
Abstract. It is shown that a stretcher consisting of a mirror
optical system and reêecting diffraction gratings can be
calculated by geometrical optics methods. Expressions are
derived which describe the inêuence of parameters of the
stretcher optical system (including its aberrations) on the
stretcher group velocity dispersion.

Keywords: chirped pulse ampliéer, compressor, stretcher, optical
ray reversibility, tautochronism, caustic, point ë angle eikonal, iso-
planar optical system.

1. Introduction

Modern advances in the development of optics of ultrashort
and superhigh-power pulses are closely related to the
method of chirped pulse ampliécation (CPA) [1]. To avoid
the damage of an active crystal exposed to a high-power
ultrashort pulse, this pulse is reversibly stretched in time
(`chirped') in the CPA method by using a delay line with the
positive group velocity dispersion, which is called a
stretcher. Then, the energy of this pulse is ampliéed in
the ampliéer active crystal and its initial duration is
restored with the help of a delay line with the negative
group velocity dispersion (a compressor). The dispersion
delay line is a élter with a purely phase transfer function of
the type exp�ÿij(o)�, and, therefore, it is completely
characterised by is the group delay t(o) � qj(o)=qo [2].

In the ideal case, to avoid the increase in the duration of
the initial ultrashort laser pulse during CPA, the sum of the
group delays of the stretcher [ts(o)], the ampliéer active
body [tg(o)] and the compressor [tc(o)] should be fre-
quency-independent [3]:

tc�o� � tg�o� � ts�o� � const. (1)

Note that the compressor and stretcher conventionally used
for CPA consist only of reêecting optical elements (mirror
diffraction gratings and spherical mirrors), i.e. the effect of

the optical medium of these elements on the total group
delay is absent. It is known that the group delay
t(o) � qj(o)=qo in the free space coincides with the
phase delay T (o) � j(o)=o. Therefore, the group and
phase delays in the compressor and stretcher are equal and,
hence, expression (1) can be rewritten in the form

Tc�o� � tg�o� � Ts�o� � const, (2)

where Tc(o) and Ts(o) are the compressor and stretcher
phase delays, respectively.

The phase delay is the time proportional to the optical
path length, i.e. it is the quantity used in geometrical optics
to formulate the Fermi principle and in calculations of the
optical difference in the ray paths in the geometrical theory
of interference and diffraction [4]. Therefore, the phase
delays of the compressor and stretcher can be calculated
based on geometrical optics methods. An important division
of geometrical optics is, in particular, computational optics
studying the methods for calculating aberrations of optical
systems [4].

It was shown in papers [5, 6] that the parameters of the
stretcher optical system affect the dispersion of its group
velocities. The aim of this paper is to describe the effect of
the optical system parameters (including its aberrations) on
the group velocity dispersion of the stretcher by using
geometrical optics methods.

2. Optical ray reversibility principle
and its consequence

One of the fundamental principles of geometrical optics is
the ray reversibility principle [4]: a ray of light will always
pass through an optical system from the end point to the
initial point (Fig. 1b) along the same trajectory as from the
initial point to the end point (Fig. 1a). Note an important
corollary of the reversibility principle: if two similar optical
elements are combined so that radiation passes through one
of them upon the forward and through another upon the
backward passage of light rays, these rays at the input and
output of the system will always be parallel (Fig. 1c). This
statement will be called below the Lemma.

Although the ray reversibility principle is usually applied
to systems containing only reêecting and refracting optical
elements, it can be also easily extended to optical systems
containing diffraction gratings. Indeed, if a beam of
monochromatic radiation with the frequency o (a mono-
chromatic ray of light) is incident on a diffraction grating,
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the angle of incidence c and the angle of diffraction jo will
be related by the known expression

sinc� sinjo � l
2pc
do

, (3)

where d is the diffraction grating constant; c is the speed of
light in vacuum; and l is the diffraction order. It is known
that, by selecting properly the groove proéle of a reêection
diffraction grating, it is possible to concentrate the
reêection of almost all the incident radiation energy to
one diffraction order [7].

The reversibility principle is manifested in the symmetry
of diffraction grating expression (3) with respect to the
interchange of angles c and jo. Therefore, according to the
Lemma, a pair of identical diffraction gratings with parallel
reêecting surfaces facing each other has a unique property: a
monochromatic ray of light diffracted from these gratings
will exit the system in the direction parallel to the input ray
(Fig. 2).

