
Abstract. The electrodynamic problem of propagation of
light in a ébre with a cladding made of coaxial dielectric
layers with alternating values of the refractive index is solved.
The ébre core is a dielectric, in particular, air with the lowest
permittivity in the ébre structure. A method is described for
determining the structure of the multilayer cladding of a ébre
having the minimal optical loss of the guided radiation for a
particular mode. Losses in a ébre with a cladding with quasi-
periodic layer thicknesses are calculated and the dispersion
properties of the ébre are analysed. The analysis is performed
for the lowest TE and TM modes and for the lowest hybrid
mode.

Keywords: optical ébre, photonic crystal, total internal reêection,
dispersion, optical losses.

1. Introduction

In the last decade a new direction in ébre optics related to
the investigation of microstructure optical ébres has
appeared and is being rapidly developed. One of the
variants of such ébres is the so-called Bragg ébres.

It is known that light propagates in usual ébres in an
optically denser core due to total internal reêection from its
boundary. Therefore, the ébre properties (dispersion, opti-
cal loss, nonlinear parameters) are determined by the
properties of the core material. However, there also exist
other mechanisms providing the localisation of light and its
directional propagation, in particular, in a ébre with a
hollow core. The latter is possible, for example, when the
ébre cladding is made of the so-called photonic crystal, in
particular, a multilayer dielectric mirror, which is well
known in optics. The mirror properties of such claddings
are determined by Fresnel reêection from many interfaces of
a multilayer structure with alternating values of the per-
mittivity and the subsequent constructive interference of
reêected waves. Because reêection from multilayer dielectric
mirrors formally resembles X-ray scattering in crystals and
is described by the Brag condition, ébres with multilayer

periodic claddings and a core made of an optically less dense
material were called Bragg ébres (BFs) [1]. A speciéc feature
of these ébres is that radiation only in some spectral ranges
can propagate in the core of a ébre with the given layered
cladding. And vice versa, there exist only certain structures
of BFs in which light at the given wavelength can propagate
with comparatively small losses. In other words, radiation is
eféciently localised in the ébre core by no means at any
thicknesses of the periodic structure of the cladding, even if
they are comparable with the radiation wavelength. There-
fore, no wonder that BFs in which directional radiation is
determined by a mechanism different from total internal
reêection have a number of properties that considerably
differ from the properties of standard two-layer ébres. This
mainly concerns the mode composition of radiation, dis-
persion, and optical losses. In particular, optical losses and
nonlinearity in hollow BFs with the air core in the case of
strong reêection of the guided light from the multilayer
cladding can be in principle very low.

It is accepted that the érst theoretical study of a
dielectric Bragg waveguide in the visible and IR spectral
ranges was performed in [1]. Only the lowest of the TE
modes was analysed and it was pointed out that BFs are
potentially efécient mode élters and, therefore, they can
operate in the single-mode regime even at large core
diameters. At the same time, optical losses in BFs were
not calculated and only the general scheme was proposed,
which can be used in principle to calculate them. Later [2],
concrete and rather pessimistic data about losses in BFs
were reported. The authors of [2] explained large losses in
hollow BFs (more than 106 dB kmÿ1) by the impossibility to
provide the high eféciency of radiation coupling into a ébre.
Because of the absence of data on the ébre structure, the
wavelength of guided radiation, and the mode type, it is
impossible to verify the results obtained in [2].

In [3], the optical properties of a hybrid mode (the HE11

mode, according to the author) of a BF made entirely of
silica were calculated. The author of [3] concluded based on
his calculations that it is this mode that should have the
highest Q factor, and to achieve optical losses smaller than
0.1 dB kmÿ1, it is sufécient to have eight layers in the
cladding, which in this case had the refractive-index contrast
in neighbouring layers equal to 0.022.

In [4], a model BF was studied which contained 100
dielectric layers of thickness 1 mm with alternating refractive
indices n1 � 1:51 and n2 � 1:49 (the refractive index of the
ébre core was n0 � n1 and the radius of the core cross
section was varied from 2.5 to 3.25 mm). The main con-
clusions of paper [4] are that the TE modes should have the
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lowest optical losses in a glass BF, while the TM modes
should have the highest losses (optical losses for hybrid
modes are intermediate), which obviously contradicts results
of [3].

In [5], the TE modes of a composite BF with a hollow
core and a large refractive-index contrast in cladding layers
n1 � 3 and n2 � 1:5 were analysed in the asymptotic
approximation of large arguments of cylindrical functions
(plane wave approximation). The layer thicknesses were set
equal to 0.13 and 0.265 mm, respectively, and the core radius
was 1 mm. The distributions of the longitudinal magnetic
and azimuthal electric components of the lowest TE were
found. It was pointed out that in the case of such a large
refractive-index contrast in layers, the éeld amplitudes
should decrease with increasing the radial coordinate so
rapidly that the optical loss related to radiation ébre modes
� 0:2 dB kmÿ1 can be achieved by using only twenty pairs
of structure layers.

Note that multilayer dielectric waveguides were studied
earlier in the microwave range in the plane wave approxi-
mation in papers of Russian researchers [6 ë 10]. The theory
developed in [10] was applied to the optical range as well
and, unlike previous papers, it was found that the EH11

mode should have the lowest losses.
The transfer matrix method described in [11] for analysis

of Bragg reêectors of cylindrical walls is analogous to the
known method for plane multilayer mirrors [12]. The
method allows one to énd the geometrical parameters of
the structure most eféciently reêecting cylindrical waves. It
is pointed out that the method can be used to analyse
multilayer cylindrical waveguides; however, concrete results
are absent.

The waveguiding possibilities of a hollow BF with the
refractive indices n1 � 4:6 and n2 � 1:59 in a broad IR range
(5 ë 16 mm) were demonstrated in [13]. As a rule, dielectrics
with considerably different permittivities also have different
coefécients of thermal expansion. It is rather difécult to
fabricate a multilayer structure from such dielectrics in the
technological process including the drawing of ébres from
preforms. In [13], ébres were fabricated by depositing the
components of a coaxial structure in layers (polymer and
tellurium layers) on the external surface of a silica capillary
followed by the dissolving of the latter in hydroêuoric acid.
The fabricated waveguide was not subjected to drawing and
had, as a result, a comparatively large diameter of a hollow
core, which was equal to the external diameter of the glass
capillary (1.92 mm). It is obvious that this technology
cannot be used to fabricate long waveguides. The inves-
tigations of this BF showed the presence of the transmission
band between 8 and 11.5 mm, whose width was independent
of the angle of incidence of radiation on the cladding, and
also a comparatively small decrease in transmission even at
a small radius of ébre bending (� 1 cm).

Silica Bragg ébres were fabricated comparatively
recently. In [14, 15], ébres with three pairs of coaxial glass
layers and a glass core with the refractive index lower than
those of cladding layers were studied. The length of ébres
studied in [13 ë 15] did not exceed, as a rule, � 1 m, so that
experimental data on losses and other quantitative param-
eters of the ébres were absent.

Later [16], however, comparatively long (several metres)
hollow BFs with a large permittivity contrast in layers were
fabricated by using a chalcogenide glass As2Se2 with the
refractive index of � 2:8 and a thermoelastic polymer with

the refractive index of � 1:55, which had matching thermal
properties. These ébres had different geometrical parame-
ters (core diameter and thickness of a multilayer cladding)
for different transmission ranges. In particular, BFs with the
hollow core diameters 700 ë 750 mm had the main trans-
mission band in the wavelength region from 10 to 11 mm
(the second transmission band was at � 5 mm). The optical
losses at the CO2 laser wavelength 10.6 mm were
0.95 dB mÿ1, which is considerably smaller than optical
losses in As2Se3 �� 10 dB mÿ1) and is many orders of
magnitude smaller than optical losses in polymers.

After 2000, many papers devoted to theoretical and
experimental studies of BFs were published (see, for
example, [17 ë 44]). However, in none of the papers the
ébre structure was optimised in detail to achieve minimal
optical losses. It is possible that for this reason the optical
properties of BFs were estimated quite differently in diffe-
rent papers, both rather optimistically [3, 21] and, on the
contrary, pessimistically (for example, [2]). In our opinion, it
is not deénitely clear so far which of the modes in hollow
and glass BFs is fundamental [4, 42, 43]. This situation
stimulated us to reconsider this problem as a whole and to
analyse the properties of BFs based on somewhat different
concepts.

