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Algebraic reconstruction and postprocessing
in one-step diffuse optical tomography

A.B. Konovalov, V.V. Vlasov, D.V. Mogilenskikh, O.V. Kravtsenyuk, V.V. Lyubimov

Abstract. The photon average trajectory method is
considered, which is used as an approximate method of
diffuse optical tomography and is based on the solution of the
Radon-like trajectory integral equation. A system of linear
algebraic equations describing a discrete model of object
reconstruction is once inverted by using a modified multi-
plicative algebraic technique. The blurring of diffusion
tomograms is eliminated by using space-varying restoration
and methods of nonlinear colour interpretation of data. The
optical models of the breast tissue in the form of rectangular
scattering objects with circular absorbing inhomogeneities are
reconstructed within the framework of the numerical experi-
ment from optical projections simulated for time-domain
measurement technique. It is shown that the quality of
diffusion tomograms reconstructed by this method is close to
that of tomograms reconstructed by using Newton-like
multistep algorithms, while the computational time is much
shorter.

Keywords: diffuse optical tomography, photon average trajectory,
algebraic reconstruction. space-varying restoration, nonlinear
colour palette.

1. Introduction

Diffuse optical tomography (DOT) [1-3] is a promising
method for biomedical visualisation allowing probing of
optically thick (8—10 cm) tissues in the so-called therapeu-
tic transparency window in the near-IR range from 700 to
900 nm. This method involves position-dependent measure-
ments when signals from several laser radiation sources are
observed with several photodetectors. Information on
spatially localised properties of tissues is obtained by
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solving the inverse problem, i.e. the tomographic recon-
struction problem. Diffuse optical tomography is a
noninvasive, harmless, and relatively low-cost method of
biomedical visualisation. It is very important that DOT
allows the visualisation of spatial distributions of functional
parameters (the degree of oxygenation of the blood
haemoglobin, concentration of various cytochromes such
as bilirubin, melanin, cytochrome oxidase, etc.) and, hence,
is quite promising for early and efficient diagnostics of
oncology diseases [1, 4]. The main disadvantage of DOT is
its low spatial resolution due to multiple scattering of
photons, which have no regular trajectories and are
distributed over the entire volume ¥ under study. As a
result, each point in the volume makes a significant
contribution to the detected signal. In the case of time-
domain measurement technique, the inverse DOT problem
in the approximation of the small perturbation theory of
Born or Rytov is reduced to the solution of the integral
equation [5-7]

= { [ clmptcl.0) — s o, (a'r, (1)

where g(7) is the optical projection of absorbing inhomo-
geneities (relative change in the optical signal caused by
inhomogeneities) measured for the detector delay time ¢
¢/n is the speed of light in the medium; PIr,1|(rs,0) —
(rq, )] is the density of the conditional probability that a
photon moving from a spatiotemporal point (r,,0) of a
source to a spatiotemporal point (r4, f) of a detector reaches
an intermediate point r for the time t; and du,(r) is the
function describing the distribution of absorbing inhomo-
geneities (object function). An integral equation written in
form (1) is usually inverted with the help of multistep
Newton-like reconstruction techniques based on the varia-
tional formulation of the radiation transfer equation (or its
diffusion approximation) [1, 2]. These algorithms provide a
comparatively high spatial resolution (~ 0.5 cm) for
diffusion tomograms, but they are not fast enough for
real-time diagnostics because the problem of propagation of
radiation through a medium is solved numerically at each
step of the iteration process.

Lyubimov et al. [S—7] have shown that the reconstruc-
tion can be considerably accelerated by replacing integration
over the volume in (1) by integration over a conditional
trajectory connecting a point source with a point detector.
By using the probability interpretation of radiation transfer
with the conditional probability density P, integral (1) can
be written in the form
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where L is the photon average trajectory (PAT); [/ is the
distance along the PAT; v(/) is the relative average velocity
of photons moving along the PAT as a function of /; and
(-)p is the operator of averaging over the spatial
distribution of P. Integral equation (2) is an analogue of
the Radon transform and can be inverted by using fast
algorithms of X-ray tomography. In other words, the
replacement of volume integral (1) by trajectory integral (2)
allows us to pass from the multistep reconstruction to one-
step reconstruction, i.e. the system of algebraic equations
describing the discrete reconstruction model will be inverted
only once. This one-step method, which is called the photon
average trajectory (PAT) method [5], considerably reduces
the computational time. However, integration over the
trajectory in (2) is applied not to the object function du, (r)
itself but to the function averaged over the spatial
distribution P. This means that, by inverting equation
(2), only diffusion tomograms blurred after averaging can
be directly reconstructed. To compensate for this a priori
blurring, tomograms should be additionally processed.