3. The group velocity dispersion of a compressor

Treacy showed [8, 9] that the above-described pair of
parallel reêection diffraction gratings is the delay line with
the negative group velocity dispersion. Indeed, if a narrow-
wave beam with the broadband temporal spectrum (a
polychromatic light ray) is incident on the érst diffraction
grating of the compressor at point F at an angle of c, the
different spectral components of this beam will diffract at
different angles jo, by forming a one-dimensional
homocentric beam of spectrally coloured rays with the
centre at point F (Fig. 2). Because the érst and second
diffraction gratings are parallel, according to the Lemma,
this homocentric beam will be transformed after its
diffraction from the second diffraction grating to a
beam of spectrally coloured rays (a spatial chirp), each
of them being parallel to the input ray.

To calculate the phase delay Tc(o) for different mono-
chromatic rays from the above-mentioned parallel beam, we
will introduce the uniéed compressor reference plane
(CRP) ë the intersecting plane, which is perpendicular to
this beam and passes through point F (Fig. 2). The phase
delay Tc(o) of the spectral component at frequency o with
respect to this plane is equal to the path length divided by
the speed of light c from point F of the ray incidence on the
érst diffraction grating to the intersection point of the
selected monochromatic ray with the CRP [8, 9]:

Tc�o� �
b�1� cos�c� jo��

c
, b � D

cosjo
, (4)

where D is the distance between diffraction gratings.

4. Group velocity dispersion of a stretcher
with an ideal optical system

To realise the CPA method, apart from a compressor a
dispersion optical device with the positive group velocity
dispersion (stretcher) is required. Martinez showed in [10,
11] that the stretcher can be formed by placing an optical
system between diffraction gratings. However, the `wave'
explanation of the stretcher operation presented in these
papers does not allow the description of the inêuence of the
optical system parameters on the stretcher phase delay [5, 6].

First, we assume for simplicity that the optical system
placed between the stretcher diffraction gratings is ideal, i.e.
it transforms the homocentric beam of rays of light coming
out from point P in the object space into a homocentric
beam of rays of light converging at the optically conjugate
point P 0 in the image plane. The necessary and sufécient
condition for the existence of an ideal optical system is the
condition of the spatial tautochronism [12] according to
which the propagation time for all rays of light connecting
two optically conjugate points P and P 0 should be the same
and equal to T0. Note that, if the ideal system has the

c
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Figure 1. Optical systems for the forward (a) and backward (b) ray
propagations and the geometrical interpretation of the Lemma (c).
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Figure 2. Optical scheme of a two-grating compressor. The red ray is
shown by the double dash-and-dot line and the blue ray is shown by the
dash-and-dot line.
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magniécation m � ÿ1, then points P and P 0 are located
mirror-symmetrically with respect to the symmetry plane
(Fig. 3a) (although the object and the image at these points
are symmetric with respect to the intersection point of this
mirror symmetry plane with the optical axis of the system).

Let point P be the point of incidence of the input
polychromatic light ray on the érst diffraction grating of the
stretcher (DGS1) with an ideal optical system. This ray is
transformed after diffraction into a diverging homocentric
beam of spectrally coloured rays with the centre at point P
(Fig. 3b), which is then transformed by the ideal optical
system into a beam of spectrally coloured rays converging at
point P 0. In addition, this optical system produces the image
of the érst diffraction grating DGS1 in the vicinity of point
P 0. Because the optical system under study has the
magniécation m � ÿ1 (Fig. 3a) and optically conjugate
points P and P 0 lie on the optical axis of this system,
the diffraction grating ë object DGS1 and its image DGS1 0

as well as beams of spectrally coloured rays in the object and
image spaces will be mirror-symmetric with respect to the
symmetry plane (Fig. 3b). According to the ray reversibility
principle, if instead of the image of the érst diffraction
grating DGS1 0, the second diffraction grating DGS2 with
the same parameters as those of the image of the érst grating
DGS1 0 is placed at point P 0 (Fig. 3b), then the beam of
spectrally coloured rays diffracted from the second grating
will be again transformed into a polychromatic light ray
emerging from point P 0. In this case, the input and output
chirps will be also mirror symmetric.