2. The theory

2.1 Basic equations and their solutions

The mechanism of formation of guided radiation in BFs,
which differs from that inherent in usual ébres, should
result in the different formulation of the problem of
analysing their properties. Instead of searching for the éeld
distribution in a ébre with a preliminarily speciéed light-
guiding structure, as is done for usual two-layer ébres and
most of the theoretical studies of BFs, we will énd, on the
contrary, the structure of a ébre in which the éeld should
not only satisfy the boundary conditions but also should be
maximally localised in an optically less dense core.

We start, as usual, from Maxwell's equations, by
representing them in the form of wave equations. We
assume that light propagates in a dielectric medium with
the magnetic susceptibility equal to unity everywhere and
the permittivity e is invariable in time and uniform in each of
the layers of the ébre cladding (step radial proéle of the
distribution of e). The time dependences of the electric E0

and magnetic H0 components of the éeld can be written in
the form E0 � Eeÿiot and H0 � Heÿiot. Then, the vectors E
and H in ébre cladding layers and core satisfy the wave
equations�

D� o 2e
c 2

�
E
H

� �
� 0: (1)

Equations (1) for the longitudinal éeld components Ez

and Hz (denoted by Q) in the cylindrical coordinate system
(r;j; z) have the known form

1

r

q
qr

r
qQ
qr
� 1

r 2
q2Q
qj 2
� q2Q

qz 2
� o 2e

c 2
Q � 0: (2)

We assume that the cladding permittivity, which is
uniform along z and j, has only two values alternating
in cladding layers. It is also assumed that each of the éeld
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components depends on the longitudinal coordinate as e ibz,
where b is the phase propagation constant (the longitudinal
component of the wave vector).

Under these assumptions, the solution of (2) has the
form

Q � R�r��G1 cosmj� G2 sinmj�eibz, (3)

where m is the azimuthal parameter (for axially symmetric
ébres, m is an integer, including zero); G1 and G2 are
integration constants; and R(r) is the radial part of the
coordinate dependence of Q.

For the function R(r), we obtain from (2) the Bessel
equation

d 2R

dr 2
� 1

r

dR

dr
�
�
k 2
j ÿ

m 2

r 2

�
R � 0; (4)

where k 2
j � ejo

2=c 2 ÿ b 2 � (2pnj=l)
2 ÿ b 2; kj are the trans-

verse components of wave vectors in media with refractive
indices nj � ����ejp ; and l is the radiation wavelength in
vacuum.

The solution of (4) in the general case is a combination
of two linearly independent cylindrical functions. It is
known that there exist several such combinations. Before
choosing a particular solution of (4), note the following. We
will assume that the ébre core has the refractive index n0 and
the refractive indices of alternating coaxial cladding layers
are n1 and n2, and for deéniteness n1 > n2 > n0. Assume also
that material losses in the ébre are absent (Imnj � 0;
j � 0; 1; 2). In such a multilayer structure, numerous,
both natural and quasi-natural waves can be excited. The
natural waves are deéned as slow waves with a discrete
spectrum appearing due to total internal reêection and
localised in optically dense cladding layers. The éelds of
quasi-natural, the so-called rapid waves are formed due to
frustrated total internal reêection for cladding layers and
are localised in the ébre core [10]. It is these radiation
modes, which have the absolute maxima of the éeld
components in the core but also possess some radiation
losses, which we are interested in. The envelopes of radial
distributions of the éeld components of such modes should
be functions of r rapidly decreasing in magnitude. Only if
this condition is fulélled, the cladding properties of a mirror
can be manifested. It is also clear the value of k 2

0 �
(2pn0=l)

2 ÿ b 2 should be positive (k0 is the transverse
wave number in the ébre core). Otherwise, the argument
k0r of cylindrical functions in the solution of (4) proves to be
imaginary, and the solution itself is represented only by one
modiéed Bessel function of the érst kind Im(k0r), which
monotonically increases with r and has no absolute
extremum in the core [the second linearly independent
cylindrical function Km(k0r) of the imaginary argument
has a singularity for r � 0 and should be excluded from
consideration]. It follows from the above discussion that the
main difference of a BF from a usual two-layer ébre is that
the value of the effective mode refractive index �n � bl=2p in
the usual ébre lies between the refractive indices of the ébre
core and cladding, whereas this value for the BF should be
smaller than the refractive index of the optically less dense
core material, i.e. �n < n0 (for a hollow BF, �n < 1:0).

It is easy to see that the condition k 2
0 > 0 is fulélled for

purely imaginary values of the propagation constant b;

however, they are of no interest because for such b there is
no wave propagating along z.

It is clear that the complete absence of radial energy
transfer would correspond to a structure representing an
ideal cylindrical mirror. It is known that in this case a
standing wave is formed along the radial coordinate, while
the absence of energy transfer in it means that the time-
averaged radial component Sr of the Poynting vector
S � Re�EH �� is zero. Recall that the electric energy in a
standing wave completely transforms to the magnetic energy
during a quarter of the period of electromagnetic oscil-
lations and during the next quarter ë vice versa, the
magnetic energy transforms to the electric energy. In this
case, the energy migrates from the antinodes of the electric
éeld to the phase-shifted (by p=2) antinodes of the magnetic
éeld and backward. The energy êux through the nodes of
the electric and magnetic éelds is identically zero (i.e. at any
arbitrary instant of time). Each layer of the medium of
optical thickness l=4 from a node of the electric éeld to the
nearest node of the magnetic éeld does not exchange energy
with the environment. In a real, not ideally reêecting
multilayer structure of a énite thickness (with a énite
number of layers), a `quasi-standing' wave is formed, which
is a superposition of a standing wave and a wave travelling
in the radial direction and determines optical losses. In other
words, we deéne the `quasi-standing' wave as a wave with
the radial energy êux somewhat different from zero. In this
respect, we can say only about a partial localisation of light
in the BF core. Therefore, in the general case even in the
absence of material losses in ébre layers, the propagation
constant b is a complex quantity with the positive imaginary
part. This imaginary part in turn should be a function of the
radiation wavelength and the number of dielectric layers in
the ébre cladding.

Each BF structure has the maximum reêectance of a
cladding at a speciéc wavelength l0 of guided radiation.
The shift of any side of l0, as a decrease in the number of
layers in the cladding, leads, as will be shown below, to an
increase in Imb, increasing thereby optical losses {the real
part of the exponent in the factor exp (ibz) � exp�z�iRebÿ
Imb)� increases}. Below, it makes sense to analyse only BF
structures with Imb5Reb; therefore, the condition �n < n0
should be fulélled for �n � lReb=2p with good accuracy.

According to the above consideration, we will write the
solution of (4) in the form of a linear combination of linearly
independent Bessel and Hankel functions of the érst kind,
which gives for Q

Q�r;j; z� � �G1 cosmj� G2 sinmj�

��C1Jm�kr� � C2H
�1�
m �kr��eibz; (5)

where C1 and C2 are two additional integration constants.
For the time dependence of the éeld components that we
use (�eÿiot), the Hankel function H �1�m determines a wave
diverging from the symmetry axis. The superposition of the
standing and travelling waves instead of the functions Jm
and H �1�m can be, of course, also described by other pairs of
linearly independent cylindrical functions, in particular,
H �2�m and H �1�m or, as in [1], by Jm and Nm (Nm is the
Neumann function).

Taking into account that H �1�m (kr) has a singularity at
r � 0, it is necessary to assume that C2 � 0 for the cladding
region in (5).
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We further assume that the layered part of the cladding
is surrounded by a very thick dielectric layer with the
refractive index n2 (or n1). Based on physical considerations,
the solution of (5) in this region should be represented only
by the function H �1�m (assuming that C1 � 0). Indeed, here in
the absence of interfaces between different media, there are
no reêections of light and only diverging waves can exist.
The latter statement is true if either the thickness of the
external non-layered part of the cladding is inénite or the
éeld intensity in it is small. In reality, the entire glass
structure of a ébre is covered with a protective jacket made
of polymers or other materials (in particular, metals).
Therefore, the reêection of light from the additional
glass-protective jacket interface should be taken into
account in a number of cases [44].

