
Abstract. The propagation of focused high-power femto-
second laser pulses in air is numerically simulated. The
dependences of the effective average size of a focal spot and
the maximum achievable radiation intensity in the focal beam
waist on the peak power of incident radiation are studied. It is
shown that in the regime of nonstationary self-action of
radiation, due to photoionisation of the medium and
formation of plasma, it becomes impossible to focus radiation
into a spot of diffraction-limited size predicted by a linear
theory.

Keywords: femtosecond laser radiation, focal beam waist, nonsta-
tionary self-focusing, photoionisation of a medium.

1. Introduction

The achievement of nearly diffraction-limited focal light
beam waists and high radiation intensities is very important
in many scientiéc and technological éelds. This is required,
for example, for manufacturing multilayer optical struc-
tures in dielectrics with the help of laser beams [1], in laser
cell microsurgery [2], laser scanning microscopy of living
tissues [3], and laser metal and ceramics machining [4]. The
use of high-power femtosecond laser pulses in such
technologies can provide very high radiation intensities in
the focal laser beam waist at pulse energies of only a few
millijoules [5]. The advantages of irradiation of targets by
ultrashort laser pulses are the low energy thresholds for
ionisation and ablation of materials compared to those
typical for irradiation by longer radiation pulses as well as
minimal thermal and mechanical damages of the regions
adjacent to the irradiated region of a sample. In addition,
the study of the properties of focusing of high-power
femtosecond laser pulses in air is also of considerable
interest for describing the propagation of these pulses over
long atmospheric paths [6].

The high peak power and intensity of femtosecond
pulses can violate the linear regime of their focusing
even before they reach a target. The Kerr self-focusing

of radiation in gases and condensed media, multiphoton
absorption, plasma production in media, and a number of
other nonlinear effects cause nonlinear changes in the
optical properties of media. In this case, the linear theory
of diffraction of electromagnetic radiation, which gives
certain relations between the numerical aperture of a
focused light beam and the size of its focal spot, cannot
be applied even for preliminary estimates of parameters of
high-power ultrashort pulses in the region of their focusing.

In this paper, we simulated numerically the formation of
the spatial structure of a tightly focused high-power femto-
second beam in the focal waist under conditions of
nonstationary self-action. The main attention was devoted
to the study of the dependences of the effective size of the
focal beam waist and the maximum achievable radiation
intensity on the power of a femtosecond laser beam focused
in air.

2. Linear and nonlinear laser radiation focusing

The focal waist radius Rf of a laser beam with the Gaussian
envelope E(r?; z)

E�r?; z � 0� � E0 exp
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of the electric éeld propagating linearly in a medium with
the refractive index n0 is described by the expression

Rf � R0
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Here, jr?j � (x 2 � y 2)1=2 is the transverse coordinate; E0 is
the wave amplitude; jf � ÿk0(jr?j2=F0) is the wave phase
acquired due to the initial beam focusing; R0 is the initial
radius of the beam; F0 is the radius of initial curvature of
the wave phase front; k0 � 2pn0=l0 is the wave number;
and l0 is the wavelength in vacuum. The beam waist itself
has a centre located at a point with coordinate
�zf � 4 �F0=( �F 2

0 � 4) (linear focus) and the characteristic length
�Lf � 4(Rf=R0)

2. Hereafter, the dimensional quantities are
normalised for convenience to the Rayleigh length
LR � k0R

2
0 =2 and are denoted by a bar at the top.

The focal waist radius is inherently restricted by the
radiation wavelength l0, which gives, according to (2), the
minimal radius of a focal spot R �f ' l0=2 [7].

Upon laser beam focusing, the radiation intensity
averaged over the focal spot area I av

f � P0=(pR
2
f ) (where

P0 � �cn0=(8p)�
� jEj2dr? is the incident radiation power)
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increases with respect to the incident intensity
I av
0 � P0=(pR

2
0 ) proportionally to the square of the inverse

diffraction angular divergence yd:
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k0R0

. (3)

A light beam propagating in a medium with the Kerr
nonlinearity experiences self-action. The refractive index n
of such a medium becomes a function of the optical éeld
intensity I: n(I ) � n0 � n2I (where the parameter n2 char-
acterises the optical power of the Kerr effect), which results
in the self-focusing of the light wave. According to the
approximate theory of stationary self-focusing [8], if the
beam power exceeds the critical power Pcr, the beam will
experience a transverse collapse due to the Kerr effect
(contracts to a point) over the distance �zK � 1=(Zÿ 1)1=2,
where Z � P0=Pcr, Pcr � l 2

0 =(2pn2). Obviously, for Z � 1 in
the case of a collimated beam, a nonlinear Kerr lens
compensates the natural spread of the beam.

