
Abstract. A planar Bragg waveguide with a hollow core is
considered. Analytic dependences of the mode properties of
the waveguide on its geometrical parameters are presented.
By using these dependences, optimal parameters of the Bragg
waveguide are determined. The dependence of the properties
of the waveguide modes on the structure of the internal
boundary of its cladding is considered for the érst time. In
addition, the dependence of the waveguide radiation losses on
the number of its layers is considered for wavelengths 1.55,
10.6 and 0.245 lm of practical interest.

Keywords: Bragg waveguide, radiation losses, microstructure opti-
cal ébres.

1. Introduction

Multilayer structures are widely used in fundamental and
applied physics. Bragg waveguides, i.e. waveguides with
multilayer walls, attract attention of researchers érst of all
because their spectrum contains many modes. This
spectrum can be controlled by changing the waveguide
geometry by varying the angle of a guided mode, shifting
the zero dispersion region, producing waveguides with an
increased mode area, and concentrating the mode éeld in
the hollow core. This reduces, in particular, nonlinear
effects, bending and fundamental losses and enhances the
radiation resistance, etc.

The above properties stimulate the rapid development in
the manufacturing technology of Bragg waveguides. At
present, the number of layers in the periodic structure
can achieve several hundreds [1 ë 4]; therefore, of interest
is the limiting possibilities of Bragg waveguides with a great
number of layers. In this paper, we will consider radiation
losses (determined by radiation modes carrying energy out
of the waveguide core) and the possibility of concentrating
the éeld in the waveguide core. Of special interest is hollow-
core waveguides [5], to which special attention is paid in this
paper. The analysis is performed based on solutions of
coupled-wave equations, which give a complete description

of the Bragg mode structure and are of interest for different
applications. In particular, the analytic solution of the
dispersion equation makes it possible to select the wave-
guide parameters and geometry providing optimal mode
properties. We also studied the inêuence of the core ë
cladding interface on the éeld structure in the core and
cladding.

2. The dispersion equation and radiation losses

Consider a planar Bragg waveguide with the core of `radius'
a (the term `radius' is used for convenience by analogy with
the cylindrical case) and permittivity e0 (Fig. 1). The
cladding of radius b consists of alternating layers of two
equally-thick materials with the permittivities emin and emax.
Bragg modes can be described with good accuracy by
substituting the permittivity step proéle in Fig. 1 by the érst
term of its Fourier expansion. Then, the permittivity of
such a waveguide has the from

e�x� �
e0; x < a;
e� 2B cos�2q�xÿ a� ÿ j�; a < x < b;
e1; x > b;

(
(1)

where e0 is the core permittivity; e is the mean permittivity
of the layered cladding; q � p=d; B � (emaxÿ emin)=p � de=p;
d is the structure period; l is the distance from the core ë
cladding interface to the centre of the érst layer with the
maximum refractive index; e1 is the permittivity in the
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Figure 1. Transverse proéle of the waveguide permittivity.



external cladding; and j � 2pl=d is the phase of a grating
associated with the periodic cladding (the parameter
characterising the structure of the core ë cladding interface).

For modes propagating along the z axis, the éeld in
waveguide (1) has the from E(x; z) � u(x) exp (ik~vz), where ~v
is the effective refractive index and k is the wave number.
The imaginary part Im ~v > 0 is responsible for losses.

The wave equation

u 00�x� � k 2
�
e�x� ÿ ~v 2

�
u�x� � 0 (2)

has the solution [6]:

u�x� �
cos�k�e0 ÿ ~v 2�1=2x�; x < a;
c1u1�x� � c2u2�x�; a < x < b;

T exp�ik�e1 ÿ ~v 2�1=2 x�; x > b:

8<: (3)

Here,

u1�x� � exp�ÿ~m�xÿ a��fexp�iq�xÿ a��

� ~r exp�ij� exp�ÿiq�xÿ a��g;
(4)

u2�x� � exp� ~m�xÿ a��f~r exp�ÿij� exp�iq�xÿ a��

� exp�ÿiq�xÿ a��g;

