
Abstract. A system of equations of the vector model of ring
solid-state lasers is derived taking into account the inhomo-
geneity of the pump transverse distribution and éelds of
counterpropagating waves. The model under study well
describes the experimental dependence of the phase shift of
self-modulations oscillations on the pump excess over the
threshold. It is shown that the inhomogeneity of the
transverse distributions of éelds of counterpropagating waves
and the inhomogeneity of the permittivity of the intracavity
medium can lead to the appearance of frequency and
amplitude nonreciprocities in a solid-state laser.
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oscillations, nonreciprocal effects.

1. Introduction

A solid-state ring laser (SRL) is a complex nonlinear system
in which many different lasing regimes, both regular and
chaotic, can appear. All the main features of the nonlinear
dynamics of this laser can be qualitatively described by
using a rather simple so-called standard theoretical model
(see reviews [1, 2]). Its basic equations are derived under the
assumptions which are usually not fulélled in real lasers but
considerably simplify the mathematical model:

(i) the wave polarisation is assumed linear and the same
for counterpropagating waves;

(ii) the plane-wave approximation is used for the intra-
cavity éeld;

(iii) the spatial inhomogeneity of the population inver-
sion and the pump in the direction perpendicular to the
resonator axis is neglected.

To achieve the quantitative agreement with the experi-
ment, some simplifying assumptions should be discarded.
Thus, vector models taking into account the difference
between elliptic polarisations of counterpropagating waves
were proposed and used in papers [3 ë 6]. Although these
vector models gave a better quantitative agreement between
the theory and the experiment, the problem of the develop-

ment of the mathematical model adequately describing the
SRL dynamics has not been solved so far.

Such a mathematical model is necessary, for example, to
formulate and solve inverse problems. In science and
technology, the solution of inverse problems is required
to calculate the system parameters, which cannot be
measured directly. In laser physics, the use of inverse
problems allows one to determine laser parameters by
the peculiarities of their dynamic behaviour.

The aim of this paper is to improve the vector model
proposed in [4] by taking into account the spatial inhomo-
geneity of the pump intensity and the intracavity laser
radiation éeld.

2. Derivation of basic equations
of the vector model

As a rule, to describe the SRL dynamics, a semiclassical
theory is used, which is based on Maxwell's equations for
the intracavity éeld and on the system of quantum-
mechanical equations for the density matrix of active
atoms.

Maxwell's equations for the intracavity éeld in the cgs
system have the form:
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where E(r, t) is the vector of the intracavity electric éeld
strength; e is the medium permittivity; s is the medium
conductivity; c is the speed of light in vacuum; _h is the
angular velocity of the cavity rotation; and Pa is the vector
of the medium polarisation.

The equations for the nondiagonal elements rab and rba
of the density matrix of active atoms and for the population
inversion in a two-level medium can be written in the form�
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where o0 is the frequency of the quantum transition from
the level a to the level b; T1 is the longitudinal relaxation
time; gab is the relaxation rate of the medium polarisation; �h
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is Planck's constant; d ab is the matrix element of the atomic
dipole moment operator; N � n0(rb ÿ ra) is the population
inversion of working levels; ra and rb are diagonal elements
of the density matrix; n0 is the density of the number of
active atoms; and W is the pump rate.

The permittivity of the intracavity medium can be
written in the form

e�r� � ec � de�r�,

where ec characterises the homogeneous medium completely
élling the resonator (we consider a monolithic laser) and the
addition de(r) describes the inhomogeneities, which can
cause the backscattering of radiation and coupling of
counterpropagating waves. In addition, de(r) includes the
change in the permittivity due to the population caused by
pumping the nonresonance levels of active centres.

