Quantum Electronics 38 (6) 576—579 (2008)

©2008 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 42.25.Dd; 87.18.Sn; 87.53.Bn; 87.64.Cc
DOI:10.1070/ QE2008v038n06 ABEH013843

Application of the artificial neural network for reconstructing the
internal-structure image of a random medium by spatial
characteristics of backscattered optical radiation

B.A. Veksler, 1.V. Meglinski

Abstract. The feasibility of using an artificial neural network
(ANN), which is the standard Matlab tool, for non-invasive
(based on the data of backscattering) diagnostics of macro-
inhomogeneities, localised at subsurface layers of the turbid
strongly scattering medium was shown. The spatial and angle
distribution of the backscattered optical radiation was
calculated by using the Monte-Carlo method combining the
modelling of effective optical paths and the use of statistical
weights. It was shown that application of the backscattering
method together with the ANN allows solving inverse
problems for determining the average radius of the scattering
particles and for reconstructing the images of structural
elements within the medium with a high accuracy.
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1. Introduction

Studies of the peculiarities of the optical radiation
distribution within randomly-inhomogeneous highly scat-
tering media, e.g. biotissues, are actively underway for
recent decades [1, 2]. It has been shown that it is possible to
reconstruct the images of macro-inhomogeneities embedded
within the turbid strongly scattering media using the
characteristics of scattered light [3]. A number of different
methods of optical tomography (OT) based on the analysis
of spatial and angle properties of scattered radiation has
been proposed and developed [4]. The image in OT (known
also as the inverse problem) can be reconstructed by using
the diffusion approximation [5], the radiation transfer
models [6, 7], statistical nonlinear algorithms [8], methods
of average photon trajectories [9, 10], the method of finite
elements [11], the Bayes method [12], the Monte-Carlo
method [13] and others (see for details references in [4, 5]).

Usually, the algorithms of image reconstruction are quite
cumbersome, which leads to a considerable consumption of
time and computer resources.

In the current paper we consider the feasibility of using
the artificial neural network (ANN), which is the standard
tool of Matlab, to visualise the macro-inhomogeneities in
the near-surface area of a model medium.

2. Materials and methods

The ANN is of great interest for solving a number of
different problems in optical diagnostics [14—17]. The
ANN structure consists of a network of so-called artificial
neurons (Figure 1), which are connected with each other
with synapses [18]. The ultimate aim of the artificial neuron
is to form a correct output signal depending on the input.
The ANN changes itself by transforming the input signal in
time and forms the required output parameters.
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Figure 1. Schematic representation of the artificial neuron [18]:
X, — X,, — input parameters; w; — w, — weight coefficients; S — ANN
activation function; Y — output.
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The majority of ANNs require the process of multi-
dimensional optimisation of parameters (e.g. ‘network
training’). There are different algorithms to implement
this process [18]. While training, the ANN becomes tolerant
to small variations in the inputs (e.g. noise, variations in
inputs, etc.) and, consequently, produces a correct output. A
trained ANN can be used then to solve analogous problems.
Besides, the ANN is able to create an ideal output, i.e. the
ability of abstracting [18], even if the inputs were corrupted.

In this paper, we used the Levenberg—Marquardt
algorithm, which is ideal for networks with a small number
of parameters and takes sufficiently short time to train an
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Figure 2. Scheme of the experimental setup. The medium surface is
illuminated with a narrow beam of low-intensity continuous laser
radiation, which is incident normally to the surface. Backscattered
radiation is detected with a mobile fibre driven by a computer.
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Figure 3. Indicatrix of scattering simulated according to the Mie theory
for the scattering particles of diameter 0.15 (O), 0.25 (A), 0.35 (@), 0.45
(A), 0.55 (m), 0.65 (v), 0.75 (&), 0.85 (@) and 0.95 um (0). Each curve
corresponds to the input data of the ANN.

ANN. Optical parameters of the model medium were
chosen in correspondence with typical parameters of bio-
tissues [2, 19, 20]. The distribution of optical radiation
within the medium and on its surface was simulated by
using the Monte-Carlo method combining modelling of
effective optical paths and the use of statistical weights
[21, 22]. This algorithm, in the case of selecting the adequate
parameters of the medium, makes it possible to imitate the
detected signal with a high accuracy, taking into account the
actual source—detector parameters used in the experiment.
The lay-out of the source and detector, which is realised
in simulations, repeats the experiment schematically repre-
sented in Fig. 2. It is assumed that the local rectangular
inhomogeneity with a high absorption coefficient u, = 4.5
cm ™! within the medium significantly changes the spatial
distribution of the backscattered radiation detected at the
medium surface. The optical parameters of the medium are:
the absorption coefficient u, = 0.7 em™!, the scattering
coefficient p, = 172 cm™', the anisotropy factor g = 0.95,
the refraction coefficient n = 1.4 [19]. The inhomogeneities
with the size 3x3 and 2 x4 mm are taken into account.