~m � Bk 2�1ÿ ~D 2�1=2
2q

; ~r � i
ÿ
1ÿ ~D 2

�1=2 ÿ ~D;

~D � e�~v 2 � q 2=k 2�
B

;

(5)

c1, c2, T are complex constants.
Solution (3) was derived in the region a < x < b by the

method of coupled waves in the slowly varying-amplitude
approximation (see [6]), which are valid for

j~mj5 q, B5 eÿ e0. (6)

For hollow waveguides, condition (6) is fulélled almost
always. It is under this condition that the structure
consisting of layers of equal thickness [see (1) and Fig.
1] is optimal from the point of view of radiation losses. If
condition (6) is not fulélled, the optimal is the quarter-wave
structure (see [7], [8]), in which layer thicknesses differ.

By joining the found solutions at the boundaries x � a
and x � b, we obtain dispersion equations:

k�e0 ÿ ~v 2�1=2 tan�kÿe0 ÿ ~v 2
�1=2

a� � u 01 � c2u
0
2=c1

u1 � c2u2=c1

����
x�a

, (7)

c2
c1
� ik

ÿ
e1 ÿ ~v 2

�1=2
u1 ÿ u 01

ik
ÿ
e1 ÿ ~v 2

�1=2
u2 ÿ u 02

����
x�b

. (8)

For b!1, equations (2), (7), and (8) describe the
Bragg waveguide with an inénite number of layers, which
was considered for j � 0 in [6]. For j 6� 0, the éeld in the
waveguide has the from

u�x� � cos kx
ÿ
e0 ÿ v 2

�1=2
, x < a,

u�x� �
��e0 ÿ v 2�=�eÿ v 2��1=2 exp�ic�

2
�
sin 2c� cos 2 c�e0 ÿ v 2�=�eÿ v 2��1=2

(9)

� exp�ÿm�xÿ a��fexp�ÿic� exp�iq�xÿ a��

� exp�ic� exp�ÿiq�xÿ a��, x < a,

where

r � i
ÿ
1ÿD 2

�1=2 ÿD � exp�iw�; m � Bk 2�1ÿD 2�
2q

1=2

;

D �
�
eÿ �v 2 � q 2=k 2��

B
; c�v� � j� w�v�

2
;

w � arccos�ÿD�. (10)

The effective refractive index v is derived from the
dispersion equation (see [6]):

k
ÿ
e0ÿv 2

�1=2
tan
�
ka
ÿ
e0ÿv 2

�1=2 ��ÿ u 01
u1

����
x�a
�ÿq tanc�v�, (11)

which can be obtained from (7), (8) for b!1. In this case,
unlike (4), (5), quantities v, m, and D become real. In
particular, m describes the éeld decay into the cladding,
while D determines the position of modes with respect to
the centre of the Bragg reêection band corresponding to
D � 0.

Dispersion equation (11) can be also written in the form:

a � 1

k
�
q 2=k 2 ÿ �eÿ e0� �DB

�1=2 �pn
ÿ arctan

�
q

k
�
q 2=k 2ÿ�eÿe0��DB

�1=2 tan
j� w�D�

2

��
, (12)

where n is the number of zeros of the function u(x) in the
region x < a.

Equation (12), unlike (11), determines the `detuning' D
related to the effective refractive index v according to (10).

We will seek the solution of dispersion equation (7) for
the énite b in the form ~v � v� dv, where dv! 0 for b!1.
Then, for large enough b, we obtain from (7) and (8):

Im dv � B

v

�
eÿ v 2

e1 ÿ v 2

�1=2
�1ÿD 2�2

� exp

�
ÿ pB
eÿ v 2

N�1ÿD 2�1=2
��

1� B�1ÿD 2�3=2
e0 ÿ v 2

�
�
qa

�
sin 2 c� e0 ÿ v 2

eÿ v 2
cos 2 c

�
ÿ sin 2c

2

��ÿ1
(13)