From the point of view of linear optics, the Kerr effect is
equivalent to the focusing of a light beam by a spherical lens
with the focal length depending on the radiation power. If
the laser beam was initially focused to a point z � zf and
propagated in the Kerr medium, the position zn of the
nonlinear focus of the beam will be determined taking into
account the combined action of the initial and induced
focusing:

zn � zKF0=�zK � F0�. (4)

The beam focusing parameters in the Kerr medium
estimated from expressions of the approximate theory of
stationary self-focusing [8] show that the laser beam can be
focused into a spot of size that is even smaller than the
diffraction limit, which could provide extremely high optical
éeld intensities in an extremely small volume [9]. However,
this effect is not observed in real situations because of
physical mechanisms preventing the further self-compres-
sion of the laser beam, which are always realised at high
radiation intensities. The most important of them in gases
and condensed media are ionisation and the production of
plasma in the laser beam.

The Drude ëLorentz model [10] of a free electron gas
gives the expression for the change in the complex refractive
index m � n� iK of a medium caused by photoionisation:

mp � mÿ n0 � ÿ
o 2

p t
2
c

2n0�o 2t 2c � 1�
�
1ÿ i

otc

�
, (5)

where op � �e 2re=(mee0)�1=2 is the plasma frequency; re is
the free electron concentration (plasma density); tc is the
characteristic time of collisions of free electrons with heavy
particles; e and me is the electron charge and mass; o is the
light-wave frequency; and e0 � 8:8� 10ÿ12 F mÿ1 is the
universal electric constant. One can see from expression (5)
that the inêuence of the plasma nonlinearity on the optical
éeld is manifested in the change in the wave phase (the real
part of mp), resulting in the wave defocusing, and in the
decrease in the éeld energy (the imaginary part of mp) due
to absorption of photons by free ions. In this case, the
parameter jmpj is proportional to the instant electron
density re.

The instant free electron density in a medium can be
determined from the rate equation taking into account the
multiphoton and cascade ionisation mechanisms, as well as
a decrease in the electron concentration due to their
recombination with ions:

qre
qt
�Wi�I �� rnt ÿ re� �

sc
n0DEi

reIÿ vrr
2
e , (6)

where Wi(I ) is the rate of photoionisation of the medium
depending on the light-wave intensity; rnt is the density of
neutral atoms (molecules); sc � o 2

p tc=�cre(o 2t 2c � 1)� and
DEi are the cascade ionisation cross section and ionisation
potential of molecules, respectively; and vr is the recombi-
nation rate. In the case of high-power femtosecond laser
pulses propagating in gas, the two last terms in the right-
hand side of Eqn (6) prove to be insigniécant compared to
the érst one and, therefore, they are neglected, as a rule, in
estimates of the plasma density.

The photoionisation of molecules gives rise to the
additional absorption of radiation in the medium. The
corresponding nonlinear absorption coefécient ai of the
medium is described by the expression

ai �
Wi�i �

I
DEi� rnt ÿ re�.

Thus, the total absorption coefécient of the wave energy
during the plasma formation in air has the form

an � ap � ai � scre �
Wi�I �

I
DEi� rnt ÿ re�, (7)

where ap � k0Immp. The absorption of radiation reduces
the instantaneous pulse intensity, thereby decreasing the
focusing effect of the Kerr nonlinearity.