In this paper, the PAT method is realised by using a
multiplicative algebraic reconstruction technique (MART)
for a planar layer geometry conventionally used in diffuse
optical mammotomography [8—11]. We modified original
Gordon formulas [12] for the solution correction to improve
the convergence of the iteration reconstruction process and
the quality of diffusion tomograms. Postprocessing was
performed in two stages. At the first stage, the space-varying
restoration was performed, which was based on the blurring
model [13] adapted to the case of optical images [14]. At the
second stage, we used the methods of nonlinear colour
interpretation of data [15], which were developed at the
Russian Federal Nuclear Center to increase the information
content of images of gas-dynamic plasma objects. These
methods are based on the formation of nonlinear analytic
and statistical functions of correspondence between the
image intensity and colour space, which allows the improve-
ment of optical inhomogeneity profiles after algebraic
reconstruction and space-varying restoration. The efficiency
of the proposed realisation of the PAT method was
estimated in a numerical experiment in which rectangular
scattering objects with circular absorbing inhomogeneities
simulating a pressed breast tissue with tumour structures
were reconstructed from optical projections. The projections
were simulated by solving the nonstationary diffusion
equation with an instant point radiation source (the case
of time-domain measurement technique). The limiting
spatial resolution of the method was estimated quantita-
tively by using the modulation transfer function (MTF). We
also studied the possibility of recognition of optical inho-
mogeneities simulating a tumour against the background of
a random scattering medium, which is a healthy breast
tissue containing fatty and parenchyma components. It is
shown that the method proposed in the paper, which
involves the reconstruction and postprocessing, provides
a spatial resolution of ~ 0.6 cm along with a considerable
computational time saving compared to multistep recon-
struction techniques.

2. Algebraic reconstruction of diffusion
tomograms

2.1 Formulation of the problem

Unlike the Radon transform, integration in (2) is performed
along a curve L rather than along a straight line. Moreover,
the weight distribution 1/v(/) in the integrand depends on
spatial coordinates. Thus, to invert Eqn (2), it is necessary
to calculate preliminarily the functions L and v(/). It was
shown in [5] that this can be performed by using the
diffusion approximation of the transfer equation. If the
photon density ¢(r,7) satisfies the nonstationary diffusion
equation for an instant point source and the Robin
boundary condition [16], the probability density P is

p(r,1)Grg —r, 1 — 1)
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where G(r,7) is the Green function. The photon average
trajectory, i.e. the trajectory of the mass centre of the
photon distribution is described by the first statistical
moment

RE) = | Pl (r0) — () @

Correspondingly, the relative average photon velocity, i.e.
the relative velocity of the mass centre of the distribution P
is defined as the derivative

n|dR

c
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Analytic expressions for ¢(r,7) and G(r,7) in the case of a
homogeneous planar layer were analysed in detail in [17].
We used the results of this paper for numerical calculations
of functions P, L and v(/) from expressions (3), (4), and (5),
respectively. Figure 1 presents the geometry of data
recording that we used in simulations. The size of a
rectangular scattering object is 11 x 8 cm. Triangles denote
radiation sources on the object boundary, and circles
indicate photodetectors. As an example, Fig. 1 shows four
PATs and four corresponding banana-like bands (shown by
grey), which we used for calculating the weight matrix (see
below). Calculations were performed for the delay time

S6 y/em
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x/cm

D17

D22 D27

D32

Figure 1. Data recording geometry in a numerical experiment. Triangles
are radiation sources, circles are detectors.
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3000 ps, the diffusion coefficient 0.034 cm, and the speed of
light in the medium 0.0214 cm ps~'. The coordinates of the
indicated radiation sources and detectors were (in cm): S6 —
(-1.77, 4), D17 — (-5, —4), D22 — (—-1.77, —4), D27 -
(—1.45, —4), D32 — (4.68, —4). We studied the transmission
regime, and therefore only the connections between sources
and detectors located on the opposite boundaries of the
object were considered. Thus, a total number of average
trajectories was 32 x 16 (32 sources and 16 detectors).