The quantity de(r) is assumed small and considered as a
perturbation. The intracavity losses and radiation amplié-
cation per round-trip in the cavity are also assumed small.
By transferring all the small terms in expression (1) to the
right-hand side and dividing this equation by ec, we obtain
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By neglecting small terms (the right-hand side), we
obtain the equation
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ec
DE�r; t� � 0, (5)

determining the éeld distribution in the ideal ring cavity
without losses and without coupling between counter-
propagating waves. In a ring cavity with a nonplanar beam
contour, Gaussian beams with a complex astigmatism are
produced during the propagation of light inside the cavity
and reêections from spherical and plane surfaces (mirrors)
[7, 8]. The spatial éeld distributions of counterpropagating
waves in this case are described by the functions

u1;2�x; y; z� � A1;2�z�j1;2�x; y; z�, (6)

where A1;2(z) are complex wave amplitudes;
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z is the coordinate along the beam propagation; x, y are the
transverse coordinates; k is the wave number;
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are complex parameters of the Gaussian beam; Rx
1;2(z),

R
y
1;2(z) are the radii of the wave front curvature; and w x

1;2(z),
w y
1;2(z) are the beam radii along the x and y axes. The

parameters Rxy
1;2(z) and w xy

1;2(z) describe the speciéc nature of
the Gaussian beam with a complex astigmatism.

The functions u1;2(x, y, z) are the solutions of the
Helmholtz equation

Du1;2�x; y; z� � k 2u1;2�x; y; z� � 0. (8)

The eigenvalues of wave numbers kn and the resonator
eigenfrequencies on � ckn=e

1=2
c can be found by using the

conditions for the éeld periodicity in a ring cavity

u1;2�x; y; z� � u1;2�x; y; z� L� (9)

(L is the perimeter of the beam contour), the conditions for
the arbitrary electric (magnetic) éeld periodicity and the
conditions for the reêection at resonator mirrors. The
subscript n in kn and on is omitted below.

By using the Jones matrix method, we can énd the
polarisation vectors of counterpropagating waves e1;2(z).

We expand the solution of Eqn (4) in the eigenfunctions
u1;2(x, y, z) of the ring cavity:
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In the case of solid-state lasers, the medium polarisation
is rapidly established and it can be adiabatically excluded.
The solution of Eqn (2) in the quasi-static approximations
has the form:
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where d � (oÿ o0)=gab is the relative laser frequency
detuning o from the gain line centre. The vector of the
medium polarisation is expressed via nondiagonal elements
of the density matrix of active atoms:

Pa � n0�dabrba � dbarab�. (12)

By assuming that the active medium is isotropic, we
obtain from (11), (12) the expression
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i

2
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�
(13)

for the polarisation vector:
By substituting (10) and (13) into (4) in the slowly

varying-amplitude approximation (dE1;2=dt5oE1;2), we
obtain

dE1;2
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By multiplying (14) by e �1;2(z)u
�
1;2(r), we integrate over the

resonator volume and use the normalisation�
ju1;2�r�j2dr � 1, je1;2j2 � 1 (15)

for the polarisation vectors e1;2(z) and eigenfunctions u1;2(r).
After integrating over the volume, we obtain from (14)
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Here, we introduce the time-dependent variables:
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In the particular case, when the resonator eigenfunctions
are plane waves, these variables are spatial harmonics of the
inverse population [1 ë 4]. In addition, expression (16)
involves the following parameters:
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is the laser transition cross section; s0 is the cross section at
the gain line centre;

o
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� 4p
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are the bandwidths (Q factors Q1;2) of the ring cavity for
counterpropagating waves;
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o
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are the shifts of the ring-cavity eigenfrequencies due to the
inhomogeneity of the medium permittivity;
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are the shifts of ring-cavity eigenfrequencies for counter-
propagating waves due to the resonator rotation; and
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are the complex coupling coefécients of counterpropagating
waves.

Taking into account (10) and (11), Eqn (3) for the
inverse population density assumes the form
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where

a � T1

1� d 2

jdabj2
2�h 2gab

is the saturation parameter.
Equations (16), (24) represent the system of integro-

differential equations. To simulate the SRL emission
dynamics in the most general case, it is necessary to solve
this particular system of equations. However, in practice it is
not always expedient, and good agreement with the experi-
ment can be obtained by making a number of simplifying
assumptions and by transforming this system into a system
of ordinary differential equations (as is usually done in the
standard model).