The necessity of fulélment of boundary conditions for
any values of the azimuthal coordinate determines the
constants G1 and G2 in (3) and (5), which are not arbitrary
in this case. In other words, the solutions of (2) represent
two variants of dependences on transverse coordinates (or
two classes of waves) containing simultaneously either upper
or lower trigonometric functions in braces in the expressions

Ez � �AJm�kr� � BH �1�m �kr�� cosmj
sinmj

� �
eibz,

(6)

Hz � �CJm�kr� �DH �1�m �kr�� sinmj
cosmj

� �
eibz,

where A, B, C, and D are arbitrary constants.
By deéning Ez and Hz in the form (6), we énd with their

help from Maxwell's equations the rest of the éeld compo-
nents. Thus, the solution of equations (1) is represented by
two sets of relations in accordance with the two possible
variants of solutions (6):

Ez � �AiJm�kjr� � BiH
�1�
m �kjr�� cosmj

sinmj

� �
,

Er �
io
ck 2

j

�
�n
qEz

qr
� 1

r

qHz

qj

�
� ib

kj
f�AiJ

0
m�kjr� � BiH

�1�0
m �kjr��

� m

akjr
�CiJm�kjr� �DiH

�1�
m �kjr��g cosmj

sinmj

� �
,

Ej �
io
ck 2

j

�
�n

r

qEz

qj
ÿ qHz

qr

�
� ib

kj

�
m

kjr
�AiJm�kjr�

�BiH
�1�
m �kjr�� �

1

a
�CiJ

0
m�kjr� �DiH

�1�0
m �kjr��

� ÿ sinmj
cosmj

� �
;

(7)

Hz � �CiJm�kjr� �DiH
�1�
m �kjr�� sinmj

cosmj

� �
;

Hr �
io
ck 2

j

�
ÿ ej

r

qEz

qj
� �n

qHz

qr

�
� ib

kj

�
mej
akjr
�AiJm�kjr�

�BiH
�1�
m �kjr�� � �CiJ

0
m�kjr� �DiH

�1�0
m �kjr��

�
sinmj
cosmj

� �
;

Hj �
io
ck 2

j

�
ej
qEz

qr
� �n

r

qHz

qj

�
� ib

kj

�
ej
a
�AiJ

0
m�kjr�

�BiH
�1�0
m �kjr���

m

kjr
�CiJm�kjr��DiH

�1�
m �kjr��

�
cosmj
ÿ sinmj

� �
,

where the subscript j � 0, 1, 2 is in accordance with the
deénition of kj and nj; a � �bc=o � ��n; and the common
factor for all éeld components is omitted. The subscript i of
integration constants indicates that the corresponding
solution belongs to the ith layer so that riÿ1 4 r4 ri,
where ri are coordinates of the interfaces between layers
with different refractive indices, i � 1, 2, ... , N; N is the
number of interfaces equal to the doubled number of layers
with the high refractive index n1, if the non-layered part of
the cladding has the refractive index n2; when this part has
the refractive index n1, N is larger by unity; r4 r1
corresponds to the core region. The prime at cylindrical
functions means differentiation with respect to the argu-
ment. Solutions (7) are classiéed so that a � �n and ë a � ÿ�n
correspond to the group with upper and lower, respectively,
trigonometric functions in braces at the right.

The boundary conditions to which the solutions of the
electrodynamic problem should satisfy require the continu-
ity of the éled components (Ez, Ej, Hz, Hj) tangential to
medium interfaces. It follows from (7) that in the general
case (m 6� 0) these boundary conditions have the form

Alÿ1Jm�xjl� � Blÿ1H
�1�
m �xjl� � AlJm�xpl� � BlH

�1�
m �xpl�;

m

x 2
jl

�Alÿ1Jm�xjl� � Blÿ1H
�1�
m �xjl�� �

1

axjl
�Clÿ1J

0
m�xjl�

�Dlÿ1H
�1�0
m �xjl�� �

m

x2pl
�AlJm�xpl� � BlH

�1�
m �xpl��

� 1

axpl
�ClJ

0
m�xpl� �DlH

�1�0
m �xpl��;

(8)

Clÿ1Jm�xjl� �Dlÿ1H
�1�
m �xjl� � ClJm�xpl� �DlH

�1�
m �xpl�;

n2j
axjl
�Alÿ1J

0
m�xjl� � Blÿ1H

�1�0
m �xjl�� �

m

x 2
jl

�Clÿ1Jm�xjl�

�Dlÿ1H
�1�
m �xjl�� �

n2p

axpl
�AlJ

0
m�xpl� � BlH

�1�0
m �xpl��

� m

x 2
pl

�ClJm�xpl� �DlH
�1�
m �xpl��;

where xjl � kjrl; xpl � kprl; the subscripts j and p corre-
spond to two media separated by a cylindrical interface of
radius rl. In this case, the inmost interface has the radius rl,
so that kj � k0 and kp � k1 in it. Then, for l � 2, kj �
k1; kp � k2, and for l > 2 the values kj and kp alternate.

2.2 Dispersion equations

Boundary conditions (8) are a system of 4N linear
homogeneous algebraic equations for 4N integration
constants A0;A1; :::; ANÿ1; B1;B2; :::;BN; C0;C1; :::;CNÿ1;
D1;D2; :::;DN (recall that B0 � D0 � 0 in the ébre core and
AN � CN � 0 behind the layered structure). The nontrivial
solution of this system exists if only its determinant is zero.
The zero determinant represents a nonlinear dispersion
equation determining the dependence of b on o (or l) for
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the known ébre geometry (the known coordinates rl) or,
vice versa, the equation relating the propagation constant b
with the structure geometry for éxed l. Let us énd this
dispersion equation.

The calculation of the 4N� 4N determinant for large
values of N is quite time-consuming. However, in our case
the calculation is simpliéed and is reduced to operations
with quadratic 4� 4 matrices. Indeed, boundary conditions
(8) can be written in the matrix form

Al

Bl

Cl

Dl

0BB@
1CCA �M�rl�

Alÿ1
Blÿ1
Clÿ1
Dlÿ1

0BB@
1CCA; (9)

where

M�rl� � ÿ
ipxpl
2
�mks� (10)

is the 4� 4 matrix; k is the line number; and s is the column
number. By using (8), it is easy to show that matrix
elements in (10) are

m11 � Jm�xjl�H �1�
0

m �xpl� ÿ
ejxpl
epxjl

J 0m�xjl�H �1�m �xpl�;

m12 � H �1�m �xjl�H �1�
0

m �xpl� ÿ
ejxpl
epxjl

H �1�
0

m �xjl�H �1�m �xpl�;

m13 �
am
ep

�
1

xpl
ÿ 1

xjl

xpl

xjl

�
Jm�xjl�H �1�m �xpl�;

m14 � m13H
�1�
m �xjl�=Jm�xjl�;

m21 �
ejxpl
epxjl

J 0m�xjl�Jm�xpl� ÿ Jm�xjl�J 0m�xpl�;

m22 �
ejxpl
epxjl

H �1�
0

m �xjl�Jm�xpl� ÿH �1�m �xjl�J 0m�xpl�;

m23 � ÿm13Jm�xpl�=H �1�m �xpl�;m24 � ÿm14Jm�xpl�=H �1�m �xpl�;
(11)

m31 � m13ep; m32 � m14ep;

m33 � Jm�xjl�H �1�
0

m �xpl� ÿ
xpl

xjl
J 0m�xjl�H �1�m �xpl�;

m34 � H �1�m �xjl�H �1�
0

m �xpl� ÿ
xpl

xjl
H �1�

0
m �xjl�H �1�m �xpl�;

m41 � m23ep; m42 � m24ep;

m43 �
xpl

xjl
J 0m�xjl�Jm�xpl� ÿ Jm�xjl�J 0m�xpl�;

m44 �
xpl

xjl
H �1�

0
m �xjl�Jm�xpl� ÿH �1�m �xjl�J 0m�xpl�:

The elements of the matrix M(rl) are also presented in [1].
However, the matrix elements presented in [1] for m 6� 0 are
incorrect, and we present here correct expressions.