It is well known that integral equations like (2) can be
solved by two fundamentally different methods. The first
method is based on the analytic solution and the use of
obtained inversion formulas to find the object function at
discrete spatial points. The second method involves the
representation of the integral equation in the form of a
system of linear algebraic equations and its solution for a set
of variables determining the discrete values of the object
function. In our case, it is difficult to realise the first
approach due to the PAT curvature. Our attempts to use
the integral transformation algorithms for the reconstruc-
tion of diffusion tomograms [6, 14, 18] are based on the
assumption that PATs are close to straight lines inside a
scattering object. However, such an approach cannot be
used for reconstructing accurately optical inhomogeneities
near boundaries where PATs are strongly bended due to the
avalanche-like migration of photons outside the object.
Unlike integral methods, algebraic reconstruction methods
based on the expansion into a series can be successfully used
for bended trajectories and, hence, are preferable in this
case.

Our experience of the algebraic reconstruction [19-21]
shows that it is expedient to use a finite-width band instead
of an infinitely narrow trajectory. This improves the
convergence of the iteration process and increases the
reconstruction accuracy. The configuration and size of
the corresponding band should be chosen taking into
account the spatial distribution of the trajectories of
photons migrating from a point (r,,0) to a point (ry,?).
According to the statistical model considered above, the
most probable trajectories are distributed in the region
determined by the standard mean-square deviation
(MSD) from the PAT described by the expression

12
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This region has the form of a banana [5] with apexes at the
positions of sources and detectors on the boundary of a
scattering object. Therefore, we use a band trajectory in the
form of a banana-like band with a width directly propor-
tional to the MSD: &(t) = y4(r). This means that, along
with the probability density P, the first statistical moment
R(7) (or L) and its derivative v(/), it is also necessary to
calculate the second moment 4(t) before the reconstruction.

2.2 Discrete reconstruction model

The generalised 2-D reconstruction model is formulated as
usual [5, 12, 19-21]. Let us introduce the Cartesian grid of
square image elements covering an object. Let us assume
that the function (Su,(r)), being reconstructed takes a
constant value f;; inside an element with indices k and /
(hereafter, the (k, /) cell]. Let L;; be the PAT connecting the
ith source and the jth detector, and g; be the optical
projection from the ith source measured with the jth

detector. Then, a discrete reconstruction model can be
described by the system of linear algebraic equations

&= Wi fius (7)
k,l

where W, is the weighted contribution introduced by the
(k, ) cell to the measured value of g; [hereafter, the (k, /)
cell weight]. The weighted contribution is calculated from
the expression

Sijki

W“kl = 5 S
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where Sy, is the area of intersection of the band
corresponding to the ith source and the jth detector
[hereafter, the (i, j) band] with the (k, /) cell (Fig. 2); vy
is the discrete relative velocity of the mass centre of the
distribution P for the (i, j) band and (k, /) cell; and 0 is the
linear size of the cell. The boundaries of banana-like bands
are determined by piecewise linear functions as follows.

Vi1

Sijki \
i )\C\O

Xk Xkt1 J

Figure 2. To the calculation of cell weights Wj;,. The intersection of the
(i, j) band with the (k, ) cell is shown.

(i) The sequence of discrete time moments {7} is
specified.

(i) Perpendiculars to tangents at the PAT points
corresponding to time moments {7,} are constructed

(Fig. 3).

ae

A9

Figure 3. Scheme for determining the boundaries of a banana-like band
on a two-dimensional grid.
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(iii) Intervals of length ¢(t,) = y4(z,) are plotted in both
directions along each perpendicular. The coefficient
y € (0,1) is selected according to the condition that all
the bands should fill the object region as much as possible.
In our case, y = 0.25.

(iv) Points obtained for different {7,} are connected by
straight lines.