Note that at high radiation intensities the hyperpolaris-
ability of the medium related to the éfth-order nonlinear
susceptibility w �5� can be manifested. In this case, the
refractive index can be written as a sum of three terms:
n(I ) � n0 � n2Iÿ n4I

2. One can see that the nonlinear
addition n4 reduces the focusing action of the Kerr effect
due to saturation: n2(I ) � n2 ÿ n4I ' n2=(1� I=Isat), where
Isat � n2=n4 is the characteristic saturation intensity [11]. It is
obvious that the speciéc role of the éfth-order nonlinearity
during the self-focusing of radiation will be determined by
the relation between the characteristic saturation and
plasma-formation intensities, which in turn depend on
the optical parameters of the medium itself. For example,
for the atmospheric air at the wavelength l0 � 800 nm, we
have n2 � 3:2� 10ÿ19 cm2 Wÿ1, n4 � 2:5� 10ÿ33 cm4 Wÿ2

[12], and the saturation intensity is Isat � 1014 W cmÿ2. In
this case, the active plasma formation in air, as show
numerous theoretical calculations (see review [13]), begins
already at pulse intensities I � 1013 W cmÿ2, which allows
us to neglect the hyperpolarisability of the medium in
further calculations.

3. Numerical model of radiation propagation

We simulated the focusing of ultrashort laser pulses in gases
by using the nonlinear Schr�odinger equation (NSE) written
for the slowly varying complex amplitude of the electro-
magnetic éeld of a light pulse U(r; z; t) � E=E0. This
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equation takes into account, along with the beam
diffraction and frequency dispersion of air, a number of
nonlinear effects responsible for the amplitude and phase
self-modulation of the light wave (see, for example, [14]).
Let us write the NSE in the form�

q
qz
ÿ i

2n0k0
H 2
? �

i

2

q 2k

qo 2

q 2

qt 2

�
U�r?; z; t�

ÿ ik0�~n2 ÿ np�U�r?; z; t� �
an
2
U�r?; z; t� � 0. (8)

Here, np � Remp; q 2k=qo 2 � 0:21 fs2 cmÿ1 in air for
l0 � 800 nm;

~n2 �
n2
2

�
�1ÿ b�jU j2 � b

� t

ÿ1
dt 0L�tÿ t 0�jU�t 0�j2

�
is the cubic addition to the refractive index taking into
account the instant and inertial contributions to the Kerr
effect; and b is the speciéc contribution of the inertial Kerr
effect.

The inertial component L(t) of the Kerr effect is related
to the énite orientation time of anisotropic molecules along
the electric éeld vector. The inertial response was taken into
account in the decaying oscillator model [15]: L(t) �
y(t)OR exp (ÿt=td) sinORt, where OR ' 20 THz is a vibra-
tional molecular frequency; td ' 70 ns is the decay time (in
air) and y(t) is the Heaviside function.

The numerical integration of NSE (8) was performed by
the method of division of the initial problem into two
subproblems at each step over the evolution variable z. In
the érst, nonlinear subproblem, the phase incursion of the
optical wave due to nonlinear optical effects was deter-
mined, while in the second, linear subproblem, the
diffraction and dispersion of a wave packet were calculated
with the phase front determined at the previous step. The
calculation stability was improved by combining the spectral
Fourier method (in time), the implicit three-layer difference
Crank ëNicholson scheme (in transverse coordinates), and
the adaptive correction of a network step over the evolution
variable. The free electron density re was calculated by
solving Eqn (6) by the Runge ëKutta method.

4. Model of gas photoionisation

We used the Perelomov ë Popov ëTerent'ev model of gas
photoionisation [16], which, as shown in [17], most
completely describes the experimental data available at
present. According to this model, the ionisation rate Wi(I )
of a level with the bond energy DEi, the orbital momentum
l and its projection j to the éeld direction is described by the
expression

Wi�I � �
DEi

�h
jCnlj2fl j

�
6

p

�1=2�
2Ea

E

�2n �ÿ3=2
�1� g 2�3=4

�Aj�g� exp
�
ÿ 2Ea

3E
g�g�

�
, (9)

where g � (o0=c)(ce0meDEi=I )
1=2 is the Keldysh parameter;

Ea is the intratomic éeld strength; jCnlj2 � 24n �ÿ2�
�n �G(n � � l� 1)G(n � ÿ l )�ÿ1 ; n � � Z(DEH=DEi)

1=2 is the
effective principal quantum number; Z is the charge of

the atomic or ion core; DEH is the ionisation energy of the
hydrogen atom;

g�g� � 2

3g
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2g 2

�
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�
;
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p

1
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1� g 2

�
X1
l5mi

exp�ÿa�lÿmi��Wj
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�
;

a � 2

�
arsinh gÿ g

1� g 2

�
; b � 2g

�1� g 2�1=2
;

Wj�x� � exp�ÿx 2�
� x

0

exp�ÿy 2��x 2 ÿ y 2� j j j!dy;
mi is the photoionisation order.