One can see that transformation (9) of the éeld
components is performed at each of the interfaces of the

layered structure. By starting from the ébre core and
performing these transformations the required number of
times, we obtain

Al

Bl

Cl

Dl

0BB@
1CCA �M

A0

0
C0

0

0BB@
1CCA (12)

for an arbitrary lth layer, where M is determined by the
product of cofactors of type (10) and is also a 4� 4 matrix
[M � Ql

1 M(ri)].
For l � N, matrix relation (12) is equivalent to a system

of four linear homogeneous algebraic equations for con-
stants A0;C0;BN; and DN. Their nontrivial solution exists
only under the condition

�m11 �m33 ÿ �m31 �m13 � 0; (13)

where �mks are the elements of the matrix M in (12) for
l � N.

Obtained dispersion equation (13) is the required one. It
satisées the general boundary conditions and is valid for any
geometry of a layered cladding and all the modes, both
eigenmodes (cladding modes) and radiation modes (core
modes).

Our problem now is to select from a set of solutions (7)
satisfying general conditions (8) the solutions for which the
cladding has the maximum reêection at a wavelength of l0.

We begin with the analysis of the simplest TM- and TE-
mode families. These symmetric modes in (6) ë (8), (11)
correspond to m � 0, and only three components among a
total set of éeld components (7) are nonzero. In particular,
we have for the TM modes (upper trigonometric functions)

Ez � �AiJ0�kjr� � BiH
�1�
0 �kjr��;

Hj � ÿ
iejo
ckj
�AiJ1�kjr� � BiH

�1�
1 �kjr��; (14)

Er �
�n

ej
Hj;

and for the TE modes (lower trigonometric functions),

Hz � �CiJ0�kjr� �DiH
�1�
0 �kjr��;

Ej �
io
ckj
�CiJ1�kjr� �DiH

�1�
1 �kjr��; (15)

Hr � ÿ�nEj:

The boundary conditions for these modes also have a
simpler form than (8)

Alÿ1J0�xjl� � Blÿ1H
�1�
0 �xjl� � AlJ0�xpl� � BlH

�1�
0 �xpl�;

ej
xjl
�Alÿ1J1�xjl� � Blÿ1H

�1�
1 �xjl�� (16)

� ep
xpl
�AlJ1�xpl� � BlH

�1�
1 �xpl��

for the TM modes and
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Clÿ1J0�xjl� �Dlÿ1H
�1�
0 �xjl� � ClJ0�xpl� �DlH

�1�
0 �xpl�;

1

xjl
�Clÿ1J1�xjl� �Dlÿ1H1 �1��xjl�� (17)

� 1

xpl
�ClJ1�xpl� �DlH

�1�
1 �xpl��

for the TE modes. Unlike (8), conditions (16) and (17) are
the systems of 2N linear homogeneous algebraic equations
for 2N constants A0, A1; :::;ANÿ1;B1; :::;BN or C0;C1; :::;
CNÿ1;D1; :::;DN respectively.

The matrix M(rl) for the TM modes in (9) and (10) is the
2� 2 matrix of the form

M�rl� � ÿ
ipxpl
2

m11 m12

m21 m22

� �
; (18)

where the matrix elements mks have the form

m11 �
ejxpl
epxjl

J1�xjl�H �1�0 �xpl� ÿ J0�xjl�H �1�1 �xpl�;

m12 �
ejxpl
epxjl

H
�1�
1 �xjl�H �1�0 �xpl� ÿH

�1�
0 �xjl�H �1�1 �xpl�;

(19)

m21 � J0�xjl�J1�xpl� ÿ
ejxpl
epxjl

J1�xjl�J0�xpl�;

m22 � H
�1�
0 �xjl�J1�xpl� ÿ

ejxpl
epxjl

H
�1�
1 �xjl�J0�xpl�:

Instead of (13), the dispersion equation takes the form

�m11 � 0; (20)

where m11 is the element of the product matrix for factors
of type (18).

For the TE modes, we obtain the same equations as
(18) ë (20); however, the ratio ej=ep in expressions for the
elements of the matrix M(rl) in (18) and (19) should be
replaced by unity.

2.3 Optimisation of a multilayer BF structure

Note érst that the Floquet ëBloch theorem in the
cylindrical geometry, which is used, as rule, to analyse
periodic structures, can be applied only in the asymptotic
approximation [5]. The éeld components in the rectangular
geometry are determined by the combinations of trigono-
metric functions with the invariable spatial period.
Therefore, such a periodic structure can be described as
a whole by using the Floquet ëBloch theorem. However, in
the cylindrical geometry the éeld is represented by
cylindrical functions with a period depending on the radial
coordinate. Therefore, the thicknesses of layers of a
multilayer BF cladding with alternating values of the
refractive index should be the functions of this coordinate.
In the general case the structure is quasi-periodic and only
at large arguments of the functions the thicknesses of layers
become asymptotically almost equal in each of the two their
sequences. This speciéc feature of the cylindrical geometry
should be taken into account in the rigorous consideration
of this problem.

In the absence of material losses, optical losses in a ébre
(due to radiation modes) and the degree of light localisation
in the ébre core are determined by the radial component of

the Poynting vector Sr. Therefore, the minimisation of Sr is
the most natural way for obtaining the optimal geometry of
a multilayer cladding. It is possible, for example, to require
the maximum reêection of light from each of the layer
interfaces. This method assumes the determination of total
reêection (transmission) both in all previous (with respect to
the symmetry axis) and all structure layers behind this
interface. This method for calculating reêection and trans-
mission in a multilayer coaxial structure is described in most
detail probably in [45]; however, the optimisation of the
structure geometry for obtaining maximum reêection was
not discussed in this paper (see also [11]). In addition, it is
clear that minimal optical losses can be also found by
minimising the radial energy êux propagating behind the
layered cladding for r > rN and explicitly determining
radiation losses.

It seems that the two above-mentioned methods for
minimising Sr are equivalent; however, we will not prove it,
but simply will use the second method.

It was shown in papers [1, 4, 21, 27, 29, 30] that an
important property of BFs is that they can be used as
efécient mode élters and the TE01 mode in hollow BFs
should have the highest Q factor. The latter is conérmed by
the results of our calculations presented below. Therefore,
when we are dealing with the optimisation of the multilayer
structure of hollow BFs, it is reasonable to optimise it only
for the lowest of the TE modes. The rest of the modes in this
optimised BF should have considerably higher losses.

Let us write the expression for the time-averaged radial
component of the energy êux vector Sr � Re(EjH

�
z =2) for

the TE modes on the last interface rN of the layered
cladding. This expression follows from (15), (17) ë (19)
and has the form

Sr�rN� � ÿ
rNoC

2
0

2c

���� �m21

xN

����2ImfH �1�1 �xN��xNH �1�0 �xN���g; (21)

where �m21 is the element of the product matrix for factors
of type (18); xN � rNk2 for even N and rNk1 for odd N.
Because Sr(rN) is the function of coordinates of all layer
interfaces, the optimisation of the cladding structure for
obtaining the minimum radial energy êux is equivalent to
the determination of the minimum of the right-hand side of
(21) over N variables r1; r2; :::; rN. It is possible to do it in a
standard way by setting equal to zero all the érst-order
partial derivatives from (21) with respect to ri (the necessary
but not sufécient condition for the existence of the
multidimensional extremum of the function). The system
of homogeneous nonlinear equations for r1; r2; :::; rN; b
obtained in this way should be closed with dispersion
equation (20). The solution of such a system of equations
for high enough N is, as a rule, a challenging independent
problem.

We preferred another method and found the minimum
of Sr with the help of the so-called genetic algorithm (see,
for example, [46]), which is based on a direct analogy of the
optimisation process with selection processes occurring in
nature. The genetic algorithm operates by the `populations'
of potential solutions, by applying the survival principle to
them and taking part in the formation of the `descendants'
of the most adapted solutions. The adaptability of each of
the potential solutions is determined by the value of its
target function [in or case, (21), (20)] estimating the differ-
ence of this solution from the required result. The higher the
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adaptability of the solution, the higher probability that the
useful features of the descendants obtained with the help of
this solution and determining the adaptability will be
manifested greater. `The vector of variables' in the genetic
algorithm plays the same role as a genotype in biology. The
algorithm does not require the knowledge of the relief of a
multidimensional surface on which an extremum is sought,
it can come from local extrema, can be simply realised, does
not require large computational resources and has been
already tested by solving many problems (see details in [46]).