The areas {Sj,} are found by determining points in
which the boundaries of the bands intersect the cell
boundaries. A polygon with apexes at these points and
cell nodes is treated as the intersection of the (i, j) band and
the (k, /) cell (Fig. 2). The set of discrete relative photon
velocities vy, is determined by using the algorithm described
in detail in [20, 21].

2.3 Modified MART

The multiplicative algebraic reconstruction technique real-
ising the method of entropy maximum is based on the
iteration correction of the initial approximation { fk(;))}. In
each (s + 1) iteration, the trajectories (bands) from only one
source are considered. Thus, the correction is introduced to
the approximation elements { f,",(,‘\') } corresponding to cells
intersected by the given bands. In going from one iteration
to another, sources are looked over cyclically. The Gordon
formula of the introduction of correction to the sth
approximation has the form [12]

‘ s o\ AWt/
at :fé‘)(ng/z Wifklfk(/)> o ©)
k.l

where A € (0,1) is the parameter controlling the conver-
gence rate of the iteration process. Expression (9) ignores
the nonuniform distributions of the sum of weights and the
number of solution corrections over cells. As a result, the
MART often converges to an incorrect solution in the case
of the insufficient amount of data, when system (7) proves
to be strongly underdetermined. Due to the incorrect
intensity redistribution, tomograms contain pronounced
artefacts, often in regions where structures are absent in
fact. To compensate for this disadvantage, we will use the
following expression for the modified MART:
Step 1:

Wit/ Wi

S5 =1y (&'f / > Wz'/klfk(f)> ; (10)
ki,

where W), = >ij Wit/ Ny is the reduced sum of weights
for the (k, [) cell and Ny is a total number of bands used in
the reconstruction.

Step 2:

) _ 1 N )
o —mz D Smin
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X O (Wi gy 110)DOTM (A1 110 (1
where an integer ¢ specifies the size ¢ x g of a smoothing
window; A;; is the number of solution corrections
corresponding to the (k, /) cell; and

norm(&) = (& — min(&)| /| max(é) — min(&)]
(12)

is the normalisation operator for distributions {#,,} and
{Au}

3. Postprocessing of diffusion tomograms

3.1 Space-varying restoration

By choosing the blurring model suitable for the restoration
of the object function &u,(r), it is necessary to remember
that the visualisation system like a diffuse optical tomo-
graph is not invariant with respect to a spatial
displacement. A strong dependence of the reconstruction
accuracy on the position of an optical inhomogeneity being
reconstructed follows directly from expression (6), which
characterises the theoretical limit of the spatial resolution
tending to zero near the object boundary. The resolution is
the worst at the image centre and is determined by the
object size. Thus, only the space-varying blurring model can
be used for the restoration of diffusion tomograms.

The traditional approach [22] to the restoration of
images subjected to space-varying blurring is based on
the assumption that the invariance to displacements is
preserved in local regions of the image. Each such region
is restored with the help of its own spatially invariant point
spread function (PSF) and then the results are sewed
together to obtain the total real image. Such an approach
produces artefacts at the boundaries of the joining, which
should be then somehow eliminated. In this paper, we use
the blurring model [13]. We used this model for the
restoration of PAT tomograms [14] and also for compensa-
tion of the double-source effect in the X-pinch radiography
[23]. According to this model, an image is divided into many
regions where PSFs are approximately spatially invariant.
However, instead of the restoration of each region sepa-
rately and then combining the results, individual invariant
PSFs are interpolated and the entire image is restored. The
discrete restoration problem for PAT tomograms f with
blurring is described by the system of linear algebraic
equations

f=0z, (13)

where Q is a large ill-conditioned matrix describing the
blurring operator (-), and z is the discrete representation of
the real image Ou,(r). The matrix Q contains nonzero
elements of each of the spatially invariant PSFs corre-
sponding to individual regions of a tomogram and also
takes into account a priori information on the type of
extrapolation of the image being restored outside its
dimensions, i.e. the boundary conditions. This is necessary
to compensate for artefacts near boundaries caused by the
Gibbs effect. Thus, for example, in the case of reflective
boundary conditions, which we use in the restoration, Q is a
sum of the extended block Toeplitz matrix with extended
Toeplitz blocks [24] and the extended block Hankel matrix
with extended Hankel blocks [25].