Let the pump rate be

W�r� � �1� Z� Nth�r�
T1

, (25)

where Nth=T1 is the threshold pump rate; Nth(r) is the
spatial distribution of the inverse population density for the
threshold pump rate; and Z is the excess of the pump power
over the lasing threshold. We assume that this excess is
rather small (Z5 1) and for simplicity consider the case,
when the distribution Nth(r) is virtually homogeneous
[Nth(r) � Nth � const]. Because for Z5 1 the intracavity
éeld is small, Eqn (24) can be approximately written in the
form

qN
qt
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It is easy to derive from (26) the ordinary differential
equations
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,
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2 , N21 � N �12

(27)

for the variables N1;2 and N12.
We introduced here the parameters

C1;2 �
�
ju1;2�r�j4dr , (28)
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C12 �
�
ju1�r�j2ju2�r�j2dr (29)

and the polarisation parameter

b �
� je1e2j2ju1�r�j2ju2�r�j2dr� ju1�r�j2ju2�r�j2dr . (30)

We assume for simplicity in (16) that the shifts of
eigenfrequencies due to rotation (22) are symmetric, i.e.
O1 � ÿO2 � O. Taking this into account, Eqn (16) can be
rewritten in the form
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By assuming that C1;2 � C12 � 1, oe1;e2 � 0 and e1;2 are
independent of z, the system of equations (27), (31) with the
accuracy to notation is equivalent to the equations of the
standard vector SRL model written for a small excess of the
pump over the threshold.

The calculation of coefécients C1;2, C12 and b in the
general case is a rather difécult problem. Paper [8] presents
the method for calculating the parameters of a Gaussian
beam with a complex astigmatism of the fundamental mode
of an empty nonplanar ring resonator. The functions u1;2(r)
calculated by this method prove to be equal to each other.
The inequality of transverse distributions of counterpropa-
gating waves in the ring cavity can be caused by the
inhomogeneities of the active medium and errors in the
resonator fabrication, which also should be taken into
account in rigorous calculations. The polarisations of the
ideal resonator can be calculated, as mentioned above, by
using the Jones matrix method [9].

The system of equations obtained in this paper differs
from the vector model equations considered in [4] in the case
of spatially inhomogeneous distributions of the inverse
population and the intracavity éeld. For the equivalent
spatial éeld distributions of counterpropagating waves
(ju1(r)j � ju2(r)j), due to the inversion and éeld inhomoge-
neity the optical nonreciprocity does not appear (frequency
shifts oe1;e2 prove to be equal for counterpropagating
waves). In the case of nonequivalent spatial éeld distribu-
tions of counterpropagating waves, these frequency shifts
are not equal, i.e. the cavity eigenfrequencies split. This does
not contradict the optical nonreciprocity principle because
this principle assumes the identity of counterpropagating
waves.

3. Comparison of experimental results
with the results of numerical simulation

We studied experimentally the characteristics of self-
modulation oscillations of counterpropagating waves in
the SRL and compared the obtained results with theoretical
predictions based on the vector model described above. The
experimental setup was completely similar to that used in
[6]. The solid-state laser operated in the self-modulation
regime of the érst kind. In this regime, we measured the
dependences of the phase difference of self-modulation
intensity oscillations for counterpropagating waves (Fig. 1)

and of intensity modulation depths (Fig. 2) on the pump
excess over the threshold.

Some experimental effects cannot be explained within
the framework of the standard model. One of these effects is
the dependence of the phase shift of self-modulation
oscillations on the pump excess over the threshold. To
explain this effect in the standard model, it is necessary to
assume that the difference of the cavity Q factors for
counterpropagating waves depends on the value of this
excess, which cannot be substantiated physically.

In the model presented in this paper, the inequality of
coefécients C1;2 appearing due to the difference between the
transverse éeld distributions of counterpropagating waves
leads to the inequality of gains for counterpropagating
waves. Indeed, these coefécients enter Eqns (27) describing
the saturation of the inverse population of the medium. The
difference in the degrees of the inversion saturation leads to
the inequality of gains for counterpropagating waves. This
gives rise to an additional mechanism responsible for the
change in the phase difference of self-modulation oscilla-
tions in counterpropagating waves (in the standard model,
this phase difference appears only when the resonator Q
factors are not equal). In addition, one can see from
Eqn (16) that in the model under study in the absence of
rotation or magnetic éeld (for O � 0), the difference in the
eigenfrequencies of the ring cavity appears for counter-
propagating waves Do � oe1 ÿ oe2 due to the
inhomogeneities of the permittivity of the intracavity
medium.