Thus, the optimal geometry of a BF is determined in the
following way. The radius of the ébre core r1 and the values
of n0; n1; n2; and N are assumed known for the speciéed
wavelength l0 of guided radiation in the ébre. By using the
genetic algorithm, the minimum of function (21) of variables
r2; r3; :::; rN; b is sought when equation (20) is valid (opti-
misation of the BF to the TE mode). To each value of b, its
own optimal geometry of the layered structure of the
cladding corresponds, and therefore the propagation con-
stant is included to the list of variables to be optimised. The
solution of the problem should be the choice of the values of
r2; r3; :::; rN;Reb; Imb, which, on the one hand, would
provide the absolute minimum of function (21) and, on
the other, satisfy equation (20). In this case, because
Eqn (20) for an arbitrary geometry (r2; r3; :::; rN) has a
set of roots b, the root with the smallest possible value
of Imb corresponds to the lowest TE01 mode of a hollow
ébre. Note also that the genetic algorithm operates the
better, the smaller the region of changing the variables of the
function being optimised. In other words, both the initial
values of coordinates r2; r3; :::; rN and Reb should be closer
as possible to their real values.

The condition Imb � 0 corresponds, as mentioned
above, to the presence of a standing wave along the
cross-section radius, when the time-averaged radial energy
êux is zero for all values of r, which is possible only for a
cladding consisting of the inénite number of alternating
layers. To énd the approximate parameters of the structure
of a multilayer BF with a énite number of cladding layers
under the condition Imb5Reb, when the radial energy êux
is generally speaking nowhere equal to zero, we will assume,
nevertheless, that Sr � 0 at all the nodes tangential to the
interfaces of the éeld component layers. This means that we
assume that the cladding of a real ébre consists of the
inénite number of layers. We place the layer interfaces at the
same nodes. The latter is achieved by solving the system of
coupled equations following from (15) for the case of TE
modes:

Ej1 �
io
ck0

C0J1�k0r1� � 0;

Hz2 � C1J0�k1r2� �D1H
�1�
0 �k1r2� � 0;

Ej3 �
io
ck2
�C2J1�k2r3� �D2H

�1�
1 �k2r3�� � 0;

Hz4 � C3J0�k1r4� �D3H
�1�
0 �k1r4� � 0; (22)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Ej�Nÿ1� �
io
ck2
�CNÿ2J1�k2rNÿ1� �DNÿ2H

�1�
1 �k2rNÿ1�� � 0;

HzN � CNÿ1J0�k1rN� �DNÿ1H
�1�
0 �k1rN� � 0:

Equations (22) can be solved in real quantities (in this
case, Imb � 0) and the érst of them, for the known r1, gives

Re�n �
�
n20 ÿ

�
d1l0
2pr1

�2 �1=2
; (23)

where d1 � 3:83171 is the érst nonzero root of the function
J1(x).

According to (12) and (18), coefécients C1 and D1 in the
second relation in (22) are

C1 � ÿ
1

2
ipk1r1m11C0; D1 � ÿ

1

2
ipk1r1m21C0;

where m11 and m12 are deéned by expressions (19).
By substituting the expressions for C1, D1, and Re�n in

the condition Hz2 � 0, we obtain the equation for r2 in the
form

J0�k1r2�N1�k1r1� ÿ J1�k1r1�N0�k1r2� � 0: (24)

Similarly, from the relation for Ej3 in (22) we obtain the
equation

J1�k2r3�N0�k2r2� ÿ J0�k2r2�N1�k2r3� � 0; (24a)

from which r3 can be determined from already known Re�n
and r2, etc.

By solving successively equations (22), the `starting'
values of variables required for the genetic algorithm are
found. From a set of solutions with increasing values of each
of the equations of type (24) and (24a), we choose the value
of the desired coordinate that is closest to the required value
corresponding to the particular optical thickness of the
cladding layer (for example, the quarter-wavelength one or
more).

In the large argument approximation, we can use the
asymptotic form of cylindrical functions [47]. In this case,
Eqn (24), for example, proves to be equivalent to the
equation sin�k1(r2 ÿ r1)� p=2� � 0: It follows from this
that r2 � r1 � p(2pÿ 1)=(2k1). By using (23), we obtain

k1 �
2p
l0

�
n 2
1 ÿ n 2

0 �
�
d1l0
2pr1

�2 �1=2
; (25)

As a result, we have

r2 � r1 �
�2pÿ 1�l0

4

�
�
n 2
1 ÿ n 2

0 �
�
d1l0
2pr1

�2 �ÿ1=2
; p � 1; 2; 3; ::: : (26)

Note that the same expression (26) is obtained by using
the well-known result [12], which is the condition of the
maximum reêection of light from a plane ë parallel plate of
thickness h (h� ri ÿ riÿ1),

h � �2pÿ 1�l0
4n cos y

;

where y is the angle between the wave vector in a layer and
the normal to its boundary, and n is the refractive index of
the layer material. In particular, for the cladding layer
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closest to the ébre core, we have n � n1 in the latter relation
and cos y � f1ÿ (n0=n1)

2 � �d1l0=(2pn1r1)�2g1=2.
Recall, however, that expression (26) is approximate and

corresponds (as in [12]) to a planar geometry (asymptotics of
cylindrical functions).

One can see that the thickness of the érst layer of the
cladding in asymptotics is approximately proportional to an
odd number of l0=4 (this result is approximate due to the
presence of the third, generally speaking, small term in
brackets). In this case, depending on the refractive-index
contrast, the proportionality coefécient can be noticeably
greater than unity, i.e. the real thickness of layers can exceed
by several times l=4 in vacuum, which is important for
practical realisation of quarter-wavelength structures.

A similar dependence also takes place for optically less
dense layers. In particular, to obtain the approximate value
of r3 in (24a), it is simply necessary to make the replace-
ments r2 ! r3, r1 ! r2, and n1 ! n2 in (26).

The method for determining initial values of Re�n and ri
described above is most efécient and allows one to obtain
the values of variables that are very close to real ones. The
genetic algorithm further `corrects' these values and énds
their set providing, together with the required minimal Im�n,
the global minimum of Sr(rN) and satisfying equation (20).

To determine other radiation modes in a ébre optimised
for the TE01 mode, the found geometry of the ébre is éxed.
Then, the next root of Eqn (2) closest to the value of b for
the TE01 mode will deéne the TE02 mode (this root has a
greater value of Imb than the érst root), the root following
after the second root (with greater Imb) will deéne the TE03

mode, etc. It is clear that this sequence of roots should be
found from the dispersion equation only without using the
genetic algorithm.

By using the dispersion equation for the TM modes in
the same ébre optimised to the TE01 mode, all the sequence
of the complex propagation constants of the TM0n modes
can be also determined. Similarly, by replacing Eqn (20) by
dispersion equation (13), hybrid modes can be found. In this
paper, we performed some calculations only for the lowest
hybrid modes with the azimuthal parameter m � 1.

However, the optimisation of the structure of a BF with
a glass core is somewhat complicated because the funda-
mental mode in such BFs is not the TE01 mode but the
doubly degenerate lowest hybrid HE11 mode (see below).
The start values of variables for optimisation are found here
also from the condition that the radial component of the
Poynting vector vanishes at all the interfaces in the layered
cladding. In particular, in the same approximation Imb=0,
the equality Sr(r � r1) � 0 and the independence of Sr of the
azimuthal angle j for all r specify the relation between
amplitudes in expressions for the éeld components, for
example, in (12) and also allow one to determine Re�n from
the equation

J0�k0r1� �
J1�k0r1�
k0r1

�
1ÿRe�n

n0

�
; (27)

where

k0 �
2pn0
l0

�
1ÿ

�
Re�n

n0

�2 �1=2
:

It is easy to see that this equation can be quite accurately
replaced by the equation J0(k0r1) � 0 because, as a rule,
Re�n=n0 � 1 and jJ1(k0r1)=(k0r1)j<1.

Unlike (24) and (24a), the equations for determining
coordinates of layer interfaces in the cladding, which also
follow from equations Sr(r � ri) � 0 (i � 2; 3; :::;N ) have a
more complicated form. However, in the approximation of
low-contrast refractive indices in cladding layers, these
equations are reduced to expressions of type (24), (24a),
and at the large arguments of cylindrical functions ë to (26).
In particular, the equation for determining r2 has the form

J1�k1r2�N0�k1r1� ÿ J0�k1r1�N1�k1r2� � 0: (28)

Note that the procedure somewhat similar to the
approximate method for determining the ébre structure
geometry described above was applied in paper [19] where
the authors determined the thickness of cladding layers by
dividing intervals between the neighbouring roots of func-
tions J0(x) and J1(x) by the values of the transverse wave
number kj corresponding to the given layer. Note, however,
that such an approach cannot be used to optimise BFs for
the TE or TM modes.