Each spatially invariant PSF corresponding to an
individual region of a diffusion tomogram was simulated
by performing the following operations.
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(1) On a triangle grid a point inhomogeneity is specified
with the help of three equal values in the nodes of a triangle
located in the centre of the region. The inhomogeneity
amplitude exceeds the amplitude du,(r) by an order of
magnitude.

(i) The point projections of the optical inhomogeneity
are simulated by solving the nonstationary diffusion equa-
tion by the finite element method.

(iii) The PAT tomogram with the PSF is reconstructed
by model optical projections with the help of the modified
MART described above.

System (13) was inverted by using the iteration steepest
descent algorithm [26], which converges rapidly enough and
has the quasi-divergence with respect to the relative error
|z — z||/|z||, where z; is the solution approximation at the
sth iteration. This is very important for obtaining a
regularised solution. In this paper, we omit details of
realisation of the restoration algorithm of PAT tomograms.
They are presented in [14].

3.2 Postprocessing by using a nonlinear colour palette

To improve the profiles of tomograms after the space-
varying restoration, we used the methods of nonlinear
colour interpretation of data [15]. These methods are based
on the formation of nonlinear analytic and statistical
functions of correspondence between the image intensity
(values of the reconstructed object function) and palette
colours [hereafter, the correspondence function (CF)]. A
palette represents an ordered set of colours from the colour
space where each colour is denoted by an ordinal number.
If a palette is linear, the set of colours forms a linear
trajectory in the colour space, while a nonlinear palette
gives a curvilinear trajectory. Analytic CFs provide the
correspondence between the image intensity and a colour in
a cell by using nonlinear colour coordinate scales. For this
purpose, elementary functions and their algebraic combi-
nations are used. The choice of one or another combination
depends on the operator and is performed based on a priori
information contained in reconstructed and restored tomo-
grams. Nonlinear statistical CFs are constructed by using
statistical information on the distribution of colours of an
initially chosen palette (as a rule, linear) among image cells.
We realised an algorithm, which can be briefly described by
the following sequence of steps.

(1) A linear CF is formed, i.e. the colour C(z;) of the
chosen colour palette is assigned to the intensity z;; in the (k,
[) cell.

(ii) The number N&(z,) of cells of each colour in the
palette is calculated and the weight vector W is determined,
whose length is equal to the number of colours in the
palette:

(14)

Ncells ’ 1
WC(Z/c/) - NCOIHOI‘m {M] ,

N cells

where N, is the number of colours in the palette; N ! is a
total number of image cells; and norm(-) is the normali-
sation operator (12).

(iii) Based on the obtained statistical information, a
statistical CF is calculated in the form of a spline approx-
imation. In our case, the first-order spline is used:

C**(zy) = [C(zk1) — Neoinorm(zy)] x

X[Welzig) = Weir (Z)] + Welzi)- (15)

(iv) By summing statistical CF (15) and the initial linear
CF, a nonlinear CF is formed.

Our experience [21] shows that the best result for the
correction of profiles of reconstructed and restored optical
inhomogeneities gives a combination of nonlinear analytic
and statistical CFs.

4. Numerical experiment

4.1 Organisation of the experiment

To demonstrate the possibilities of the PAT method, we
carried out the numerical experiment with scattering
rectangular objects of size 11 x 8 cm (Fig. 1) simulating a
pressed breast tissue, calculated optical projections and
performed the reconstruction and postprocessing proce-
dures described in sections 2 and 3. Calculations were
performed for five objects. To estimate the limiting spatial
resolution of the method, we used four objects, each of
them containing two circular absorbing inhomogeneities of
the same diameter simulating tumour structures. Inhomo-
geneities were located near centres of objects and were
separated from each other by a diameter. The diameters of
inhomogeneities of the four objects were 1.2, 1.0, 0.8, and
0.6 cm. The random structure of a healthy breast tissue was
simulated by the method close to that used in [27] by
specifying zigzag inclusions (parenchyma) against the
background of a homogenous tissue (fat). In [27], the
parenchymatous component was synthesised by the seg-
mentation of a magnetic-resonance tomogram of a breast
obtained in a clinic. We used the theory of cellular
automats for this purpose [28]. Cellular automats are
commonly used to construct alternative discrete models for
simulation of physical process [29], when the application of
traditional difference schemes gives rise to instabilities of
different types. However, cellular automats are also quite
efficient for solving simpler problems, in particular, for
simulations of the spatial structure of a parenchymatous
tissue. The algorithm that we realised is described by the
sequence of the following steps.