In practice the use of expression (9) in the numerical
simulation of the NSE to calculate the ionisation rate is not
always convenient because it is necessary to calculate many
coefécients at each step of a change in the wave intensity. To
increase the calculation rate, we used instead of the depen-
dence Wi(I ) (9) its approximation Wi(I ) � AW(I )I K, where
coefécients AW and K were selected according to the
medium type and the laser wavelength. Thus, we obtained
for atmospheric gases the function in the form

lg�AW�I �� � lgA0 ÿ Ai exp

�
ÿ lg 2�I=Icr�

A 2
2

�

� lgA0 ÿ Ai exp

�
ÿ 1

A 2
2

lg 2

�
I0
Icr
jU j2

��
,

where AW is taken in sÿ1 m2K WÿK and I0 and Icr ë in
W mÿ2; K � 7:44, lgA0 � ÿ119:378, A1 � 13:445, A2 �
2:041, and lg Icr � 20:616 for oxygen O2; K � 10:165,
lgA0 � ÿ168:530, A1 � 19:223, A2 � 2:012, and lg Icr �
20:688 for nitrogen N2.

5. Structure of the nonlinear focus
of ultrashort pulses

Consider the numerical simulation of the evolution of
parameters of high-power femtosecond radiation focused in
air. For deéniteness, we decided to reproduce numerically
experimental conditions [18] by specifying the initial shape
of the normalised envelope of the radiation electric éeld by
a Gaussian (in time and space)

U�r?; z; t� � exp

�
ÿ jr?j

2

2R 2
0

� ijf�r?� ÿ
t 2

2t 2p

�
with the following parameters: the pulse duration tp � 60
fs, the beam radius R0 � 2:8 mm (at the 1/e level), and the
wavelength l0 � 800 nm. The initial radius of curvature of
the radiation phase front is F0 � 86 cm, so that its
normalised value is �F0 � F0=LR � 0:028 (LR � 30:8 m).

The initial radiation energy was speciéed for the cases of
the subcritical radiation energy (Z � 0:1, Pcr � 3:2
GW cmÿ2) and of the sevenfold excess over the critical
power Pcr (Z � 7). The initial peak intensity was
I0 � 1:3� 109 and 9� 1010 W cmÿ2 in the érst and second
cases, respectively. The estimate of the position (4) of the
nonlinear focus of the beam for Z � 7 gives zK � 13 m and
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zn � 81 cm, i.e. the Kerr effect under these conditions only
slightly shifts the beam waist from its position in a linear
medium.

Figure 1 presents the dependence of the transverse sizes
of a laser beam on the longitudinal coordinate: the geo-
metrical radius R1 determined from the proéle
w(r?; z) �

� 1
ÿ1 I(r?; z; t

0)dt 0 of the beam energy density at
the 1/e level, and the effective radius Reff calculated as the
normalised second-order moment of the wave intensity [15]

Reff�z� �
�

1

W�z�
�1
ÿ1

dt 0
��

S?
d 2r?I�r?; z; t 0�j�r? ÿ rgr�j2

�1=2
,

(10)
where rgr �Wÿ1(z)

� 1
ÿ1 dt 0

��
S?

r?I(r?; z; t
0)d 2r? is the

radius vector of the centre of gravity of the beam; W is
the total energy of the radiation pulse; and S? is the
integration region over the beam cross section. Note that
the parameter Reff is useful for analysis of complicated
beam intensity proéles because, according to its deénition,
it gives the size of a spatial region in which no less than
50% of the total beam energy is contained. In the case of a
Gaussian transverse intensity proéle, the geometrical and
effective radii are identical.

One can see from Fig. 1 that the propagation of a
focused beam in linear and nonlinear regimes occurs differ-
ently. For Z � 7, a noticeable difference between R1 and Reff

is observed beginning already from z � 40 cm. Then, an
extended axial structure ë a light élament, is formed in the
focal beam waist (z5 80 cm). The difference between R1

and Reff is caused by inêuence of the Kerr nonlinearity
which causes the sharpening of the initially Gaussian beam,
thereby decreasing its geometrical size; however, no con-
siderable redistribution of the pulse energy over the bean
cross section occurs.

