us present explicit expressins for quantities F2x, F2z

and F3x, F3z, entering expression (20):
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Figure 6. Dependences of the normalised components Fx (a) and Fz (b)
of light pressure force (17) acting on the quartz spherical particle
(ep � 2:4, mp � 1) located in water (em � 1:7, mm � 1) in the interference
éeld of two plane electromagnetic 1.064-mm waves on the normalised
radius of the particle for different displacements Z (X � 0) of the
particle. Plane waves are incident at angles a1 � 3p=4 and a2 � p=4.
Dashed curves show corresponding asymptotics (23).
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