If the second diffraction grating is shifted along the
optical axis of the system, a virtual two-grating compressor
[13] (Fig. 3c) with a phase delay Tvc(o) will be formed in the
image space of this system. Let us show that if the reference
plane of this virtual compressor is treated as the reference

plane of the stretcher (RPS), the stretcher phase delay Ts(o)
calculated with respect to the RPS will be equal with an
accuracy to a constant T0 to the phase delay Tvc(o) of the
virtual compressor with the opposite sign.

For this purpose, we construct a stretcher ë compressor
system in which all diffraction gratings are parallel and have
the same parameters, while the distance between the gratings
in the real and virtual compressors are the same and equal to
D (Fig. 4), i.e. the phase delays of the real Tc(o) and virtual
Tvc(o) compressors are similar:

Tc�o� � Tvc�o�. (5)

Consider this system for the backward passage of the ray.
The polychromatic light ray falls obliquely on the érst
diffraction grating of the compressor DGC1 and acquires a
spatial chirp at the output from the second diffraction
grating of the compressor DGC2. Then, this spatial chirp is
incident on the second diffraction grating of the stretcher
DGS2 (Fig. 4). Because the second diffraction gratings of
the compressor DGC2 and stretcher DGS2 are parallel and
their surfaces reêecting light face each other, according to
the Lemma (Fig. 1c), each of the light rays starting from
point F of the compressor corresponds to a parallel light
ray starting as if from point P 0 of the stretcher. The ideal
optical system of the stretcher will collect all these spectrally
coloured rays at point P, which is optically conjugate with
point P 0 Because the optical system has the magniécation
m � ÿ1 and points P and P 0 lie on the optical axis, the
incident and output polychromatic rays as well as
homocentric beams of spectrally coloured rays are mirror
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symmetric in the object and image spaces. Because the érst
diffraction grating of the stretcher DGS1 is located at point
P, the beam of coloured rays converging at point P will be
again transformed after diffraction from this grating,
according to the ray reversibility law, into a polychromatic
light ray.

In the compressor ë stretcher system, a ray of mono-
chromatic radiation (the pulse spectral component at
frequency o) propagates from point F to point P along
a broken trajectory with sections that are parallel either to
the optical system axis (the x axis) or to the straight line
parallel to the light beam direction at the compressor input
(the y axis). Therefore, if the system under study is projected
on these axes (Fig. 4), it is easy to notice that the transit time
of light from point P 0 to point P is equal to T0, and the
transit time of light from the second diffraction grating of
the compressor DGC2 to the second diffraction grating of
the stretcher DGS2, which is parallel to it, is equal to L=c,
where L is the distance between these gratings. Thus, the
transit time t of light along the entire compressor ë stretcher
system from point P to point F for all spectral components
of the light pulse is the same:

t � L=c� T0. (6)

Because all the diffraction gratings in the system under
study are parallel, the distance between the reference planes
of a real (CRP) and virtual (VCRP) compressors is also
equal to L and the transit time t of light along the entire
compressor ë stretcher system from point P to point F can
be presented in the form:

t � L=c� Ts�o� � Tc�o�. (7)

By equating expressions (6) and (7) and taking (5) into
account, we obtain the required relation between the virtual
compressor phase delay Tvc(o) with the stretcher phase
delay Ts(o) and the transit time T0 of the light pulse in an
ideal optical system with the magniécation m � ÿ1:

Ts�o� � T0 ÿ Tvc�o�. (8)

Thus, if the optical system of the stretcher is ideal and
has a mirror symmetry, and point P of incidence of a
polychromatic light beam lies on the optical axis of the
system, the stretcher phase delay Ts(o) with an accuracy to a
constant T0 will be equal and opposite in sign to the phase
delay of its virtual compressor Tvc(o).

Note that the simplest ideal mirror optical system with
the magniécation m � ÿ1 is a spherical mirror and, hence,
the stretcher with a single spherical mirror (although two- or
three-component optical systems are usually used in the
stretcher) is also quite efécient [14].

5. Group velocity dispersion of the stretcher
with a real optical system

Note that, according to (8), for the speciéed parameters of
diffraction gratings and their tilt with respect to the
symmetry axis of an ideal optical system, the stretcher
phase delay Ts(o) is unambiguously determined by the
transit time T0 of light from point P 0 to its optically
conjugate point P of the optical system with the magnié-
cation m � ÿ1 and the distance D between the diffraction
gratings of the virtual compressor. We will show how the
aberrations of the stretcher optical system affect these
parameters determining the stretcher dispersion.