The numerical simulation based on our model gave good
qualitative and quantitative agreement of experimental and
theoretical results, which was impossible within the frame-
work of the standard vector model. Some parameters in the
numerical simulation were assumed equal to the laser
parameters measured experimentally in [6]. The cavity
bandwidth oc=Q determined from the relaxation frequency
or � (Zoc=QT1)

1=2 was 4:4� 108 sÿ1. In [6], the modulus
m=2p � (m1m2)

1=2=2p � 332:6 kHz and the phase difference
y � y1 ÿ y2 � 0:648p for coupling coefécients were found
from experimental parameters of self-modulation oscilla-
tions. These values were used in the numerical simulation in
this paper. The parameters m1, m2, C1, C2, C12, and b were
varied in the numerical simulation. The best agreement
between the numerical simulation and the experiment was
obtained for m1=2p � 318 kHz, m2=2p � 348 kHz, b �
0.405, C1 � 0:998, C2 � 0:99715, C12 � 0:997. To describe
the observed experimental dependences, it was necessary to
introduce the splitting of ring-cavity eigenfrequencies
(oe1 ÿ oe2)=2p � 20 kHz. This splitting in the model under
study can appear due to the inhomogeneities of the medium
permittivity and the difference in the spatial éeld distribu-
tions of counterpropagating waves.

The experimentally measured intensity oscillograms of
counterpropagating waves I1;2 were processed by approx-
imating them by the dependences I1;2 � A01;02 � A1;2�
sin (ot� j1;2), which allowed us to separate the useful
signal from noise. The modulation depths h1;2 were deter-
mined as the ratio A1;2=A01;02. Note also that the described
experimental dependences of the phase shift of self-modu-
lation oscillations and modulation depth of intensities of
counterpropagating waves on the pump excess over the
threshold were measured simultaneously.

Figure 1 shows the dependences of the phase shift
Dj � j1 ÿ j2 of self-modulation oscillations of counter-
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propagating waves on the pump excess over the threshold.
In simulations based on the standard model, it was assumed
that the effective difference of Q factors of counterpropagat-
ing waves is

D
2p
� 1

4p

�
o
Q2

ÿ o
Q1

�
� 1 kHz.

One can see from Fig. 1 that in the case of the standard
model the phase shift of self-modulation oscillations is
independent of the pump excess over the threshold, which
contradicts the experimental results, while the results of
simulations based on the improved model described above
well agree with the experimental data.

Figure 2 shows the experimental and calculated depend-
ences of the modulation depth of counterpropagating waves
on the pump excess over the threshold in the self-modu-
lation regime of the érst kind. One can see that the model
under study better describes the experimentally observed
increase in the difference in modulation depths of counter-
propagating waves with increasing the pump excess over the
threshold.

4. Conclusions

We have obtained a system of ordinary differential
equations in the vector model of solid-state ring lasers,
which takes into account the inhomogeneities of the
transverse distribution of the pump intensity and the
intracavity éeld. Our study has shown that the difference
in the transverse éeld distributions of counterpropagating
waves in solid-state ring lasers can lead to the splitting of
the cavity eigenfrequencies and to the appearance of an
additional phase shift of self-modulation oscillations of
counterpropagating waves. The model under study well
describes the experimental dependence of the phase shift of
self-modulation oscillations on the pump excess over the
threshold.
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Figure 1. Experimental (squares) and calculated (curves) dependences of
the phase shift of self-modulation oscillations of counterpropagating
waves on the pump excess over the threshold. The solid curve is the result
of simulations based on the described model, the dashed line is the
prediction of the standard vector model (C1;2 � C12 � 1) [4].
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Figure 2. Experimental (squares) and calculated (curves) dependences of
the modulation depths h1;2 of counterpropagating waves on the pump
excess over the threshold in the self-modulation regime of the érst kind.
The solid curve is the results of simulations based on the described
model, the dashed line is based on the vector model [4].
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