(1) A grid of cells is superimposed on an object. A
random number uniformly distributed in the interval from 0
to 1 is assigned to each cell.

(i) A threshold (in our case, 0.45) is specified that
separates all random numbers to the sets of zeroes and units:
if a number is smaller than the threshold, 0 is assigned to the
cell, otherwise 1 is assigned.

(iii) The vicinity of each cell is considered: if the number
of zeroes in the cell vicinity greater, the value 0 is assigned to
the cell, otherwise 1 is assigned.

(iv) Step 3 is repeated the required number of times. In
our case, the number of iterations was 1000.

Figure 4 shows the spatial structure of an object
specified on a triangular grid, which we used to estimate
the possibility of detecting tumour inhomogeneities against
the background of a random healthy tissue. The paren-
chymatous component synthesised by using the algorithm
described above is shown in grey colour. The values of
optical parameters in the models of fat, parenchymatous,
and tumour tissues were chosen based on the experimental
data obtained by various authors by different methods of
measuring the optical properties of biological tissues. Our



Algebraic reconstruction and postprocessing in one-step tomography

593

analysis of these data has shown that the values of the
absorption coefficient p, and the reduced scattering coeffi-
cient u. measured in vitro and in vivo are considerably
different. Thus, according to in vitro data obtained by the
inverse Monte-Carlo method [30], the absorption coefficient
of a healthy breast tissue is 0.1—-0.5 cm™", while according
to in vivo DOT [10], this coefficient is between 0.028 and
0.032 cm™'. We used the results of in vivo DOT measure-
ments obtained by using both approximate methods of
localisation of inhomogeneities with regularisation [8—11]
and multistep Newton-like algorithms [31—-35] (Table 1).
Because we consider in this paper the case of absorbing
inhomogeneities, we neglected fluctuations of the reduced
scattering coefficient and assumed that its value was the
same (~ 10 cm™ ') for all structures being simulated. Thus,
the speed of light in the medium and the diffusion coefficient
in our calculations were 0.0214 cm ps’1 and 0.034 cm,

Figure 4. Example of simulation of the spatial structure of a random
breast tissue with macroinhomogeneities.

respectively, and the absorption coefficients of the fat tissue,
parenchyma, and tumour were 0.05, 0.06, and 0.075 cm”!,
respectively.

Optical projections were simulated by the finite element
method by solving the nonstationary diffusion equation
with an instant point source. Time-resolved signals (so-
called time point spread functions) were calculated for each
source —detector pair as photon fluxes on object boundaries.
The positions of sources and detectors are shown in Fig. 1.
Optical projections were determined for the delay time
t =600 ps from the expression g(7) = [[y(t) — I(1)]/1y(2),
where Iy(f) is an unperturbed signal calculated for a
homogeneous medium and /(¢) is a signal perturbed by
inhomogeneities. The diffusion tomograms were recon-
structed by using the MART on a 137 x 100 grid
described in section 2. The regularised solution was obtained
after ten—twenty iterations.

Diffuse tomograms were reconstructed by using a
simplified approach in which an image was divided into
two regions, each of them containing a circular macro-
inhomogeneity simulating a tumour. A point spread
function corresponding to an individual region was calcu-
lated by specifying a point inhomogeneity in a triangle at the
centre of a circular inhomogeneity. To obtain the regu-
larised solution, each iteration of the restoration procedure
with the steepest descent algorithm [26] was repeated 5—10
times.

The postprocessing of restored images consisted in the
successive application of analytic and statistical CFs to
them. As the analytic function, power and exponential
functions were used. The exponential of the form
C(z) = exp(B;z) + B, was parametrised so that coefficients
B; and B, were determined from the condition of the
equality of the volumes of figures restricted by the object

Table 1. Absorption coefficients and reduced scattering coefficients of breast tissues measured by the DOT method [8—11, 31-35].