The evolution of the effective radius Reff, unlike the
evolution of its geometrical radius R1 during the focusing of
a supercritical-power beam, leads to the formation of a
distinct focal beam waist centred at zg ' 84 cm. It is
important to note that the change in the effective radius
of a tightly focused beam along the path in linear and
nonlinear regimes occurs similarly up to the `global' non-
linear focus for z � zg, which is formed during self-focusing
earlier than the geometrical focus: zg < zf.

The érst minimum of the dependence R1(z) appears at
the `local' nonlinear focus z � zn; in this case, R1(zn) ' 114
mm, which is almost three times greater than the radius of
the focal beam waist Rf � 43 mm during linear propagation.
This is explained by the ionisation of air and plasma
production, which stop the further compression of the
beam by forming together with the Kerr effect a light
élament on the axis with the quasi-constant peak intensity
Imax � 4� 1013 W cmÿ2. However, the transverse size of
this structure is not constant but oscillates along the path,
achieving the absolute minimum R1 ' Rf at the point z ' 89
cm, and then the beam begins to diverge monotonically.

Consider the stages of formation of a nonlinear focal
waist of ultrashort pulses in more detail. For this purpose,
we introduce another dimensional parameter of the beam ë
the instant effective radius Reff whose square is described by
the expression

R 2
eff t�z; t� � Pÿ1�z; t�

��
S?

d 2r?I�r?; z; t 0�j�r? ÿ rgr t��j2 (11)

where rgr t � Pÿ1(t; z)
� �

S?
r?I(r?; z; t

0)d 2r?. One can see
that this parameter determines the effective size of the
beam in each individual time `slice' and is related to the
time-integrated effective radius (10) by the obvious
expression

R 2
eff�z� �

� �1
ÿ1

P�z; t�dt
�ÿ1 �1

ÿ1
P�z; t�R 2

eff t�z; t�dt. (12)
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Figure 1. Geometrical ( 1, 3 ) and effective ( 2 ) radii of tightly focused
femtosecond beams as functions of the longitudinal coordinate for
relative initial pulse powers Z � 7 ( 1, 2 ) and 0.1 ( 3 ). The vertical arrow
indicates the position of the geometrical focus.
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Figure 2. Evolution of the instant effective radius Reff t ( 1 ë 9 ) and
integrated effective radius Reff ( 10 ) of a focused femtosecond beam with
the initial power Z � 7 (a) and the time proéle of the relative pulse
intensity (b). The numbers of curves ( 1 ë 9 ) in Fig. 2a correspond to the
temporal slices of the pulse indicated by the numbers in Fig. 2b. Curve
( 11 ) corresponds to the beam radius in the linear focusing regime.
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The variation of Reff t along the path is shown in Fig. 2a.
Curves ( 1 ë 9 ) correspond to different instants of time with
the light pulse duration, which are numbered in the curve
presented in Fig. 2b. Thus, curves ( 1 ë 3 ) describe the
change in the effective radius for the leading edge of the
pulse, curves ( 7 ë 9 ) describe this change for the trailing
edge, while curves ( 4 ë 6 ) describe this change for the central
part of the laser pulse. Figure 2a also shows the dependences
of the integrated effective radius Reff(z) for linear and
nonlinear near propagations of the beam.

One can see from Fig. 2 that all the time `slices' of the
pulse up to a certain point of the path (z ' zn) evolve in the
same way, and then each of them forms a focal waist whose
position zf t and radius Reff t f � Reff t(zf t) depend on the
position of each section within the pulse. The pulse power in
the leading edge of the pulse [curve ( 1 )] is lower than the
critical value, the nonlinearity of the medium is not induced
in fact and the spatial radius changes as in the linear case
[curve ( 11 )]. The higher power (compared to Pcr) corre-
sponding to the time slice [curves ( 2 ë 4 )], the stronger
inêuence of the Kerr self-focusing on the time slice. Because
upon gas photoionisation the free electron density at each

point of the path increases with time [see Eqn (6)], the
successive slices of the pulse will be subjected to a stronger
compensation by the plasma nonlinearity. This leads to the
increase in the focal waist size in each next time slice and
draws its centre nearer the path onset. As a result, instead of
one focal spot, known in linear optics, a long waist with a
variable diameter is formed upon focusing of high-power
femtosecond radiation, which consists of many focal spots
corresponding to individual time slices of the pulse. The
time slices located in the leading edge of the pulse have the
minimum radius Reff t f at the focal point z � zf t, while the
slices located in the trailing edge have the maximal radius
(Fig. 3).