3. Results and discussion

To test the ANN algorithm we have used the scattering
indicatrix calculated according to the Mie theory [23] for
the scattering particles with a radius of 0.05—1 pum (Fig. 3)
as the initial ANN training parameters to check the
feasibility of the network for determining the average
size of the scatterers. In this case, the ANN structure
consisted of 30 neurons in the input layer and 2 neurons in
the hidden layer. We have used three layers of neurons with
the hyperbolic tangent activation function for the input and
hidden layers and with the linear activation function for the
output layer. The latter consisted of one neuron because of
the uniqueness of the output paramter, i.e. the particle
radius. The number of neurons in the layers was found
experimentally for the case of a minimal error of ANN
training and without overtraining.

The error of the ANN training calculated with the help
of the regression analysis [18] significantly increases when
the testing set comes outside the boundaries of the input
data (Fig. 4), i.e. when the radius of particles is outside the
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Figure 4. Regressional analysis of the comparison of the results of the ANN simulation (O) and actual size of scattering particles (---) used in the
training set. The radius of scattering particles changes in the range 0.03 — 1.5 um (a) and 0.1 — 2 pm (b) with a step of 0.05 um. The solid line shows the
linear interpolation of the distribution of particles’ dimensions restored with the ANN.
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Figure 5. Intensity distribution of backscattered radiation on the surface
of the medium in the absence of the inhomogeneity (m) and in the
presence of the 3 x 3-mm absorbing inhomogeneity located at a depth
3 mm (O) and the 2 x 4-mm absorbing inhomogeneity located at a depth
Smm ().

range 0.05 — 1 pum and the regression coefficient R decreases
from 0.9 to 0.7. Thus, based on the scattering indicatrix, the
ANN can be used to restore the dimensions of scattering
particles but only within the limits of slight variations in the
input set. Otherwise, the reliability of the obtained results
will significantly decrease. To avoid the above mentioned
limitation more training parameters should be used. Note
that the particles with a radius less than 0.2 um have the
scattering indicatrix similar to the Rayleigh one; their
characteristics are poorly determined by the angle depend-
ence. To determine the size of the particles with a radius
larger than 1 pm, it is useful to apply a small-angle
scattering indicatrix.

We have used the Monte-Carlo method to simulate the
spatial/angle distribution of backscattered radiation on the
surface of the medium and to create training parameters for
ANN in the case of strong anisotropy scattering which is
typical for the majority of biotissues [21, 22]. The influence
of the inhomogeneity on the intensity distribution of back-
scattered light was considered. Figure 5 presents the results
of simulations of the spatial/angle distribution of radiation
on the medium surface for different localisation and
dimensions of the inhomogeneity and in its absence. The
absorbing inhomogeneity is located at the depths 3 or 5 mm.
It is assumed that the model imitates the structure of the
biotissue in the case of a normal tissue and abnormal
changes, e.g. the tumour [19, 20]. We have used the
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Figure 6. The actual and ANN reconstructed images of absorbing inhomogeneities with dimensions 3 x 3 mm localised at a depth 3 mm (a), (b), and

2x4 mm at a depth 5 mm (c), (d).
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ANN with 20 neurons in the input layer, 5 in the hidden and
16 in the output layer to restore the image of the absorbing
inhomogeneity. The differences in the structure between this
network and the one we have previously used are deter-
mined by changes in the amount of inputs and outputs. The
image of the inhomogeneity has been reconstructed by using
16 localisation points of the detector on the surface, which
suggests the use of 16 neurons in the output layer. We have
used 30 training sets for rectangular inhomogeneities.

The results of image reconstruction of the absorbing
inhomogeneity located at different depths within the model
medium are presented in Fig. 6. The tints of grey show the
probability of the inhomogeneity localisation in the current
position. The uniform colour of the background is the
consequence of the ANN error. The network restores
adequately the image of the inhomogeneity located near
the surface with the upper boundary at the depth of 3 mm
(Figs 6a, b), the regression coefficient R being 0.8. The
output error becomes higher with increasing the depth of the
inhomogeneity position down to 5 mm (Fig. 6c). The
restored image becomes blurry (see Fig. 6d) and the
regression coefficient R is 0.65.

4. Conclusions

The potential possibilities of using the ANN as a standard
Matlab tool for the image reconstruction of absorbing
inhomogeneities by the model of random scattering medium
have been considered. It has been shown that the employ-
ment of the method of backscattering together with the
ANN makes it possible to solve adequately the inverse
problems such as the determination of the average size of
scattering particles and the reconstruction of images of the
structural inhomogeneities within the medium.

The potential application of the presented technique is
non-invasive image reconstruction of the structural elements
in healthy and abnormal biotissues and monitoring the
extraneous inclusions localised within subsurface layers of
biotissues. In addition, the current problem is especially
urgent because of application of nanoparticles for neoplasm
labelling in diagnostics/treatment of oncological diseases in
order to enhance the contrast of the area of neoplasm
localisation. Further development of the proposed technique
will include implementation of polarisation effects of probe
radiation.
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