. Measurement Inverse problem ) _1 , _1
Tissue type regime and method solution method Wavelength / nm Iy / cm s / cm References
Healthy tissue ~ 0.04 9.0-10.8
Duct carcinoma TR, TDT ILLS 785 0.08-0.12 9.0-11.6 (8]
Healthy tissue 0.03-0.05 9.3-11.9
Carcinoma TR, FDT ART 830 0.07-0.08 - [9]
Fibroadenoma 0.05-0.06 -
Healthy tissue 0.028-0.032 8.3-9.4
Duct carcinoma TR, TDT ILRW 670-785 0.055-0.08 11.5-14.8 [10]
Fatty tissue 0.025-0.048 6.1-14.2
Parenchyma TR, TDT ILLS 670—785 0.032-0.077 8.4-14.3 [11]
Cancer tumour 0.037-0.063 11.8—-15.0
Healthy tissue 0.03-0.05 11-13
Fibroadenoma TR, FDT NR 730 0.07-0.09 9-11 (31]
Healthy tllssue TR, FDT NR 761826 0.042-0.053 10.4-11.6 (32]
Duct carcinoma ~ 0.1 ~ 15.0
Healthy tissue 0.038-0.065 9.8-10.2
Carcinoma TR, FDT NR 761-826 0.055-0.095 14.0-15.1 (331
Healthy tissue 0.035-0.07 -
Cancer tumour TR, TDT NR 780-815 0.085-0.1 7.2-8.5 [34]
Fibroadenoma 0.075-0.09 -
Healthy tissue 0.04-0.07 6.0-9.5
Carcinoma TR, TDT NR 780 0.09-0.15 8.5-11.0 [35]
Fibroadenoma - 6.0-8.0

Note. (TR) transmission regime; (TDT) time-domain measurement technique; (ILLS) inhomogeneity localisation with regularisation by the method of
least squares; (FDT) frequency-domain measurement technique; (ART) algebraic reconstruction technique; (ILRW) inhomogeneity localisation with
regularisation by the random walk method; (NR) Newton—Rafson algorithm.
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Figure 5. Results of the reconstruction (a) and restoration (b) of four
objects for estimating the resolution limit and profiles of reconstructed
inhomogeneities (c). The intensity scales of images are graduated in
reverse centimetres; the lines of images from top to bottom correspond to
inhomogeneity diameters 1.2, 1.0, 0.8, and 0.6 cm.

function z = du,(x,y) before and after postprocessing. The
statistical CF was formed automatically according to the
algorithm described in section 3.

4.2 Results of simulations and their analysis

Figure 5 presents the results of the reconstruction and
space-varying restoration of four objects for estimating the
resolution limit. Due to averaging over the spatial
distribution of photons, inhomogeneities in all tomograms
in Fig. 5a are reproduced in the deformed (‘elongated’)
form. One can see that restoration (Fig. 5b) considerably
improves the shape of inhomogeneities and improves the
spatial resolution. However, the profiles of inhomogeneities
have the characteristic ‘Gaussian’ shape even after restora-
tion (Fig. 5c) and are far from ideal ‘steps’ inherent in real
images.

The spatial resolution was estimated quantitatively by
using the modulation transfer function (MTF) representing
the amplitude of the response of a linear spatially invariant
system to a harmonic signal and characterising a contrast

with which structures with different spatial frequencies are
reproduced. Because, as mentioned above, in our case the
model of a filter invariant to the spatial displacement cannot
be applied in a strict sense, we used the MTF to estimate
roughly the resolution limit near the object centre. The
modulation transfer coefficient was estimated from the
profile of each image in Fig. 5 as the relative depth of a
dip between two peaks. The discrete values of the spatial
frequency were assigned to diameters of inhomogeneities.
The modulation transfer function was constructed by four
points as the dependence of the modulation transfer
coefficient on the spatial frequency (Fig. 6). One can see
from Fig. 6 that structures with frequencies no more than
0.70 and 0.86 cycles cm ™! (i.e. of size no less than 0.71 and

100

m Reconstruction
o Restoration

Modulation transfer
coefficient (%)

1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9

Spatial frequency/line pairs cm™!