The physical picture of the `slice-by-slice' self-focusing of
an ultrashort light pulse is in qualitative agreement with the
dynamic moving focus (DMF) model proposed in [19, 20]
and modiéed for ionised media and focused beams in [21,
22]. This model treats a light élament as a sequence of `local'
foci of different time slices of the pulse appearing at
different distances from the optical path onset. The élament
size at each point is equal to that of the corresponding focal
spot. The DMF model predicts that the right boundary of a
élament in the case of a preliminarily focused beam cannot
come outside its geometrical focus [see expression (4)],
which contradicts experiments and numerical calculations
presented in Fig. 1.This discrepancy can be resolved by
analysing the beam self-focusing in terms of effective
parameters. Then, as follows from Fig. 2a, the minimum
of the instant effective radius, restricting the spatial region
of the instant power of each time slice of the pulse, is indeed
always located to the left from the geometrical focus z � zf
of the beam. From this point of view, the DMF model does
not contradict the physical picture of the effect under study
and can be used for the qualitative interpretation of
nonstationary focusing and tightly focused radiation.

The effective `global' beam radius integrated over the
entire pulse proéle determines the size of the region where
the greater part of the radiation energy is concentrated.
Therefore, the dependence Reff(z) almost completely repeats
the dependence of the instant radius Reff t(z) of the central
part of the pulse [curves ( 5 ), ( 6 ), and ( 10 ) in Fig. 2a merge
to one curve]. Note also that the growth rate of the effective

ÿ1 0 1 t=tp

0.01

0.02

0.03

0.04

Reff t f=R0 I (rel. units.)

0

0.5

1.0

2

1

3

Figure 3. Effective radius Reff t f of the focal waist of each temporal slice
as a function of the time position within the pulse ( 1 ), the waist radius
upon linear focusing of radiation ( 2 ), and the temporal pulse proéle ( 3 ).

a b

Figure 4. Spatiotemporal distribution of the relative intensity of a laser pulse I�jr?j; z � zf; t� at the geometrical focus of the beam for initial radiation
powers Z � 7 (a) and 100 (b). The corrugated structure of the proéles is an artefact of the network approximation algorithm.
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radius in each time slice behind the focal point along the
path exceeds the transverse contraction rate in the slice and
monotonically increases by the pulse end due to the
increasing action of the plasma nonlinearity.

Figure 4 shows the spatiotemporal shape of the laser
pulse in the form of the two-dimensional distribution of the
normalised intensity I(jr?j; z � zf; t) � I=I00 of the wave at
the focal point z � zf of the beam. The two distributions,
corresponding to different initial pulse powers, are pre-
sented. One can see that the spatial intensity distribution
changes drastically from the quasi-Gaussian distribution
(Fig. 4a) to the arrow-like distribution (Fig. 4b) with
increasing radiation power. In the latter case, the peak
of the `arrow' is directed towards the leading edge of the
pulse (negative values of t), while the `wings' are the result of
radiation defocusing in the produced plasma region. Due to
the radiation loss caused by photoionisation of air, the
intensity maximum at the geometrical focal point at large Z
shifts from the pulse centre to its trailing edge (positive
values of t).

Note that upon the self-action of a collimated femto-
second beam, unlike tightly focused radiation considered
here, the light pulse has a different spatiotemporal structure
in the nonlinear focal region. This structure exhibits, as a
rule, the two main intensity maxima located in the leading
and trailing edges of the pulse [23, 24]. This is explained by
the fact that the dominating physical mechanism of the
spatiotemporal compression of a collimated beam is the
Kerr self-focusing, whereas the spatiotemporal compression
of a tightly focused beam occurs due to linear focusing. As a
result, the intensity of a collimated Gaussian beam increases
more strongly on the beam axis, thereby considerably
sharpening the transverse proéle of the beam. In this region,
the maximum energy loss occurs during the plasma pro-
duction, which leads to the pulse segmentation along the
time coordinate and the formation of a bimodal structure.
The femtosecond pulse, compressing due to initial tight
focusing, preserves its proéle almost completely until the
appearance of plasma, and no sharp time gradient is
formed. In this case, the Kerr effect only `helps' in linear
focusing and its inêuence becomes noticeable only in the
vicinity of the nonlinear focus. Therefore, in this case, the
plasma formation in the medium will be provided both by
the central part of the pulse and its leading edge. The trailing
edge of the pulse propagates in a strongly absorbing
medium, which has been ionised by the previous parts of
the pulse and has the defocusing effect on optical radiation.
This restricts a further increase in the pulse intensity due to
the Kerr effect and linear focusing of radiation.