If an ideal optical system transforms a broad homo-
centric light beam emerging from point P into a homocentric
beam converging at point P 0, which is optically conjugate
with it, the real optical system transforms a broad diverging
homocentric light beam into a converging non-homocentric
beam having a `beak-shaped' envelope with the top at the
point of the paraxial image P 0, the so-called caustic f (z)
(Fig. 5). It is known [15] that each point ¡(z; f ) of the
caustic in the meridional plane can be interpreted as an
image of a point source P produced by an inénitely thin
homocentric beam emerging from this source at an angle y
(Fig. 5).

Let the érst diffraction grating of the stretcher DGS1 be
inclined at angle a to its optical axis (Fig. 5). A poly-
chromatic light ray (or an ultrashort broadband pulse)
incident at angle c on the érst diffraction grating DGS1
will be transformed after diffraction into a homocentric set
of spectrally coloured rays with a top at the incidence point
P. In this case, the spectral component with the frequency o
is diffracted at angle jo to the normal of the grating, and,
hence, at angle yo � jo ÿ a to the stretcher optical system
(Fig. 5). The optical system of the real stretcher transforms
this set of rays into a converging non-homocentric set of
spectrally coloured rays, each of them being focused at
different points of the caustic (Fig. 5): the red beam is
focused at one point of the caustic, the yellow one ë at
another, the blue one ë at a third point, etc. Due to this, the
change in the angle yo at which the spectral component with
the frequency o will emerge from point P, will result in the
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Figure 5. Effect of the optical system caustic on the parameters of the virtual compressor DGS2 ëDGS1 0.
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change in the distance Do between the image of the érst
diffraction grating and the second real diffraction grating
(the distance between diffraction gratings of the virtual
compressor) as well as in the change in the time To during
which a light ray propagates the distance between the point
source P and its image ë the caustic point A(z; f ).

One can see from Fig. 5 that the distance Do is related to
the caustic shape f (z) and the inclination angle a of gratings
with respect to the symmetry axis of the stretcher optical
system by a simple relation

Do � Dÿ roN. (9)

Here, ro � (zo; fo) is the vector representation of the
caustic; N � (cos a; sin a) is the normal to the image of
the érst diffraction grating of the stretcher in the image
space. Taking into account expression (4), the dependence
of the phase delay Tvc(o) of the virtual compressor on the
caustic ro of the stretcher optical system (for the given
parameters of diffraction gratings) is exhaustively described
by the expression

Tvc�o� � �Dÿ roN �
1� cos�c� jo�

c cosjo
. (10)

Thus, expression (8) for the calculation of the stretcher
phase delay with the ideal optical system is easily
generalised for the case of the real optical system:

Ts�o� � T �sin�jo ÿ a�� ÿ �Dÿ roN �
1� cos�c� jo�

c cosjo
. (11)

The caustic shape ro as the function T �sin (jo ÿ a)� is
determined by the aberrations of the optical system. It is
especially simple to describe aberrations of an isoplanar
(spatially invariant) optical system in which aberrations are
the same in the entire éeld of view (see Appendix). In the
stretcher, m � ÿ1, n � n 0 � 1, and p � sin (jo ÿ a), thus
taking (A12) into account we obtain

T �sin�jo ÿ a��c �W �sin�jo ÿ a�� � sin�jo ÿ a� qW�x�
qx

����
x�p

ÿ�1ÿ sin 2�jo ÿ a�� q 2W�x�
qx 2

����
x�p

, (12)

where W(x) is the wave aberration function.

6. Conclusions

Thus, by using the principles of ray reversibility and
tautochronism, we constructed a geometrical model of the
stretcher with the ideal optical system with the unit
magniécation. We have shown that the constructed geo-
metrical model can be generalised to the case of an optical
system with caustic, which allows us to take into account
the inêuence of aberrations of the stretcher optical system
in the calculations of its group velocity dispersion.