After the consideration of various methods for opti-
mising BFs with hollow and glass cores, it is pertinent to
discuss in more detail the question of which of the BF modes
is fundamental.

According to the deénition of the fundamental mode as
a mode with the lowest optical losses in a given ébre, either
the TE01 or HE11 mode can be the fundamental mode in a
BF. Let us present some relevant arguments.

On the one hand, it follows from (23) and (27), for
example, that for any BF structure with a éxed r1, the HE11

mode has the greatest real part of the propagation constant
among all the modes. Indeed, from approximate equation
(27) [J0(k0r1) � 0], we have with good accuracy

Re�nHE �
�
n 2
0 ÿ

�
d2l0
2pr1

�2 �1=2
; (29)

where d2 � 2:40483 is the érst root of the function J0(x). By
comparing (23) with (29), we see that Re�nHE>Re�nTE. It
also follows from this that the transverse component of the
wave vector of the HE11 mode is the smallest, while the
angle of its incidence on the core ë cladding interface is the
largest of all the angles of incidence of the guided modes in
the ébre.

On the other hand, the dependence of the Fresnel
coefécient R 2 of light power reêection from the plane
interface between different media on the incident radiation
polarisation is well known [12]. Indeed, if the electric vector
of a wave is perpendicular to its plane of incidence, the
dependence of R 2 on the angle of incidence y has the form
of a monotonically increasing (up to unity) function. But if
the electric vector of the wave is parallel to the plane of
incidence, the function R 2(y), which also increases up to
unity, is nonmonotonic and passes through the zero
minimum at the Brewster angle. As a result, although
both these dependences begin at the same point (for
y � 0) and terminate at the same point (for y � p=2), the
reêection coefécient is everywhere higher for the érst
polarisation than for the second one (except the two extreme
points).

To use the result from [12], we will assume with good
approximation that the TE01 or HE11 modes are plane
waves and the core ë cladding interface is a plane. Note also
that the éelds of TE modes have only the azimuthal electric
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component, which is perpendicular to the plane of incidence
of light on the érst cladding layer, and therefore are not
subjected to the Brewster effect. However, the HE11 mode
éeld consists of two éelds with orthogonal polarisations,
and the second of these components (parallel) should be
reêected weaker than the érst one. Despite the grazing
incidence of the HE11 mode, the presence of this radiation
component reduces the total Fresnel reêection of the HE11

mode from the cladding, so that the TE01 mode proves to be
the fundamental mode of the ébre. The general polarisation
properties of Fresnel reêection mentioned above depend
considerably on the contrast between refractive indices of
the core and the érst cladding layer. For comparatively high
contrasts (for example, for hollow BFs), the dependences of
the reêection coefécient on the angle of incidence for two
polarisations noticeably differ (Fig. 1a), and the TE01 mode
is reêected most strongly from the cladding, being the
fundamental mode in this case. The HE11 mode, in which
a part of energy corresponds to polarisation parallel to the
plane of incidence, is reêected worse as a whole and to a
great extent is refracted to the cladding.

If the contrast of refractive indices of the ébre core and
cladding is small (Dn4 0:1), the inêuence of polarisation
effects is considerably reduced and dependences of the
reêectance on the angle of incidence for both polarisations
become close, having small values of R 2 up to angles � 708
(Fig. 1b). In this case, the advantages of the TE01 mode over
the HE11 mode are lost to a great extent.

The analysis performed above, which was based on the
consideration of interaction of light with only one interface,
is, of course, approximate, however, it comparatively simply

explains the essence of the phenomenon. To obtain the
quantitative relation between losses for the TE01 and HE11

modes at a low refractive-index contrast, it is necessary, of
course, to take into account all other interfaces between
cladding layers. Here, it is probably important that the angle
of incidence of the HE11 mode (which is the fundamental
mode in this case) on the layered structure is the greatest. In
this case, losses for the TE01 mode can be comparable with
those for the HE11 mode.

In a BF with a large core radius, when the arguments of
cylindrical functions in the cladding are large, the period of
a photonic crystal (the sum of thicknesses of two adjacent
layers) in the entire cladding becomes approximately the
same, and the optimisation of such BFs is reduced to the
determination of the optimal values of the period and the
thickness of layers in them. This does not mean, however,
that the number of variables in the optimisation procedure
noticeably decreases. Indeed, each additional layer in the
cladding causes the redistribution of the éeld in the ébre and
the corresponding change in the optimal geometry of the
entire structure. It is obvious that the period changes with
increasing N the stronger the lower the value of N itself. In
other words, for large N, when the éeld behind the layered
cladding becomes small, both the period and Re�n virtually
become independent of N. As a result, the dependence
Re�n(N ) has the form of a function saturating with increa-
sing N. Waveguide losses continue to decrease with
increasing N.

If necessary, the approach described above can be used
to optimise the BF structure for any mode. However, it is
not obvious that this mode will `survive' upon excitation of
such a BF. It is most likely that some modes will propagate
in the ébre with lower losses.

By changing the wavelength to both sides of l0 for any
of the radiation modes at a éxed geometry, the dependences
Reb(l) and Imb(l) are determined. The mode dispersion is
found from the érst of them. Calculations in the complex
plane allow us to take into account both material losses (by
introducing the imaginary parts depending on l to expres-
sions for the refractive indices n0; n1, and n2 of the structure)
and the material dispersion by assuming that the real parts
of n0; n1, and n2 depend on l. Optical losses g are deéned as
losses of the radiation intensity, i.e. g � 2Imb � (4pIm�n)=l.
Thus, losses in the units of dB kmÿ1 can be found from the
known relation (see, for example, [48])

g � 4� 1010p lg e
l

Im�n; (30)

where l is expressed in mm. One can see from (30) that, for
example, to losses � 1 dB kmÿ1 at l � 1:5 mm, very low
values of Im�n correspond (� 3� 10ÿ11). This justiées with
a great margin the applicability of the approximation
Re�n4 Im�n used everywhere.

Note that the radial distributions of the éeld compo-
nents for modes in a BF are presented below in the
normalised form. In the case of hybrid modes, the relation
between A0 and C0 required for normalisation is presented
below.

3. Results of calculations and discussion

The optical properties of guided radiation in BFs are
analysed in the literature based on the geometry of the
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Figure 1. Dependences of the power coefécient of reêection from the
interface of two media on the angel of incidence of light polarised in the
plane of incidence (dashed curves) and in a plane perpendicular to the
plane of incidence (solid curves). The contrast of the refractive indices of
the media is dn � (n1 ÿ n2�=n1 (n1 > n2).
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multilayer ébre cladding used in each of the studies. The
thickness of cladding layers is, as a rule, close to the
quarter-wavelength one and is estimated by assuming the
grazing incidence of light on the core ë cladding interface. In
this approximation, the relation between the thickness h1 of
denser layers and the thickness h2 of less dense layers has
the form (see, for example, [21])

h1
h2
�
�
n 2
2 ÿ 1

n 2
1 ÿ 1

�1=2

. (31)

The geometrical parameters of a BF can be determined
more accurately by solving equations of type (22). We will
show below that the deviations of the layer thickness from
the quarter-wavelength one appearing due to approxima-
tions can sometimes noticeably affect optical losses in BFs.

We will illustrate the results of optimisation of the BF
geometry by comparing them with the data known from the
literature. The optical properties of a BF with a hollow core
of a large radius and a large refractive-index contrast in
periodic layers of the cladding were calculated in [21]. The
ébre parameters were N � 17, l0 � 1:55 mm, r1 � 13:02 mm,
h1 � 0:09444 mm (n1 � 4:6), and h2 � 0:33956 mm
(n2 � 1:6). The minimal waveguide losses calculated for
the TE01 mode in this ébre were � 6� 10ÿ4 dB kmÿ1

(this minimal value should correspond to the wavelength
l0, whereas in [21] it corresponds for unknown reason to
l � 1:66 mm). By using the same initial values of r1; n1; n2;N
and l0 as in [21] and optimising the cladding structure
geometry, we obtained h1 � 0:086375 mm and
h2 � 0:3085 mm and minimal losses � 2:9� 10ÿ4 dB kmÿ1

at l0 � 1:55 mm. This example convincingly demonstrates a
strong dependence of waveguide losses on the periodic
cladding structure geometry ë the change in the layer
thickness only by 10% reduces losses more than by half.