It is the inêuence of the initial focusing of radiation that
also explains the fact that the temporal compression of a
femtosecond laser pulse appearing during its self-focusing,
which was pointed out in many theoretical papers (see, for
example, review [13]), is less pronounced for tightly focused
radiation compared to a collimated beam. It should be
emphasised that this effect is most pronounced only near the
light beam axis, in the region of the absolute maximum of
the éeld intensity and correspondingly of the maximum
inêuence of the Kerr nonlinearity of the medium. At the
beam periphery during self-focusing, as follows from our
studies [25], the time proéle virtually does not change even
for a collimated beam.

It is interesting to determine the maximal achievable
intensity in the focal waist of a femtosecond laser pulse

depending on its power. According to (3), for the conditions
of the numerical experiment upon linear focusing of a beam
of radius �F0 � 0:028, the calculated increase in the radiation
intensity is mf � 5102. As follows from the dependence
presented in Fig. 5, such a value of the relative intensity
is achieved only in the case of a strongly subcritical pulse
power (Z4 0:1). As the initial radiation power is increased,
the parameter mf slowly decreases at moderate powers
(Z � 0:5ÿ 1) and then the relative radiation intensity in
the focus decreases linearly with increasing Z.

The coordinate z � of a point of the path where the pulse
intensity achieves a maximum is shown in Fig. 6. One can
see that, upon focusing the subcritical-power radiation, the
position of the pulse maximum exactly corresponds to the
centre zf � 85:9 cm of a linear focal waist. As the pulse
power further increases, the point corresponding to the
maximum intensity approaches the path onset, the approx-
imate equality z � ' zg being always fulélled. In other words,
upon focusing femtosecond radiation, the maximum radi-
ation intensity is achieved near the `global' focus of the
beam, rather than the `local' focus. The local focus position
zn determines only the beginning of a light élament.

Consider maximum radiation intensities achieved at the
focus of the beam (dashed curve in Fig. 5). The break in the
dependence If(Z), which is distinctly observed in Fig. 4,
corresponds to the change of beam focusing regimes taking
place when the radiation intensity If in the focus achieves
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Figure 5. Dependences of the intensity mf in the focal waist of a
femtosecond beam and of the maximum achievable intensity If on the
initial radiation power.
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(2ÿ 4)� 1013 W cmÿ2. In the latter case, as pointed out
above, the plasma nonlinearity begins to prevent noticeably
(through a change in the refractive index of the medium) a
further increase in the beam intensity occurring during the
Kerr self-focusing of the beam. The competition of these
two processes restricts the peak amplitude of the light wave
in each temporal `slice' of the pulse. Note that while the
restriction of the peak intensity in the leading edge of the
pulse is caused by the wave energy loss for gas photo-
ionisation (the imaginary part of mp), at the pulse centre and
its trailing edge, refraction in the already produced plasma
dominates (the real part of mp). As follows from calcu-
lations (dashed curve in Fig. 6), the maximum free electron
density rmax

e in the beam at which focusing regimes are
changed is �1023 mÿ3.

For the essentially supercritical beam power (Z4 1), the
continuing growth of the peak intensity in the nonlinear
focus leads to the increase in the plasma density up to �1026

mÿ3, which is already close to the equilibrium concentration
of neutral nitrogen molecules in air (according to the
calculation conditions, rnt � 1:2� 1026 mÿ3). This demon-
strates a high, close to unity, photoionisation degree of the
medium, as well as the possibility of the development of the
electron avalanche and optical breakdown of air (the
atmospheric air breakdown threshold is �2� 1014

W cmÿ2 [10]). A further increase in the initial radiation
power will no longer be efécient for increasing the peak
intensity in the `global' focus of the beam because the
optical-breakdown plasma produced in the leading edge of
the pulse will prevent the propagation of the remaining part
of the pulse.