Figure 6. Modulation transfer function constructed by data in Fig. 5.
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Figure 7. Examples of the action of nonlinear CFs on the restored
tomogram visualising inhomogeneities of diameter 1.0 cm; (a) result of
the action of analytic CFs (from top to bottom): power function C(z) =
22, power function C(z) = v/Z, exponential C(z) = exp(z), and paramet-
rised exponential C(z) = exp(B;z) + B,; (b) result of the subsequent
application of statistical CFs. The image intensities are normalised.
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0.58 cm) will be reconstructed with a contrast of no less than
20 % (the conditional Rayleigh limit of visual resolution
[36]) in unprocessed tomograms and tomograms subjected
to space-varying restoration, respectively. Although the
value 0.58 cm is somewhat worse than the resolution of
diffusion tomograms obtained by using Newton-like algo-
rithms, it is quite comparable with it.

Figure 7 presents the examples of action of nonlinear
CFs on the restored tomogram visualising inhomogeneities
of diameter 1.0 cm. It follows from analysis of Fig. 7 that in
the case of ‘simple’ models (absorbing macroinhomogene-
ities against the background of a homogeneous scattering
medium) it is possible to select a combination of nonlinear
CFs providing a complete reconstruction of the real
structure of inhomogeneities (Fig. 7b). Note that such an
approach based on the formation of nonlinear CFs offers
advantages compared to the standard threshold filtration. In
the case of the threshold transformation, a part of the image
is discarded and is replaced by a background value of the
object function. This can lead to the loss of important
details in the reconstruction of random structures. Non-
linear CFs are applied to all pixels of the image, which, in
the case of properly selected parameters of functions, allows
one not only to preserve but efficiently distinguish the
informative details of the image.

Figure 8 presents the results of reconstruction, restora-
tion, and nonlinear postprocessing of an object simulating a
random medium with macroiinhomogenities presented in
Fig. 4. One can see that in the case of a complex model of a
random medium, the postprocessing method considered
above gives artefacts (the arrow in Fig. 8c), which, however,
can be excluded based on a priori information contained in
reconstructed and restored tomograms. The images in
Fig. 8d demonstrate the principal possibility of localisation
and determination of the shape of inhomogeneities without
the selection of analytic CFs. Note, however, that the visual
analysis of the reconstruction results is considerably com-
plicated in this case.

The reconstruction and postprocessing time for one
image with the use of a 1.7-GHz Pentium 4, 256-MB
RAM Intel PC in the MATLAB medium was less than
1 min, 15-20 s being spent for reconstruction and 30—40 s
for postprocessing. A comparative analysis of the calcu-
lation rate presented in [5] has shown that the reconstruction

0.035

0.00_49
a i b '
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P 255 255
\
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Figure 8. Results of the reconstruction (a), restoration (b), and nonlinear
postprocessing of parametrised exponential and statistical CFs (c¢) and
only of statistical CFs (d) with an object simulating a random medium
with macroinhomogeneities.

time of a tomogram by using the TOAST (Temporal Optical
Absorption and Scattering Tomography) software package
[37] realising the Newton—Raphson algorithm is several
times longer. Note also that data processing can be further
accelerated by using a faster software medium than the
MATLAB and optimising the relation between sources and
detectors. In particular, our studies [21] have shown that the
number of sources for the geometry under study can be
reduced from 32 to 16 without the loss of the reconstruction
quality.

5. Conclusions

We have studied numerically the efficiency of a new
realisation of the photon average trajectory method,
which is used as an approximate method of diffuse optical
tomography for the reconstruction of absorbing macro-
inhomogeneities of a breast tissue. The realisation includes
a single inversion of the system of equations describing a
discrete model of reconstruction with the help of a modified
multiplicative algebraic technique and postprocessing by
using a space-varying restoration and methods for for-
mation of nonlinear colour palettes. The results obtained in
the paper show that this method can successfully compete
with multistep Newton-like reconstruction techniques,
providing comparable reconstruction accuracy and consid-
erably saving the computational time. Of special interest for
further studies are the methods of colour interpretation of
data, which in the case of simple models provide the perfect
reconstruction of inhomogeneities.
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