Note that waveguide losses characterise the degree of
localisation of radiation guided in the ébre core. In the given
case, waveguide losses are very small and the degree of light
localisation is so high that material losses in cladding layers
can be neglected with high accuracy.

There also exist papers in which the geometry of a
multilayer cladding is very close to optimal; however, as a
rule, the authors do not substantiate the choice of this
geometry. For example, the parameters of a hollow BF in
[27] were N � 32, l0 � 1 mm, r1 � 1:3278 mm, h1 �
0:2133 mm (n1 � 1:49) and h2 � 0:346 mm (n2 � 1:17). For
the TE01 mode in this ébre, the authors calculated
�n � 0:891067� i�1:4226� 10ÿ8 (g � 776:4 dB kmÿ1), whe-
reas for the geometry optimised by us (h1 � 0:2146,
h2 � 0:3241 mm) for the same parameters, we obtained
g � 600 dB kmÿ1 for this mode (i.e. losses were smaller
only by � 30%). A similar result was obtained for another
variant of the ébre with r1 � 1:8278 mm calculated in [27]
(other parameters were the same). In this case, the difference
between optimised and non-optimised losses for the TE01

mode was also small (� 32%). The found values of Re�n, as
expected, coincided with good accuracy with the values
calculated by expression (23).

Note also that calculations in [27] were performed by
using the above-mentioned model [45]. If we calculate �n for
the periodic structure geometry used in [27] without the
optimisation procedure, the results will exactly coincide with
those obtained in [27]. This conérms the expressed assump-

tion about the equivalence of our method for the calculation
of the BF modes by using 4� 4 matrices and the 2� 2
matrix method applied in [45].

As another example we compare our results with
calculations [30] of the lowest modes and their losses in
a hollow BF with a cladding consisting of four pairs (N � 8)
of layers made of Si (n1 � 3:5) and Si3N4 (n2 � 2:0). The
authors of [30] calculated optical losses in the wavelength
range from 1.5 to 1.7 mm in a BF ébre with the core radius
r1 � 7:5 mm and cladding layer thicknesses h1 � 0:11 mm
and h2 � 0:21 mm. By optimising the geometry of this ébre,
we obtained h1 � 0:1157 mm and h2 � 0:235 mm by assum-
ing that l0 � 1:7 mm. This wavelength corresponds to the
minimum of losses g � 0:62 dB cmÿ1 in the dependence
presented in [30]. Our calculations give g(l0) �
0:57 dB cmÿ1.

So far we considered ébres with claddings made of
quarter-wavelength dielectric layers or having a similar
structure. Such BFs have a transmission band with two
bands with very large losses located on each side of it. The
width of the long-wavelength band is inénite, whereas the
short-wavelength band has a énite spectral width. In such
ébres optimised to the speciéed wavelength l0, radiation at
l > l0 cannot propagate, and transmission bands exist only
at shorter wavelengths. In the terminology of photonic
crystals, transmission bands of BFs correspond to the so-
called photon-forbidden bands in which light cannot prop-
agate across the periodic structure of a photonic crystal and
propagates only over its defects (in our case, a defect is the
BF core). A photonic crystal is transparent in other spectral
ranges, light is not reêected from the cladding and is not
localised in the core, corresponding to BF bands with large
losses.

In the short-wavelength spectral region, where the
conditions r1 > l and h � h1 � h2 > l are fulélled, new
properties of BFs are manifested, which are not typical
for quarter-wavelength structures. Planar waveguides with a
large cladding period proposed earlier [49 ë 51] were called
an ARROW (anti-resonant reêecting optical waveguide).
They differ from waveguides with a quarter-wavelength
layer cladding by a weak dependence of the spectral position
of maxima of waveguide losses on h down to the radiation
wavelength l � h. As a whole it is assumed that the spectral
parameters of an ARROW are mainly determined by the
parameters of a layer closest to the core with a large
refractive index (by its thickness and the refractive-index
contrast in layers).

The properties of ARROWs are explained by the fact
that the structure layers can be compared with Fabry ë Perot
(FP) resonators (or their cylindrical analogue). Indeed, it is
clear from physical considerations that if the ébre cladding
has spectral regions resonant with the given radiation
wavelength, the radiation will be distributed in the ébre
cross section so that its great fraction will be localised in
these resonance regions. As a result, the resonance spectral
bands (modes) of the FP cladding correspond to a weak
transmission of light in the ébre because the redistribution
of the radiation éeld due to its localisation in resonance
regions reduces the radiation intensity in the core. And vice
versa, the absence of resonances in the cladding corresponds
to the spectral bands with the maximum transmission (hence
the name ARROW for waveguides of this type). Physically,
the resonance bands are related to a standing wave in a FP
resonator.

Optical properties of Bragg ébres 629



In the general case the transmission spectrum of an
ARROW should be determined by the resonance properties
of optically denser and less dense cladding layers. Moreover,
natural resonances (modes) are inherent both in a cladding
period representing a complex FP resonator, which contains
two dielectric media, and in a combination of many closely
spaced layers. The number of possible resonators rapidly
increases with increasing N. The discrete eigenfrequencies
(modes) of each complex resonator do not coincide in the
general case with frequencies for individual layers and
frequencies of other resonators. Therefore, the cladding
can have a considerable number of resonance frequencies in
a particular spectral range. The resonance frequencies of
individual layers can be easily estimated analytically,
whereas the determination of the eigenfrequencies of multi-
layer resonators is a more complicated problem, which is
beyond the scope of our paper.

Thus, the quarter-wavelength structure of the cladding
corresponds to the absence of FP resonances when the
ARROW transmission is maximal. If the thickness of layers
is a multiple of even numbers of a quarter of the wavelength
(of integers of half-waves), the conditions of FP resonances
are realised, and an ARROW with such a structure does not
virtually transmit radiation. The intermediate values of layer
thicknesses correspond to intermediate regions between
bands with high and low ARROW losses.

Radiation mode losses rapidly decrease with increasing
the number of layer periods, but, as mentioned above, the
addition of these new periods does not change the spectral
position of maxima of losses in ébres if h > l.

The properties of planar ARROWs considered above are
also inherent in cylindrical waveguides, which were studied
in a number of papers (see, for example, [25, 26, 31]). The
theoretical analysis of BFs of the ARROW type does not
differ in principle from our analysis presented above.
Therefore, we will not consider them as a separate class
of BFs, but simply will illustrate their properties by a
number of examples.

Thus, Fig. 2 presents the transmission spectrum of an
ARROW with arbitrarily chosen parameters. Resonance
conditions for an optically dense layer (with n1) have the
form k1h1 � pq (here, q � 1, 2, 3) is an integer of radiation
half-wavelength étting in the resonator length h1. By using
(25), we énd for the TE modes the approximate resonance
wavelengths in optically dense cladding layers

l1;q �
2h1�n 2

1 ÿ n 2
0 �1=2

�q 2 ÿ �d1h1=pr1�2�1=2
: (32)

The wavelengths l �a�1; qcorresponding to the absence of
resonances in these layers (anti-resonance) are also well
described by (32) with the replacement q! q� 1=2.

One can see from Fig. 2 that the spectrum has several
forbidden bands (bands with small losses) even within a
range of moderate width and all the resonances determined
from (32) fall into ARROW bands with the smallest
transmission. Note at the same time that not all anti-
resonances of the érst cladding layer determined by (32)
correspond to photon-forbidden bands. Thus, according to
Fig. 2, the loss level at wavelengths l �a�1; 8 � 1:583,
l �a�1; 9 � 1:415, l �a�1; 11 � 1:168; and l �a�1; 12 � 1:075 mm corre-
sponding to anti-resonances in (32) with q � 8, 9, 11, 12
is 2�104 ÿ 5� 105 dB kmÿ1, whereas these losses at other
resonances (q � 7, 10, 13 at l �a�1; 7 � 1:795; l �a�1; 10 � 1:28;

l �a�1; 13 � 0:995 mm) are 6 ë 7 orders of magnitude lower.
Such a difference can be explained only by the fact that
at wavelengths close to anti-resonances with q � 8, 9, 11,
and 12 there exist resonances (cladding modes) in other,
more complex resonators, which were mentioned above. The
interaction of these cladding modes with the anti-resonances
of the érst layer leads, as a rule, to the spectral shift of the
low-loss bands with respect to its position predicted by
expression (32). For example, the expected loss minimum at
l �a�1; 8 � 1:583 mm appears at a wavelength of 1.625 mm. A
similar behaviour is observed for anti-resonances at q � 9,
11, 12. As a result, not all the optical properties of an
ARROW are found to be determined by the parameters of
only one érst layer.