Let us introduce another effective parameter character-
ising the propagation of ultrashort light pulses ë the
effective intensity

Ieff�z� �
E�z�

p 3=2teff p�z�R 2
eff�z�

,

where

teff p �
�
Eÿ1�z�

��
S?

d2r?

�1
ÿ1

dt 0I�r?; z; t 0�t 0 2
�1=2

is the effective average pulse duration. According to this
deénition, the effective radiation intensity Ieff(z) of a
Gaussian pulse at each point of the path in a linear

medium is equal to the peak value of the real intensity.
Figure 7 demonstrates the dependences of the ratio
meff � Ieff(z)=I0 on the propagation length for focused
beams with different initial powers. One can see that the
nonstationary self-action of radiation changes the focusing
dynamics of the beam, resulting in the displacement of its
`global' focal waist towards the radiation propagation
direction and in a decrease in the average intensity
maximum in the `global' focus of the beam.

Figure 8 shows the dependence of the effective radius
Reff f � Reff(z � zg) of the beam focal waist on the initial
power of focused femtosecond pulses. One can see that in
the nonlinear propagation regime it is impossible to focus
radiation into a diffraction-limited spot predicted by the
linear theory [see expression (2)].

It should be emphasised that we are dealing here with the
effective integrated size of the focal beam waist (12),
calculated as the focal radius of each temporal slice of
the pulse averaged over the temporal power proéle. This
radius characterises the size of a region where the pulse
energy is concentrated and it can differ from the instant
radius of the beam determined from the intensity proéle and
having, as pointed out above (see Fig. 3), the minimal
diffraction-limited value in the low-intensity region at the
leading edge of the pulse. This can probably explain the
extremely small focal spot size (diameter 2 ë 3 mm) achieved
in paper [5] upon focusing femtosecond pulses from a
Ti : sapphire laser in air. Based on the results obtained
above, we can conclude that the diffraction-limited (min-
imal) effective transverse size of the focal waist of a high-
power ultrashort pulse can be obtained only at the leading
edge of the pulse, i.e. where the plasma density is still not
high and, therefore, the defocusing of radiation in the
plasma is not strong yet.

6. Conclusions

Thus, numerical simulations of the propagation of tightly
focused high-power ultrashort laser pulses in air have
shown that the spatial shape and size of the focal beam
waist (both in the longitudinal and transverse directions)
depend on the initial pulse power. The spatial focusing of a
laser ultrashort pulse of even subcritical power (for the Kerr
self-focusing) can lead to the photoionisation of the
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Figure 7. Dependences of the relative effective laser radiation intensity
meff on the propagation length z for initial pulse powers Z � 0:1 ( 1 ), 1
( 2 ), 3 ( 3 ), 125 ( 4 ), and 1009 ( 5 ).
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Figure 8. Effective radius Reff f of the focal waist of a femtosecond beam
as a function of the initial radiation power Z. The dashed straight line is
the radius value during linear propagation.
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medium and plasma production in the region of the
maximum beam intensity, which will restrict a further
increase in the light-wave intensity and the transverse
compression of the beam as a whole. The higher the
radiation pulse intensity, the more complicated the spatial
structure of the focal waist, which is transformed from a
point spot to an extended axial élament of variable
diameter consisting of many focal spots corresponding to
individual temporal slices of the pulse.

The evolution of the effective radius of the laser beam
along the optical path is similar to the behaviour of linearly
focused radiation forming a distinct waist at the `global'
focal point. The difference of the regime of nonstationary
focusing of a high-power pulse consists in the change in the
divergence of radiation propagating through the `global'
focus and in the increase in the transverse size of the waist
with increasing pulse power.

The rate of the increase in the maximum intensity of a
focused light beam deceases with increasing the pulse power.
From the point of view of achieving extremely high peak
intensities (or power densities) at the `global' focus of the
beam, an increase in the initial radiation power is inefécient
because the optical-breakdown plasma produced at the
leading edge of the pulse will block the focusing of the
next temporal slices of the pulse.
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