�
�
cos 2

�
q�bÿ a� � w

2

�
� eÿ v 2

e1 ÿ v 2
sin 2

�
q�bÿ a� � w

2

��ÿ1
,

dv5 v,

where N is the number of periods in the cladding structure.
For the hollow core and e1 � e in (13), the term
(eÿ v 2)=(e1ÿ v 2) is approximately equal to unity. Then,
the expression in the last braces in (13) is unity.
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Note that expression (13) is valid only for c2=c1 5 1.
This relation is fulélled when the exponent in (13) is
suféciently large:

pB
eÿ v 2

N�1ÿD 2�1=2 4 1. (14)

The losses in dB per unit length can be estimated from
the expression

k � 2kIm dv
ln 10

. (15)

3. Mode properties and waveguide optimisation

In this section, we will determine the parameters of a Bragg
waveguide (including its structure period, phase, and
radius) optimising its optical properties (éeld decay in
the cladding, éeld concentration in the core, éeld value at
the core ë cladding interface, and radiation losses) and will
énd the criterion for single-mode propagation (i.e. we will
énd the maximum radius at which the waveguide remains
single-mode one). It turns out in this case, that it is
sufécient to consider a waveguide with the inénite number
of layers in the cladding (N � 1). This concerns all the
optical properties except radiation losses, which are absent
in the case of the inénite number of layers. However, as
shown in section 2, the radiation losses in the case of a
suféciently large number of layers also can be expressed
through the parameters of a waveguide with inénite walls
[see (13)].

In this connection, consider in detail the mode structure
of a Bragg waveguide with the inénite number of layers
(N � 1). We will follow paper [6], where the case j � 0 was
studied. The dispersion equation and formula to énd the
éelds of waveguide modes with j 6� 0 are presented in
section 2 [see (9) and (11)]. In principle, they allow one to
determine all its optical properties. The decay rate m of the
éeld into the cladding and radiation losses are determined
by expressions (10) and (13).

One can also easily obtain from (9) expressions for the
éeld at the core ë cladding interface:

u�a� �
�
e0 ÿ v 2

eÿ v 2

�1=2
cos

j� w�v�
2

�
sin 2 j� w�v�

2

� e0 ÿ v 2

eÿ v 2
cos 2

j� w�v�
2

�ÿ1=2
exp

�
i
j� w�v�

2

�
(16)

and for the éeld concentration in the core

G � 1

1� A
, (17)

where

A �

�1
a

ju�x�j2dx� a

0

ju�x�j2dx
� e0 ÿ v 2

eÿ v 2

�
2ma
�

sin 2 j� w�v�
2

� e0 ÿ v 2

eÿ v 2
cos 2

j� w�v�
2

��
1� sin 2ka�e0 ÿ v 2�1=2

2ka�e0 ÿ v 2�1=2
��ÿ1

is the ratio of the éeld energy in the cladding to the éeld
energy in the core.

Thus, expressions (10), (13), (16), and (17) describe the
main optical properties of waveguide modes.

If the mode is at the centre of the forbidden gap, i.e. the
detuning D � 0 ( w(v) � p=2), the escape rate of the éeld into
the cladding m proves to be maximal [see (10)]. Such a mode
is called central. One can easily see from expressions (13)
and (17) that the central mode is also most advantageous
from the point of view of radiation losses and the éeld
concentration in the core. The condition D � 0 means that
the effective refractive index is

v �
�
eÿ q 2

k 2

�1=2
. (18)

Due to dispersion equation (11), this leads to relation
between the geometrical parameters of the waveguide:

a � 1

k
�
q 2=k 2 ÿ �eÿ e0�

�1=2
�
�
pnÿarctan

�
q

k
�
q 2=k 2ÿ�eÿe0�

�1=2 tan�j
2
� p

4

���
. (19)

The next most signiécant parameter for the waveguide
optimisation is the phase j, which characterises the
structure of the core ë cladding interface [see (1) and Fig.
1]. By analysing expression (17) for the central mode, we
can easily see that the maximum concentration of the éeld
is achieved for j � p=2, when the refractive index of the
érst layer is maximal and its thickness is equal to half the
structure period. Note that in this case the éeld at the
core ë cladding interface vanishes. This circumstance can be
used for designing ébres to minimise losses caused by light
scattering from residual surface inhomogeneities of the core
after the ébre drawing [5].