Appendix. Caustic of an isoplanar optical system

According to Luneburg [16], the symmetry axis z of the
optical system is conveniently described as an analogue of
the time axis in the analytical mechanics. In this case, the

change in the distance from the light beam to the optical
system in the meridional cross section of the optical system
is described by the function x(z), and the propagation
direction of the light beam ë by the `velocity'

_x � dx

dz
� tanW (A1)

or `pulse'

p � ql
q _x
� n�x; z� _x��������������

1� _x 2
p � n�x; z� sin W. (A2)

Here, l( _x; x; z) � n(x; z)
��������������
1� _x 2
p

is the Lagrangian; n(x; z)
is the refractive index of the optical medium at point (x; z);
W is the inclination angle of the beam to the optical axis of
the system.

The parameters x; p fully describe the propagation
trajectory of a straight light beam in the object space
and the parameters x 0 and p 0 ë in the image space. The
exhaustive characteristic of the optical system aberrations is
eikonals, for example, the point ë angle eikonal V(x; p 0),
which has interesting differential properties [15 ë 17]:

p � ÿ qV�x; p 0�
qx

,

(A3)

x 0 � ÿ qV�x; p 0�
qp 0

.

Note that the point ë angle eikonal of the ideal optical
system with the linear magniécation m is

Vid�x; p 0� � ÿmxp 0. (A4)

By substituting it into expression (A3) we obtain

p � mp 0,
(A5)

x 0 � mx,

i.e. the ray pulse p in the object space is proportional to the
ray pulse p 0 in the image space and all rays from point x of
the object space will be collected at point x 0 of the image
space.

The simplest optical system with aberrations is the
isoplanar (invariant with a shift) optical system, whose
point ë angle eikonal Viso can be obtained by adding to
the point ë angle eikonal of the ideal optical system (A4) the
function of wave aberrations W( p 0) [17 ë 19]:

Viso�x; p 0� � ÿmxp 0 �W� p 0�. (A6)

By substituting (A6) to expression (A3) we obtain

p � mp 0, (A7a)

x 0 �mx � ÿ qW�x�
qx

����
x�p 0

. (A7b)

The quantity g � x 0 �mx is called the transverse aberration
of the optical system (with a negative magniécation m).
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Note that because the direction of the light ray in the
image space of the optical system can be equivalently
characterised by the pulse p 0 and the velocity _x 0, the
transverse spherical aberration (A7b) can be written as
the velocity function:

g� _x 0� � ÿ qW�x�
qx

����
x�n 0 _x 0=

����������
1� _x 0 2
p .

It was shown in [20] that the transverse aberration g( _x 0) of
the optical system and its caustic f (z) are related by the
Legendre transformation (Fig. 1A)

f �z� � _xzÿ g� _x�, (A8)

where z � dg=d _x. Taking expression (A7b) into account
and using (A8), we obtain

z � qg
q _x 0
� ÿ qp 0

q _x 0
q 2W�x�
qx 2

����
x�p 0
� ÿ

�
q _x 0

qp 0

�ÿ1 q 2W�x�
qx 2

����
x�p 0

� ÿ �n
0 2 ÿ p 0 2�3=2

n 0 2
q 2W�x�
qx 2

����
x�p 0

. (A9)

The wave aberration has a simple geometrical inter-
pretation: it is equal to the optical length of the light ray
path from point P to the perpendicular Q 0 lowered from
point P 0 on the light ray with the pulse p 0 in the image space
of the optical system (Fig. 1A). One can see from Fig. 1A
that the required quality C (p 0) � jPAj is related to the wave
aberration jPQj by the relation

C�p 0� � jPAj � jPQj � jQBj ÿ jABj �W� p 0�

� p 0gÿ z�������������������
n 0 2 ÿ p 0 2

p , (A10)

because according to the geometrical interpretation of the
Legendre transforms in the theory of eikonals [17 ë 19], we
have jQBj � p 0g.

Thus, by combining expressions (A7b), (A8), (A9) and
(A10) we obtain

C�p 0� �W� p 0� ÿ p 0
qW�x�
qx

����
x�p 0

� n 0 2 ÿ p 0 2

n 0 2
q 2W�x�
qx 2

����
x�p 0

. (A11)

Taking into account expression (A7a) this expression can be
presented as a pulse function p in the object space:

C
� p

m

�
�W

� p

m

�
ÿ p

m

qW�x�
qx

����
x�p=m

� �mn 0�2 � p 2

�mn 0�2
q 2W�x�
qx 2

����
x�p=m

. (A12)

The sought propagation time is T (n sin W) � C(nmÿ1 sin W)
�cÿ1.
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