The FP resonances of optically less dense ARROW
layers (with n2) can affect the width of bands with large
losses. Indeed, the positions of these additional resonances,
similarly to (32), can be found from the expression

l2; p �
2h2�n 2

2 ÿ n 2
0 �1=2

� p 2 ÿ �d1h2=pr1�2�1=2
; p � 1; 2; 3; ::: : (33)

One can see from (33) and Fig. 2 that the resonance
wavelengths l2; p for the given particular parameters of the
ébre are close to the corresponding l1; q and fall into the
same minimal transmission ARROW bands. But even all
resonances (32) and (33) cannot completely explain the
calculated spectrum. Spectral bands with high losses should
be determined by some other resonances (modes) which can
be caused, for example, by the presence of more complex
resonances in the structure, which were neglected in the
model.

Because the analysis of the spectrum as a whole in Fig. 2
is quite complicated, we consider one of the anti-resonance
bands (photon-forbidden bands) with minimal losses at
l �a�1; 10 � 1:28 mm at the enlarged wavelength scale (Fig. 3).
The shape of this curve is typical for the wavelength
dependence of the TE01 mode losses in BFs. The ARROW
properties are discussed below by the example of this
forbidden band.
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Figure 2. Calculated transmission spectrum for the TE01 mode in an
ARROW; n0 � 1, n1 � 3:5, n2 � 1:5, h1 � h2 � 2 mm, r1 � 4 mm, N �
20, the values of l �a�1; q are in mm.
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Figure 4 presents the radial distributions of one of the
two éeld components (Hz) determining the radial energy
êux (waveguide losses) Sr in a hollow ARROW. The
distributions are presented at the points of the spectrum
(see Fig. 2) with minimal losses in the photon-forbidden
band shown in Fig. 3 and at one of the points in the high-
loss band adjacent to this band. One can see from Fig. 4a
that in the `anti-resonance' case, neither of the cladding
layers contains an integer of radiation half-wavelengths.
However, despite comparatively low losses in the ébre, the
éeld amplitudes in layers closest to the ébre core are large

enough. This can indicate that although the cladding
geometry, which we have chosen arbitrarily, gives minimal
losses at a wavelength of 1.28 mm, it does not exactly
correspond to the quarter-wavelength structure for this
wavelength and can be in principle optimised. The opti-
misation should reduce the éeld amplitude in the cladding
and losses. The latter assumption is conérmed by calcu-
lations from which it follows that the decrease in the
thickness of cladding layers down to the optimal value
1.976 mm reduces losses at least by a factor of one and a
half.

The radial distribution of the second éeld component Ej
determining Sr exhibits a similar behaviour.

The éeld distribution for the resonance wavelength
l1; 10 � 1:344 mm presented in Fig. 4b shows that the éeld
is indeed concentrated to a great extent in cladding layers. In
this case, the thickness of each optically dense layer éts ten
half-wavelengths, as should be in the resonance case. One
can also see that layers with the smaller refractive index n2
do not contain an integer of half-wavelengths and reso-
nances are absent, which follows, by the way, from (33).
Note, however, that the éeld amplitudes decrease non-
monotonically both in optically denser and less optically
dense layers. In our opinion, this is explained by the fact
that each of the layers, being an independent FP resonator,
also serves as a component of a number of complex
resonators consisting of several successive layers. Because
the eigenfrequencies of such numerous resonators are
different, the total contribution of these frequencies to
the resonance response of each cladding layer to the given
radiation wavelength is also different.

We see that there exist a number of spectral properties of
ARROWs that can be explained only by considering the
inêuence of composite resonators forming the cladding.
Their substantial role is indirectly conérmed in paper [44]
where it was shown that the resonance properties of a new
layer added to the cladding structure (although with
parameters different from those of regular cladding layers)
considerably changed the ARROW spectrum.

Microstructure ébres of different types, in which instead
of coaxial cladding layers with a high refractive index n1 the
cylindrical rods of radius R > l with the same refractive
index n1 are located around the optically less dense core,
have spectral properties similar to those of ARROWs. The
positions of resonance spectral bands in such structures are
related to the cut-off wavelengths of the eigenmodes of the
rods in the cladding photonic crystal [52 ë 57].

As for the group velocity dispersion in BFs, by assuming
that the material dispersion is absent, we are dealing with
the waveguide dispersion only. This dispersion is completely
determined by the properties of a particular photon-for-
bidden band. The dispersion parameter is deéned as

D � ÿ 2pc

l2
d 2Reb
do2

� ÿ l
c

d 2Re�n

dl2
; (34)

i.e. the photon-forbidden band is characterised by the
dependence Re�n(l).

The effective mode refractive index for the photon-
forbidden band under study (see Fig. 3) is presented in
Fig. 5. The straight dashed lines show the boundaries of the
photon-forbidden band. The strong interaction of modes in
the ébre core with cladding modes (resonances of all
possible FP resonators in the cladding) leads to numerous
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Figure 3. Photon-forbidden band in an ARROW with minimal losses at
l �a�1; 10 � 1:28 mm (see Fig. 2).
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`anti-crossings' of the dispersion curves of interacting
modes, one of which is shown near a wavelength of
1.25 mm. The boundaries of the photon-forbidden band
are determined by the loci of the anti-crossings. A similar
dependence for the HE11 mode is located somewhat higher
than the dependence shown in Fig. 5 (but, of course, lower
than the unit level), while the dependence for the TE02 mode
is located lower. However, these modes have considerably
higher optical losses than the TE01 mode, and we will not
discuss them here.

The mode dispersion D(l) calculated from (34) by using
the function Re�n(l) in Fig. 5 is presented in Fig. 6. This
dependence is also typical for BFs and is characterised by
very large absolute values of dispersion near the boundaries
of the photon-forbidden band, but unfortunately they are
characterised by very large optical losses. At the same time,
dispersion values in the region of acceptable losses are still
large, as the inset in Fig. 6 shows. This property of BFs can
be used to control dispersion in various optical devices.

Recall now that we calculated the dependence Re�n(l) by
neglecting the material dispersion. In the spectral region
where hollow BFs have low optical losses, the wavelength
dependence of the material refractive index can be neglected

because the fraction of light propagating in the cladding
material is quite small. At the same time, the spectral
position of the zero dispersion in glass BFs can be found
suféciently accurately only by taking into account the
material dispersion.

4. Conclusions

We have considered in detail one of the most efécient
methods for calculating the optical properties of Bragg
optical ébres. The method can be used not only to énd the
mode composition of radiation, optical losses and dis-
persion in ébres with the speciéed geometry of a multilayer
cladding but, in conjunction with the genetic algorithm,
also to determine the optimal cladding structure providing
minimal optical losses at a particular wavelength. It has
been explained simply which of the modes should be
fundamental in BFs with high and low contrasts between
refractive indices of the ébre core and cladding. The
possibility of using BFs as efécient mode élters is
conérmed, especially, in the case of a high refractive-
index contrast. Such BFs with a hollow cladding can have
in principle very low optical losses for the fundamental
TE01 mode. The basic properties of BFs of the ARROW
type have been described and it has been shown that these
properties are determined not only by the parameters of the
cladding layer nearest to the core but also by resonances of
the cladding as a whole and of layered resonators
comprising the cladding. Interest in BFs of the ARROW
type is caused by practical considerations because it is
possible to fabricate ébres with comparatively broad
transmission bands (a few tens of nanometres) with
acceptable optical losses (see, for example, Fig. 3).

Note that, being potentially single-mode and guiding
only one cylindrically symmetric and nondegenerate TE01

mode, hollow BFs are not subjected to the inêuence of the
polarisation mode dispersion.
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