For the optimal structure of the cladding boundary
under study (j � p=2), relation (19) (for the érst mode)
takes the form

a � p

2k
�
q 2=k 2ÿ�eÿ e0�

�1=2 . (20)

Then, by using (17) and (13), we obtain the éeld energy
fraction in the cladding

A � p 2

4q 3a 3B

q 2

k 2
, (21)

and radiation losses

Im dv � Bÿ
eÿ q 2=k 2

�1=2ÿe1 ÿ e� q 2=k 2
�1=2 q

k

� exp
ÿÿ pBk 2N=q 2

�
1� 1=A

, (22)

where the radius a is determined by expression (20).
Let us énd the maximum radius of a single-mode

waveguide in which the érst mode is the central mode.
The waveguide radius a (20) and the propagation constant v
(18) for the éxed values of l, e, e0 depend only on the ratio
q=k. In the general case, the domain of the mode existence is
determined by the inequalities ÿ1<D<1 and 0<v 2<e0. If
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we éx the parameters q, l, e, e0 and increase the radius a, the
mode can appear either for v � 0 (and large enough B) or
for D � 1.

The radius, at which the second mode appears (for
D � 1), is

a � 1

k
�
q 2=k 2 ÿ �eÿ e0� � B

�1=2
�
�
p� arctan

�
q

k
�
q 2=k 2 ÿ �eÿ e0� � B

�1=2��. (23)

The simultaneous fulélment of conditions (20) and (23)
yields the maximum radius and period d � p=q of the single-
mode waveguide whose érst mode is central.

For B5 1, we can write:

q 2

k 2
ÿ �eÿ e0� �

B

8
, (24)

v 2 � e0 ÿ
B

8
, (25)

qa � p
�
2�eÿ e0 � B=8�

B

�1=2
. (26)

In this case, the expressions for the éeld fraction in the
cladding (21) and estimates of radiation losses (22) take the
form

A � 1

8p

�
B

2�eÿ e0�
�1=2

, (27)

Im dv � B exp
�ÿ pBN=�eÿ v 2��

1� Bqa=�e0 ÿ v 2�

� B 3=2 exp
�ÿ pBN=�eÿ e0�

�
8p
�
2�eÿ e0�

�1=2 . (28)

Expressions (27) and (28) determine the éeld energy
fraction in the cladding and radiation losses, respectively,
for the optimal design of a single-mode waveguide.

4. Dependence of the mode properties
on the structure of the waveguide cladding
internal boundary

The cladding of a Bragg waveguide is a periodic grating of
the refractive index. This raises the natural question: To
what degree do the waveguide properties depend on the
phase of this grating? Expressions (10), (13), (16), (17)
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Figure 2. Dependence of the quantity e0 ÿ v 2 on the phase j.
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Figure 3. Dependence of the detuning D on the phase j.
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Figure 4. Dependence of the éeld energy fraction in the cladding A on
the phase j.
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Figure 5. Dependence of the éeld value at the core ë cladding interface
u�a� on the phase j.
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describing the physical characteristics of the waveguide
modes (the éeld decay rate into the cladding, radiation
losses, the éeld at the boundary, and the éeld energy

fraction in the cladding) allow one to answer this question
because they contain the phase dependence j.

Consider a waveguide with the structure period and the
core radius selected so that for j � p=2 the érst mode is
central and the second mode is near the excitation threshold
[see section 3, expressions (24) and (26)]. Now, by éxing the
structure period and the radius of the waveguide core, we
will study the dependence of mode properties on the phase
j.

Each mode can be characterised by the effective refrac-
tive index v or by the detuning from the centre of the Bragg
reêection band D [see (10)]. The dependences of these
quantities on the phase j are depicted in Figs 2 and 3
(all calculations in Figs 2 ë 7 were performed for l �
1:55 mm). One can see that the waveguide at different
phases j can be both single-mode and two-mode one.
One can also see that the mode is restricted from one
side by the condition v 2 � e0 and from the other side ë by
the condition D � 1. Figures 4 ë 6 show the dependences of
different mode properties on the phase. One can see that
these mode properties strongly change with changing the
phase.

As expected, the zero éeld at the core ë cladding inter-
face, the minimum of the éeld energy fraction in the
cladding and the minimum of the radiation losses are
achieved for the same values of the phase j � p=2 of the
refractive index grating in the cladding.

5. Loss discrimination of modes

In section 4 we considered the waveguide with the core
radius and structure period selected so that for j � p=2 the
érst mode was central and the second mode was near the
excitation threshold. One can see from Fig. 6 that the loss
ratio for the érst and second modes near this threshold is
�10ÿ4. It is obvious that, as the core radius a is increased,
the losses for the érst mode will decrease and the loss ratio
for the érst and second modes will increase. Nevertheless,
this ratio remains much less than unity in some interval of
radii, thereby providing the loss discrimination of modes, as
demonstrated in Fig. 7. One can see that near the excitation
threshold of the third mode (a=l � 5:5), the loss ratio for
the érst and second modes is 0.07. Such a waveguide can be
treated as a single-mode one or a quasi-single-mode one for
many applications.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 j=p

100

Im dv
�
dB kmÿ1

103

10ÿ1

101

102

105

104

Figure 6. Dependence of radiation losses Im dv on the phase j; the
number of layers is N � 150, e1 � 2:6, e � 2:56, and B � 0:05.
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Figure 7. Dependence of radiation losses Im dv on the core radius a
normalised to the wavelength; ( 1, 2, 3) are the mode numbers. Parame-
ters are as in Fig. 6.
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Figure 8. Dependence of the radiation losses on the modulation depth of the refractive index for the érst (solid curve) and second (dashed curve)
modes on the threshold of the third mode appearance for different numbers N of structure periods and for wavelengths l � 1:55 (a), 10.6 (b), 0.245 mm
(c); e1 � 2:6, and e � 2:56.
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6. Dependence of radiation losses on modulation
and number of refractive-index layers
in the cladding

It has been shown in section 4 that the waveguide
properties signiécantly depend on the phase, and minimum
radiation losses are achieved for j � p=2. In practice, the
minimum level of radiation losses in a Bragg waveguide is
determined by the maximum number of layers (periods N)
allowable by the modern technology. Naturally, the
minimum required number of layers is related to the
refractive index modulation dn (or B). The expressions
obtained in section 2 can be used to obtain radiation losses
almost in all interesting cases. Figure 8 presents quasi-
single-mode waveguide losses calculated by (13), (15) for
the wavelengths l � 1:55, 10.6 and 0.245 mm as a function
of the number of layers and the modulation depth of the
refractive index.

One can see from Fig. 8 that the hollow-core Bragg
waveguide has losses which are three times lower than the
value 0.15 dB kmÿ1 achieved at present in the optical
communication for dn � B � 0:05 and the number of
periods N � 150. For radiation of a CO2 laser and excimer
lasers, losses less than 0.5 dB mÿ1 are of practical interest.
One can see from Fig. 8 that in the case of the CO2 laser
radiation, hollow Bragg waveguides have losses of this order
for dn � pB=(2n) � 0:6 and the number of periods N � 15.
Therefore, for the excimer radiation in Fig. 8, these losses
are achieved for the modulation dn � B � 0:25 and the
number of periods N � 25.

However, one should bear in mind that even for N � 1
the hollow-core Bragg waveguide has losses caused by the
fundamental absorption of the éeld. As shown in [6], they
limit the losses at the level �10ÿ3 dB kmÿ1 at 1.55 mm.

7. Conclusions

We have obtained the explicit dependences of the optical
properties of a Bragg waveguide on its geometrical
parameters. In particular, radiation losses, the ratio of
the mode éeld energy in the core and the cladding, the éeld
at the core ë cladding interface and the éeld decay rate into
the cladding have been considered. The relation of the
optical properties with the internal boundary structure of
the Bragg cladding has been established for the érst time. It
has been shown that the érst layer of the optimal structure
has the maximum refractive index and its thickness is equal
to half the structure period.

Radiation losses of Bragg waveguides have been con-
sidered as an example for radiation at 1.55, 10.6 and
0.245 mm for different modulation depths of the refractive
index and different numbers of cladding layers.
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